JPS60152057A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60152057A
JPS60152057A JP59007215A JP721584A JPS60152057A JP S60152057 A JPS60152057 A JP S60152057A JP 59007215 A JP59007215 A JP 59007215A JP 721584 A JP721584 A JP 721584A JP S60152057 A JPS60152057 A JP S60152057A
Authority
JP
Japan
Prior art keywords
type
diode
junction
region
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59007215A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sato
信之 佐藤
Masaaki Terasawa
寺沢 正明
Ken Uchida
憲 内田
Shinji Nabeya
鍋谷 慎二
Takaaki Hagiwara
萩原 隆旦
Yuji Tanida
谷田 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP59007215A priority Critical patent/JPS60152057A/en
Publication of JPS60152057A publication Critical patent/JPS60152057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors

Abstract

PURPOSE:To obtain different reference voltage easily by constituting a semiconductor device as constant-voltage diodes having each different withstanding voltage by utilizing the different junction withstanding voltage of two kinds of diodes having junctions of different shapes manufactured through the same process. CONSTITUTION:With a diode D1, a junction between high concentration (N<+> type and P type) regions can be formed to a beltlike section along a P<+> type region 11 to a plane shape parallel with the surface of a substrate 1 while a junction between the high concentration (N<+> type) region and a low concentration (P<-> type) region can be formed to a section shallower than the junction between the high concentration regions to a plane shape parallel with the surface of the substrate 1. With a diode D2, a junction between high concentration (N<+> type and P type) regions can be shaped to the section surrounding the side surface of a P<+> region 12 while a junction between the high concentration (N<+> type) region and a low concentration (P<-> type) region can be formed on a plane parallel with the surface of the substrate 1 in a section deeper than the junction between high concentration. Breakdown voltage at a time when P-N junctions are reverse-biassed differs in the diodes D1 and D2.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置に関し、#!iに2種以上の電源電
圧を必要とする装置に好適な半導体装置に関するもので
ある。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a semiconductor device. The present invention relates to a semiconductor device suitable for devices requiring two or more types of power supply voltages for i.

〔背景技術〕[Background technology]

半導体装4、とりわけM N OS (Metal N
1trideOxide Sem1conductor
 ) iランジスタをメモリ菓子としているよりなEE
FROMでは、例えばゲート電圧として20Vが、また
モード選択用として10vが必要とされる等、2種類の
電圧が必要とされる。この種の電圧は通常半導体装置外
から印加しているが、その煩雑さを避けるため、半導体
装置内に形成した内部昇圧回路で生成することが考えら
れる。この場合異なる電圧を生成するために、は電圧に
対応しfc耐圧を有するダイオード等の素子を電圧数だ
け設ける必要がある。このため、前述の例では20V、
IOVの各耐圧を有するダイオードを半導体装置内に形
成する必要がある。
Semiconductor devices 4, especially M N OS (Metal N
1trideOxide Sem1conductor
) Yorina EE that uses i-transistor as a memory confectionery
FROM requires two types of voltages, for example, 20V as a gate voltage and 10V as a mode selection voltage. This kind of voltage is normally applied from outside the semiconductor device, but in order to avoid the complexity, it is conceivable to generate it in an internal booster circuit formed within the semiconductor device. In this case, in order to generate different voltages, it is necessary to provide as many elements as the number of voltages, such as diodes, which correspond to the voltages and have fc withstand voltages. Therefore, in the above example, 20V,
It is necessary to form diodes having respective breakdown voltages of IOV in the semiconductor device.

このように耐圧の異なるダイオードを形成するためKF
i各ダイオードにおける不純物の導入量を変える方法が
考えられる。しかし、この方法では各ダイオードを形成
するために夫々個別に不純物をドープさせなければなら
ず製造工程が繁雑なものになってし貫うという問題が生
じる。
In order to form diodes with different breakdown voltages, KF
One possible method is to change the amount of impurity introduced into each diode. However, this method has the problem that each diode must be individually doped with an impurity to form it, making the manufacturing process complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的#i製造工程を複雑にすることなくかつ占
有面積を極端に大′1fcは小にすることなく耐圧の異
なるクイオードを得ることができ、これにより異なる基
準電圧な容易に得ることのできる半汎体装丁りを提供す
ることにある。
Purpose of the present invention #i It is possible to obtain quardios with different withstand voltages without complicating the manufacturing process and without making the occupied area extremely small. This makes it possible to easily obtain different reference voltages. Our goal is to provide a semi-universal binding that is possible.

