JPS60152078A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPS60152078A
JPS60152078A JP59008350A JP835084A JPS60152078A JP S60152078 A JPS60152078 A JP S60152078A JP 59008350 A JP59008350 A JP 59008350A JP 835084 A JP835084 A JP 835084A JP S60152078 A JPS60152078 A JP S60152078A
Authority
JP
Japan
Prior art keywords
amorphous silicon
semiconductor
photovoltaic device
type
photovoltaic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008350A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawai
弘 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59008350A priority Critical patent/JPS60152078A/en
Publication of JPS60152078A publication Critical patent/JPS60152078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the collection efficiency of carriers by forming a semiconductor layer having the same conduction type as a semiconductor in the vicinity of the back of a semiconductor photovoltaic element and an energy gap larger than the semiconductor photovoltaic element on the back of the semiconductor photovoltaic element. CONSTITUTION:A photovoltaic element consists of an amorphous silicon photovoltaic element 21 and a polycrystalline silicon photovoltaic element 22. The amorphous silicon photovoltaic element 21 is constituted by an N type amorphous silicon film 32, an I type amorphous silicon layer 33 and a P type amorphous silicon layer 34 from the projecting side of beams 23. The polycrystalline silicon element 22 is constituted by an N type amorphous silicon layer 35, a P type polycrystalline silicon layer 36 and a P type amorphous silicon layer 37 from the projecting side of beams 23. The energy gap of the P type amorphous silicon layer 37 is made larger than that of the P type polycrystalline silicon layer 36.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、光を電気に変換する効率の高い光起電力素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a highly efficient photovoltaic device that converts light into electricity.

(ロ)従来技術とその問題点 従来、光起電力素子として結晶シリコン(以1・c−3
iと記す)、結晶ガリウムヒ素(以1’c−GaAsと
記す)およびアモルファスシリコン(以1ζaSiと記
す)などが利用されておりこれらを用いた光起電力素子
は公知である。
(b) Conventional technology and its problems Traditionally, crystalline silicon (hereinafter referred to as 1.c-3
i), crystalline gallium arsenide (hereinafter referred to as 1′c-GaAs), amorphous silicon (hereinafter referred to as 1ζaSi), etc., and photovoltaic elements using these are well known.

しかるに、上記の光起電力素子のエネルギー・ギャップ
は例えばc−5i、 c−GaAs1a−5i各ノ<l
11eV、 1.43 eV、1.8 eVと材料固有
であるため、光起電力素子として光を利用できる波長範
囲に自ら制約があった。殊に太陽光の如き広い波長範囲
を有する光を有効に電気としてとり出すにはエネルギー
ギヤノブが固有であることが高変候効率化の大きな妨げ
となっていた。
However, the energy gap of the above photovoltaic device is, for example, c-5i, c-GaAs1a-5i, each node<l
Since the wavelengths are 11 eV, 1.43 eV, and 1.8 eV, which are specific to the material, there are limitations on the wavelength range in which light can be used as a photovoltaic device. In particular, the energy gear knob is unique in effectively extracting light with a wide wavelength range such as sunlight as electricity, which has been a major hindrance to achieving high climate change efficiency.

この問題点を解決するために発明者等は特願昭57−2
07395号において、1a−5i を用いてなる光起
電力素子およびa−3i よりエネルギーギャップの小
さい半導体光起電力素子とを光学的に直列に接続構成す
る光起電力素子」を発明した。
In order to solve this problem, the inventors filed a patent application No. 57-2.
In No. 07395, he invented a photovoltaic device in which a photovoltaic device using 1a-5i and a semiconductor photovoltaic device having a smaller energy gap than a-3i are optically connected in series.

しかしながら、前記特許出願に係る光起電力素子は、下
記に示す如き問題があった。第1図は特願昭57−20
7395号に係る光起電力素子の一例のエネルギーバン
ド図である。
However, the photovoltaic device according to the patent application had the following problems. Figure 1 is a patent application filed in 1986-20.
FIG. 7 is an energy band diagram of an example of a photovoltaic device according to No. 7395.