本発明の前記ならびにそのほかの目的と新規な%徴は、
本明細曹の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel characteristics of the present invention are as follows:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すわば、下記のとおりである。
A brief summary of typical inventions disclosed in this application is as follows.

すなわち、同一プロセスで製造しfc接合の形状の異な
る2種類のダイオードの異なる接合耐圧を利用して夫々
異なる耐圧の定電圧ダイオードとして構成することVC
より、同一プロセスでかつ同一の不純物導入量で異なる
耐圧のダイオードを形成でき、しかも極端に大小のない
占有面積で形成でき、こねにより異なる基準1イ、圧を
容易に得ることができるものである。
In other words, by utilizing the different junction breakdown voltages of two types of diodes manufactured by the same process and having different fc junction shapes, they are configured as constant voltage diodes with different breakdown voltages.VC
Therefore, diodes with different withstand voltages can be formed in the same process and with the same amount of impurity introduced, and can be formed in an area that is not extremely large or small, and different standard pressures can be easily obtained by kneading. .

〔実施例〕〔Example〕

第1図(Al−(Diは本発明をMNOS)ランジスタ
をメモリセルとするEEPROMに適用した実施例の製
造工程1哩の断面図であり、第2図は完成状態の平面図
である。以下、製造工程に従って説明する。
FIG. 1 is a cross-sectional view of one step in the manufacturing process of an embodiment applied to an EEPROM using an Al-(Di represents the present invention as MNOS) transistor as a memory cell, and FIG. 2 is a plan view of the completed state. , will be explained according to the manufacturing process.

先ず第1図(A)のように、例えばN型のシリコン単結
晶基板(手導体基板)1の主面に基板の選択的な熱酸化
によりフィールド絶縁B!A(Si20膜)2を形5V
(、、このフィールド絶縁膜2によりメモリセル領域3
、mlのダイオード領域4、第2のダイオード領域5を
画成する。その上で、ボロン等のP型不純物を低濃度で
工面に拡散しP型低嬢度ウェル領域6. 7. 8を各
伸域3,4.5に形成する。
First, as shown in FIG. 1A, field insulation B! is applied to the main surface of, for example, an N-type silicon single crystal substrate (hand conductor substrate) 1 by selective thermal oxidation of the substrate. A (Si20 film) 2 type 5V
(,,This field insulating film 2 allows the memory cell area 3 to
, ml, and a second diode region 5 are defined. Then, a P-type impurity such as boron is diffused into the work surface at a low concentration to form a P-type low-density well region 6. 7. 8 is formed in each stretch area 3, 4.5.

次いで同図(Blのようにメモリセル領域3の一部と、
第1のダイオード領域4の全何と、第2のダイオード領
域5の略中央部とを除いた部分にホトレジストマスク9
を形叙し、ボロン等のP型不純物を拡散又はイオン打込
みする。こねにより、メモリセル領域3のP−型ウェル
6にはP型のウェルコンタクト10が形成さね、第1の
ダイオード領域4のP−型ウェル7には帯状にPm層1
1が形成さJl、vPj2のダイオードル1域5のP−
型ウェル8には略中央KP型層12が形成さfする。こ
れらのP型層(P型半導体領域)11.12は夫々同−
深さに形成されることは言うまでもない。
Next, in the same figure (as shown in Bl, a part of the memory cell area 3,
A photoresist mask 9 is applied to the entire first diode region 4 except for the approximate center of the second diode region 5.
and diffuse or ion-implant P-type impurities such as boron. By kneading, a P-type well contact 10 is formed in the P-type well 6 of the memory cell region 3, and a band-shaped Pm layer 1 is formed in the P-type well 7 of the first diode region 4.
1 is formed Jl, vPj2 diode 1 region 5 P-
A substantially central KP type layer 12 is formed in the type well 8. These P-type layers (P-type semiconductor regions) 11 and 12 are the same as -
Needless to say, it is formed at great depth.

次に同図(C1σ)ように、メモリセル領域3上に薄い
sto、膜16.その上のSt、N、膜15.その上の
多結晶シリコン層14およびSIOtM16よりも厚い
810.[13,その上の多結晶シリコン#14を常法
により形成しfc上で、リン等のN型不純物を基板1主
面に拡散又はイオン打込みする。
Next, as shown in the same figure (C1σ), a thin sto film 16. St, N, film 15. Thicker than the overlying polycrystalline silicon layer 14 and SIOtM 16 810. [13. Polycrystalline silicon #14 is formed thereon by a conventional method, and an N-type impurity such as phosphorus is diffused or ion-implanted into the main surface of the substrate 1 on fc.

このとき、前記ウェルコンタクト10上にはホトレジス
トマスク17を設けておくことが好ましい。
At this time, it is preferable to provide a photoresist mask 17 on the well contact 10.

これによりメモリセル領域3にはゲートTI1.&に自
己整合的にN+型ンソー・ドレイン711Bが形成され
、メモリセルとしてのMNOS)ランジスタQMおよび
スイッチング用MO8FETQsが構成さ熟る。また、
第1のダイオード領域41Cは浅いN+型層19が形成
され前記P型層11とでダイオードD、が構成される。
As a result, the memory cell area 3 has gates TI1. An N+ type drain 711B is formed in a self-aligned manner at &, and an MNOS (MNOS) transistor QM as a memory cell and a MO8FET Qs for switching are completed. Also,
In the first diode region 41C, a shallow N+ type layer 19 is formed, and together with the P type layer 11, a diode D is configured.

更にW42のダイオード領域5には全面KN+型層20
が形成され前記P型#12とでダイオードD2が構成さ
れる。
Furthermore, a KN+ type layer 20 is formed on the entire surface of the diode region 5 of W42.
is formed, and together with the P type #12, a diode D2 is constructed.

この状態での平面図を第2図rC示す。第2図のIC−
IC切断線に沿う断面が第1図(C1である。
A plan view in this state is shown in FIG. 2rC. IC- in Figure 2
A cross section along the IC cutting line is shown in FIG. 1 (C1).

ホトレジスト17は除いである。The photoresist 17 is excluded.

第1図(C1および第2図より明らかなように、ダイオ
ードD、とり、とでにPN接合の形状および接合近傍で
の不純物の分布が異なる。ダイオードD、では、晶諧度
(N+型とP型)領域同志の接合がP+型領域11に沿
−)fc帯状の部分に基板表面VCXfI−行な平面状
にでき、他ViMJ饋度(N 型)領域と低濃度(P−
型)領域との接合が、高濃度領礒同志の接合より浅い部
分に、基板表面に平行な平面状にできる。ダイオードD
、では、高濃度(N+型とP型)領域同志の接合がP+
型領域12の側面を囲む部分にでき、他は高酋度(N型
)@域と低濃度(P−型)gi域との接合が、菌濃度同
志の接合より深い部分に、基板表面に平行な平面状にで
きる。
As is clear from Figure 1 (C1) and Figure 2, the shape of the PN junction and the distribution of impurities near the junction are different between the diode D and the diode D. Junctions between the P-type (P-type) regions are formed along the P+-type region 11 along the -)fc band-like part in a plane along the substrate surface (VCXfI-), and other ViMJ (N-type) regions and low concentration (P-
The junction with the (type) region can be formed in a plane parallel to the substrate surface in a shallower part than the junction between high-concentration regions. Diode D
, the junction between the high concentration (N+ type and P type) regions is P+
The junction between the high-intensity (N-type) @ region and the low-concentration (P-type) gi region is formed deeper than the junction between the two bacterial concentrations, and on the substrate surface. Can be made into parallel planes.

しかる上で、同図の)のように層間絶縁膜とじてのフォ
スフオシリケードガラス(PSG)膜21を形成し、か
つコンタクトホールな形成し7た上でアルミニウム(A
J)配線層22を形成することによりFr要の半導体装
置が構成されるととKなる。
Then, as shown in the figure), a phosphosilicate glass (PSG) film 21 is formed as an interlayer insulating film, contact holes are formed, and aluminum (A) is formed.
J) If a semiconductor device requiring Fr is constructed by forming the wiring layer 22, then K is obtained.