第1図において、アモルファスシリコン光起電力素子1
と多結晶シリコン光起電力素子2が光学的に直列に接続
されており、アモルファスシリコン光起電力素子lは光
30入射側から、n型アモルファスシリコンN’ 2、
i型アモルファスシリコンAj13、p型アモルファス
シリコン層 I 41: 構成されている。また、多結
晶シリコン光起電力素子2は、光30入射側からn型ア
モルファスシリコン層I5、p型多結晶シリコン層16
で構成されている。p型多結晶シリコン層は光吸収係数
が小さいため108以上の厚さを必要とする。このため
、多結晶シリコン光起電力素子2の中で光3の入射側か
らみて裏面の大半はエネルギーバンドの平担な領域が形
成される。従ってこの領域で光生成した電子8は、電子
6と同様にアモルファス光起電力素子1と多結晶シリコ
ン光起電力素子2の界面方向へ移動すべきであるが、前
記領域はエネルギーバンドが平担で、内iq1%電界が
形成されていないために逆方向に拡散し、裏面のIIj
結合中心I+で正孔9と再結合し、キャリヤの収集効率
が低下するという問題があった。
In FIG. 1, an amorphous silicon photovoltaic element 1
and a polycrystalline silicon photovoltaic element 2 are optically connected in series, and the amorphous silicon photovoltaic element l has n-type amorphous silicon N' 2,
I-type amorphous silicon Aj13, p-type amorphous silicon layer I41: Consisting of: In addition, the polycrystalline silicon photovoltaic element 2 includes an n-type amorphous silicon layer I5, a p-type polycrystalline silicon layer 16 from the light 30 incident side.
It is made up of. Since the p-type polycrystalline silicon layer has a small light absorption coefficient, it needs to have a thickness of 10 8 or more. For this reason, most of the back surface of the polycrystalline silicon photovoltaic element 2 when viewed from the incident side of the light 3 is formed as a region with a flat energy band. Therefore, like the electrons 6, the electrons 8 photogenerated in this region should move toward the interface between the amorphous photovoltaic device 1 and the polycrystalline silicon photovoltaic device 2, but the energy band in this region is flat. Since no inner iq1% electric field is formed, it diffuses in the opposite direction, and IIj on the back surface
There was a problem in that carriers were recombined with holes 9 at the bonding center I+, resulting in a decrease in carrier collection efficiency.

(発明の構成) 本発明は上記問題を解消し、光を電気に変換する変換効
率の高い光起電力素子を提供せんとするものである。本
発明は、アモルファス光起電力素子ふ・よびアモルファ
ス光起電力素子よりエネルギーギャップの小さい半導体
光起電内素f−を光学的に直列に接続構成した光起電力
素子において、該半導体光起電力素子の光入射側からみ
て裏面に裏面近傍の半導体と同じ導電型でかつエイ、ル
ギーギャノプの大きな半導体層を形成したことをq、1
゛徴とする。半導体光起電力素子の材料はSi、 Ge
、 GaAs。
(Structure of the Invention) The present invention aims to solve the above problems and provide a photovoltaic element with high conversion efficiency for converting light into electricity. The present invention provides a photovoltaic element in which an amorphous photovoltaic element f- and a semiconductor photovoltaic element f- having a smaller energy gap than the amorphous photovoltaic element are optically connected in series. When viewed from the light incident side of the element, a semiconductor layer of the same conductivity type as the semiconductor near the back surface and a large semiconductor layer of ray, lugyanop is formed on the back surface as q, 1.
It is a sign. The materials of semiconductor photovoltaic elements are Si, Ge
, GaAs.

GaSb、 InP、 InAs、 InSb、 Cd
Te、 PbTe、 Cu2S flどがあるが、価格
の点てシリコン特に多結晶シリコンが好ましい。
GaSb, InP, InAs, InSb, Cd
There are Te, PbTe, Cu2S fl, etc., but silicon, especially polycrystalline silicon, is preferable from the viewpoint of cost.

また」二記各種4A料の形状は板状でも良いし、セラミ
クスヤグラファイト等の板の上に形成した薄1罠状でも
構わない。さらに上記各種材料と接合を形成し半導体光
起電力素子の両端85.37を(1夕或する接合エイ;
・1は、本発明による光起電力素子の形成容易性から鑑
みてアモルファスシリコンが良す1゜特にエネルギーギ
ヤノブの大きな半導体を要する、370部分は、アモル
ファス半導体であることが、エネルギーギャップの大き
さから好ましい。ことにアモルファスシリコンが、光電
特性が良好であ、。
Further, the shape of the various 4A materials described in 2.2 may be in the form of a plate, or may be in the form of a thin trap formed on a plate of ceramics, graphite, or the like. Furthermore, a bond is formed with the various materials mentioned above, and both ends 85.37 of the semiconductor photovoltaic element are bonded to each other.
・For 1, amorphous silicon is preferable in view of the ease of forming the photovoltaic device according to the present invention. 1゜ Particularly for the 370 part, which requires a large semiconductor for the energy gear knob, it is preferable to use an amorphous semiconductor because of the large energy gap. That's preferable. In particular, amorphous silicon has good photoelectric properties.

るために有効である。またnjj記エネルギーギヤツブ
の大きな半導体の活性化エネルギーは前記裏面近傍の半
導体の活性化エネルギー上り人きくなしXことが、キャ
リヤの収集効率向上の点で効果的である。
It is effective for Furthermore, the activation energy of the large semiconductor in the njj energy gear is greater than the activation energy of the semiconductor near the back surface, which is effective in improving carrier collection efficiency.

(実施例) 第2図を用いて基体的実施例を述べる。第2図の光起電
力素子はアモルファスシリコン光起電力素子2Iと多結
晶シリコン光起電力素f・22からなる。アモルファス
シリコン光起電力素f・21は従来素子と同様であるが
、多結晶シリコン素f−22は光23の入射側からn型
7モル7719937層35、p型多結晶シリコンJ(
,736、■)型アモルファスシリコン層37で構成さ
れる。
(Example) A basic example will be described using FIG. The photovoltaic device shown in FIG. 2 consists of an amorphous silicon photovoltaic device 2I and a polycrystalline silicon photovoltaic device f.22. The amorphous silicon photovoltaic element f-21 is similar to the conventional element, but the polycrystalline silicon element f-22 includes an n-type 7 mol 7719937 layer 35, a p-type polycrystalline silicon J (
, 736, ■) type amorphous silicon layer 37.

n型7モル7719937層35は、水素希釈しりI 
O%濃度のシラン(5iH4)ガスと、水素希釈した5
00ppm濃度のツメスフィン(pn3)ガスとをSi
H4に対するPH3の流量比が05%になるように流し
、高周波放電により分解形成する。J放電11rの圧力
は] Torr、基板温度は250℃て形成時間は30
分で1乱写は3000Aである。
The n-type 7 mol 7719937 layer 35 is a hydrogen dilution layer I
0% concentration of silane (5iH4) gas and hydrogen diluted 5
Si
The flow rate of PH3 to H4 is 05%, and decomposition is performed by high frequency discharge. The pressure of the J discharge 11r was Torr, the substrate temperature was 250°C, and the formation time was 30
One shot per minute is 3000A.

p型アモルファスシリコン層37は、水素希釈したlO
%濃度のシラン(SiH4)ガスと、水−+:品釈した
5 00 ppm 濃度のシボラフ (B21−16 
)ガスとを、SiH4に対する8 2 H(Bの流量比
が03%になるようにi+iシL、l’、’ii周波放
電により分解し形成する。放電1111の正方はl ’
l’orr、基板/71A度は250℃で形成時間は5
分で膜厚は500人である。p型アモルファスシリコン
層37のエネルギーギャップは1.7 eVでp増多結
晶シワ3フ (+.+eV) より大きい。また、p型アモルファス
シリコン)”J 3 7の活性化エネルギーは0.18
eVでp型多結晶シリコン層36の活性化エネルギー(
0.25eV)より小さい。
The p-type amorphous silicon layer 37 is made of lO diluted with hydrogen.
% concentration of silane (SiH4) gas and water-+: 500 ppm concentration of Siboraf (B21-16
) gas is decomposed and formed by i + i L, l', 'ii frequency discharge so that the flow rate ratio of 8 2 H (B to SiH4 is 03%. The square of the discharge 1111 is l'
l'orr, substrate/71A degree is 250℃ and formation time is 5
The film thickness is 500 people per minute. The energy gap of the p-type amorphous silicon layer 37 is 1.7 eV, which is larger than the p-multiplying crystal wrinkle 3 (+.+eV). In addition, the activation energy of p-type amorphous silicon) "J 3 7 is 0.18
Activation energy of p-type polycrystalline silicon layer 36 in eV (
0.25 eV).