なお、図示していないが、N 型半導体領域20および
p−!J領域7に対してもA7配線が1p続される。
Although not shown, the N type semiconductor region 20 and the p-! 1 p of the A7 wiring is also connected to the J region 7.

以上のように形成された半導体装tg!は、第3図1の
よりにダイオードDI+ ダイオードD2が夫々個別に
内部昇圧回路23vc接続されて定電圧回路11+U?
を構成し、ダイオードD、を定電圧ダイオードとした定
電圧回路り、はMNOSゲート13に電圧■、を供給し
、ダイオードD、を定電圧ダイオードとした定電圧回路
り、Fiモード選択#111t圧V、を供給するよう構
成さ才する。
Semiconductor device tg! formed as described above! According to FIG. 3, diode DI+ and diode D2 are individually connected to the internal booster circuit 23vc to form a constant voltage circuit 11+U?
, a constant voltage circuit with diode D as a constant voltage diode, supplies voltage to the MNOS gate 13, and a constant voltage circuit with diode D as a constant voltage diode, Fi mode selection #111t voltage V, is configured to supply V.

この構成によれば、各定電圧回路L1.L2の定電圧ダ
イオードはダイオードD1 とダイオードD、とで構成
されている−+め、第4図のグラフから判るように両ダ
イオードDl*D!の接合耐圧の相違により、各回路L
l*L2の基準となる電圧も必然的に異なる。すなわち
、ダイオードD。
According to this configuration, each constant voltage circuit L1. The constant voltage diode L2 is composed of a diode D1 and a diode D. As can be seen from the graph in FIG. 4, both diodes Dl*D! Due to the difference in junction breakdown voltage, each circuit L
The reference voltage of l*L2 is also necessarily different. That is, diode D.

とり、とでは、前述した理由によりPN接合を逆バイア
スL、fcときの降伏1r、圧すなわち逆方向の接合耐
圧が異なる。こ第1を第4図に示す。第4図において、
縦軸は前記PN接合の接合耐圧(V)を示し、横m1t
P型不純物セしてのボロンのドーズ量を示す。なお、N
 型領域19.20のfc W>のN型不純物としての
リンのドープ−8tFiI X 10”(個/ff1)
で一定としである。
For the reason described above, the breakdown voltage 1r when the PN junction is reverse biased L, fc, that is, the junction breakdown voltage in the reverse direction is different. The first example is shown in FIG. In Figure 4,
The vertical axis indicates the junction breakdown voltage (V) of the PN junction, and the horizontal axis m1t
The dose amount of boron including P-type impurity is shown. In addition, N
Doping of phosphorus as N-type impurity in type region 19.20 fc W> - 8tFiI x 10'' (pieces/ff1)
It is assumed that it is constant.

第4図より明らかなように、同一のホロンドープ量に対
してダイオードD1の接合耐圧がダイオオードD2のそ
れに対して小さい。ダイオードDIID、において、ボ
ロンドープ鴛を変化させても、略一定値だけ、沖合耐圧
が異なる。リンドープ値を変化させれば接合耐圧も変化
するが、ダイオードD、の接合耐圧が小さいことは同一
である。なお、リンドープ量を増せは接合耐圧は小さく
なる。
As is clear from FIG. 4, the junction breakdown voltage of diode D1 is smaller than that of diode D2 for the same amount of holon doping. In the diode DIID, even if the boron dope is changed, the offshore breakdown voltage differs by a substantially constant value. If the phosphorus doping value is changed, the junction breakdown voltage also changes, but the fact that the junction breakdown voltage of diode D is small is the same. Note that as the amount of phosphorus doped increases, the junction breakdown voltage decreases.