上記構造で構成することにより、p型多結晶シリコンK
j 3 6内で光生成した電子28は、若し、光230
人躬側から見て裏面へ拡散してもp型アモルファスシリ
コン層37でプロノキンクサレルため再結合中心31で
再結合することはない。
By configuring the above structure, p-type polycrystalline silicon K
If the electrons 28 photogenerated in j 3 6, the light 230
Even if it diffuses to the back side when viewed from the side, it does not recombine at the recombination center 31 because it is propagated in the p-type amorphous silicon layer 37.

次に本発明による光起電力素子と特願昭57−2073
95号において開示した光起電力素子の特性を第1表に
示す。
Next, the photovoltaic device according to the present invention and patent application No. 57-2073
Table 1 shows the characteristics of the photovoltaic device disclosed in No. 95.

第1表 第1表に示した如く、光起電力素子の41性の中で、短
絡電流密度が大きく増加して」っ・りその結果光電変換
効率が増大している。
As shown in Table 1, among the 41 characteristics of photovoltaic devices, the short circuit current density increases significantly, and as a result, the photoelectric conversion efficiency increases.

なお実施例では、光入射側よりn型,I型およびp 型
アモルファスシリコンXRで’rII’j 成り. k
アモルファスシリコン光起電力素子と、光入射側よりn
型アモルファスシリコンJR 、p 型多結晶シリコン
J・コおよびp型アモルファスシリコンJ’+’Jで構
成した多結晶シリコン光起電力素子を光学的に直列に接
続した構造について説明したが、導電型をすべて逆にし
て、アモルファスシリコン光起電力素f−を光入射側よ
りp型,I型ふ・よびn型アモルファスシリコン層で第
1釣戊し、多結晶シリコン光起電力素f−を光入射側よ
りp型アモルファスシリコン八′づ、11ノV’! 多
&−: 晶シリコン層、n型アモルファスシリコン層で
4.i,7成しても良い。
In the example, 'rII'j is formed of n-type, I-type and p-type amorphous silicon XR from the light incident side. k
Amorphous silicon photovoltaic element and n from the light incidence side
Although we have described a structure in which polycrystalline silicon photovoltaic elements composed of type amorphous silicon JR, p-type polycrystalline silicon J-co, and p-type amorphous silicon J'+'J are optically connected in series, the conductivity type Reversing everything, the amorphous silicon photovoltaic element f- is first suspended from the light incident side with the p-type, I-type, and n-type amorphous silicon layers, and the polycrystalline silicon photovoltaic element f- is incident on the light. From the side, p-type amorphous silicon 8', 11 V'! Poly &-: 4. Crystalline silicon layer, n-type amorphous silicon layer. i,7 may be formed.

(発明の効果) 上述の如く、本発明により、アモルファスシリコンより
エネルギーギャップの小さい半導体光起電力素子の裏面
における再結合が防止され、キ4・リヤの収集効率が向
上する結果、短絡電流密度ひいては光電変換効率が向上
する。
(Effects of the Invention) As described above, according to the present invention, recombination on the back surface of a semiconductor photovoltaic element, which has a smaller energy gap than amorphous silicon, is prevented, and as a result, the collection efficiency of K4 and Riya is improved, and as a result, the short circuit current density and eventually Photoelectric conversion efficiency is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特願昭57−207395号において開示して
光起電力素子のエネルギーバンド図であり、第2図は本
発明による光起電力素子の一実施例である。 1、21 アモルファスシリコン光起N 力素子、2、
22 多結晶シリコン光起電力素子、3,23光、4,
 6, 8, 24, 26. 28・電子、5, 7
, 9。 25、 27, 29 正孔、10,’ II, 30
. 31・再結合中心、I 2, 3 2 − n型ア
モルファスシリコン層、13、33−i型アモルファス
シリコンノ@, 14, 341)型アモルファスシリ
コン層、l 5, 3 5 − n型アモルファスシリ
コンJ’J’J 、l 6 + 3 6 ”’ p 増
多i’,+’+ 品シリコン層、3 7 − p 9ア
モルファスンリコン)ン″,:。 代理人弁理士上・代哲司7′イ
FIG. 1 is an energy band diagram of a photovoltaic device disclosed in Japanese Patent Application No. 57-207395, and FIG. 2 is an embodiment of the photovoltaic device according to the present invention. 1, 21 Amorphous silicon photovoltaic N-force element, 2,
22 Polycrystalline silicon photovoltaic device, 3, 23 light, 4,
6, 8, 24, 26. 28・Electron, 5, 7
, 9. 25, 27, 29 hole, 10,' II, 30
.. 31. Recombination center, I 2, 3 2 - n-type amorphous silicon layer, 13, 33- i-type amorphous silicon @, 14, 341) type amorphous silicon layer, l 5, 3 5 - n-type amorphous silicon J'J'J, l 6 + 3 6 ''p multiplication i', +'+ product silicon layer, 3 7 - p 9 amorphous silicon layer'',:. Representative Patent Attorney Senior Tetsuji Dai 7'I

Claims (4)

【特許請求の範囲】[Claims] (1)アモルファス光起7[i 力素子とアモルファス
シリコンよりエネルギーギャップの小さい半導体光起電
力素子を光学的に直列に接続構成した光起電力素子にお
いて、該半導体光起電力素子の光入射側から見て裏面に
、裏面近傍の半導体と同じ導電型でかつ該半導体光起電
力素子より大きなエネルギーギャップを有する半導体層
を有する光起電力素子。
(1) In a photovoltaic device in which an amorphous photovoltaic device and a semiconductor photovoltaic device having a smaller energy gap than amorphous silicon are optically connected in series, from the light incidence side of the semiconductor photovoltaic device. A photovoltaic device having a semiconductor layer on a back surface, as seen, having the same conductivity type as a semiconductor near the back surface and having a larger energy gap than the semiconductor photovoltaic device.
(2)半導体光起電力素子が多結晶シリコンから成るこ
とを特徴とする特許請求の範囲第(+)項記載の光起電
力素子。
(2) The photovoltaic device according to claim 1, wherein the semiconductor photovoltaic device is made of polycrystalline silicon.
(3)エネルギーギヤノブの大きな半導体層がアモルフ
ァス半導体であることを特徴とする特許請求の範囲第(
1)項記載の光起電力素子。
(3) Claim No. 3, characterized in that the large semiconductor layer of the energy gear knob is an amorphous semiconductor.
The photovoltaic device according to item 1).
(4)半導体光起電力素子の活性化エネルギーが、エネ
ルギーギヤノブの大きな半導体層の活性化エネルギーよ
り大きくないことを14’、i:徴とする3、1°詐1
.請求の範囲第(1)項記載の光起電力素子。
(4) The activation energy of the semiconductor photovoltaic element is not greater than the activation energy of the large semiconductor layer of the energy gear knob.
.. A photovoltaic device according to claim (1).
JP59008350A 1984-01-19 1984-01-19 Photovoltaic element Pending JPS60152078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008350A JPS60152078A (en) 1984-01-19 1984-01-19 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008350A JPS60152078A (en) 1984-01-19 1984-01-19 Photovoltaic element

Publications (1)

Publication Number Publication Date
JPS60152078A true JPS60152078A (en) 1985-08-10

Family

ID=11690772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008350A Pending JPS60152078A (en) 1984-01-19 1984-01-19 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPS60152078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648624A1 (en) * 1989-06-16 1990-12-21 Canon Kk PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648624A1 (en) * 1989-06-16 1990-12-21 Canon Kk PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
US5853497A (en) High efficiency multi-junction solar cells
US4688068A (en) Quantum well multijunction photovoltaic cell
US6180432B1 (en) Fabrication of single absorber layer radiated energy conversion device
US4616241A (en) Superlattice optical device
JPS6148799B2 (en)
JP3016858B2 (en) Semiconductor device with silicon layer
JPS61502020A (en) Solar cells and photodetectors
JP3646940B2 (en) Solar cell
JPS5846074B2 (en) Method of manufacturing photovoltaic device
JPH07101753B2 (en) Stacked solar cells
JPH05102504A (en) Photovoltaic element
JPS60152078A (en) Photovoltaic element
JPS5996722A (en) Thin film semiconductor device
JPS6111475B2 (en)
JPS5996777A (en) Photovoltaic element
JPH06232436A (en) Solar cell and manufacture thereof
JP2662309B2 (en) Compound semiconductor solar cells
JP2004095669A (en) Photoelectric conversion element
JPS6249754B2 (en)
JP2594001B2 (en) Method for manufacturing photoelectric conversion element
JPH01194476A (en) Semiconductor photodetector
JPS6195576A (en) High efficiency high electromotive force photocell using hetero junction superlattice structure
JP2788778B2 (en) Photovoltaic element and method for manufacturing the same
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JPH07105517B2 (en) Method for manufacturing amorphous solar cell