第】図に示す実施例では、ダイオードD、の接合耐圧を
約11v1ダイオードD、のそれを約17Vとしている
。このために、N+型領領域19200fcめのN型不
純物と151のリンのドープ艮を1x 1(Ij11個
/crrfとし、P型領域11.12のためのP銅不純
物とし、てのボロンのドーフ曾を3×10目個/dとし
ている。これから定電圧回路LI+L2の基準電圧を夫
々IIV、17VK股定できることになる。
In the embodiment shown in the figure, the junction breakdown voltage of diode D is approximately 11V1, and that of diode D is approximately 17V. For this purpose, the N-type impurity for the N+ type region 19200fc and the phosphorus doping for 151 are set to 1x 1 (Ij11 pieces/crrf), the P copper impurity for the P-type region 11.12, and the boron doping for the It is assumed that the number is 3×10/d.From this, the reference voltages of the constant voltage circuit LI+L2 can be determined as IIV and 17VK, respectively.

なお、ダイメートDI+ ダイオードD、の各面積(N
/茜、P層)を変化1−ることにより、耐圧を微小変化
することができる。
In addition, each area (N
/Akane, P layer), the breakdown voltage can be slightly changed.

〔効果〕〔effect〕

(1) 同一プロセスで形bM t、た811f1のダ
イオード(Dl)と第2の夕゛イオード(D2 )を夫
々個別に定電圧ダイオードと1.て構成しているので、
第1のダイオードと第2のダイオードとの接合耐圧の相
違によって異なる定電圧を容易に得ることができる。
(1) In the same process, a diode (Dl) and a second diode (D2) of the type bMt and 811f1 were separately converted into a constant voltage diode and 1. Since it is configured as follows,
Different constant voltages can be easily obtained depending on the difference in junction breakdown voltage between the first diode and the second diode.

(2)第1のダイオードと第2のダイオードを同一プロ
セスでかつ同一不純物濃度で形成12ても異なる耐圧を
得ることができるので、製造工程の簡易化を図ることが
できる。
(2) Even if the first diode and the second diode are formed in the same process and with the same impurity concentration, different breakdown voltages can be obtained, so the manufacturing process can be simplified.

+31 011のダイオードと第2のダイオードの耐圧
の相違により、同一プロセスで異なる耐圧の定電圧ダイ
オードを得ることができかつ異なる2f!J類の定電1
圧を得ることができるので、EEPROMのような2種
類の電圧を必要とする半導体装置の設計、製造を容易な
ものにできる。
Due to the difference in breakdown voltage between the +31 011 diode and the second diode, it is possible to obtain constant voltage diodes with different breakdown voltages in the same process, and also with different 2f! Class J constant voltage 1
Since the voltage can be obtained, it is possible to easily design and manufacture a semiconductor device such as an EEPROM that requires two types of voltage.

以上本発明者によってなさtまた発明を実施例にもとづ
き具体的に説明したが、本発明は上記実施例に限定さ贋
るものではなく、その要旨を逸脱しない範囲で種々変更
可能であることはいうまでもない。たとえは、ダイオー
ドD、やダイオードDtのXF−面形状や接合面積、ま
た不純物の種類を変更することにより耐圧を実施例以外
の値に変化させることもできる。東に、ダイオードD1
1 ダイオードD2を袖々の規格で製造することにより
、3種類以上の定電圧を得ることもできる。
Although the invention made by the present inventor has been specifically explained based on examples, the present invention is not limited to the above-mentioned examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say. For example, the breakdown voltage can be changed to a value other than those in the embodiments by changing the shape of the XF-plane, the junction area, or the type of impurity of the diode D or diode Dt. To the east, diode D1
1. Three or more types of constant voltages can be obtained by manufacturing the diode D2 according to various specifications.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるMNOS)ランジス
タをメモリセルとするEEPROMに適用した場合につ
いて説明したが、それに限足されるものではなく、フロ
ーティングゲート型のメモリセルからなるEPROMや
その他の2種類以上の定電圧を必要とする種々の半導体
装置に適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to the EEPROM whose memory cells are MNOS (MNOS) transistors, which is the field of application in which the invention was made by the present inventor, but the invention is not limited to this. It can be applied to EPROMs consisting of gate-type memory cells and other various semiconductor devices that require two or more types of constant voltages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Al−(DJは本発明の実施例を製造工程順に
示す断面囚、 第2図はその概略平面図1、 第3図は回路構成図。 第4図は接合耐圧の特性グラフである。 1・・・半導体基板、2・・・フィールド絶縁膜、3・
・・メモリセル領域、4・・・第1のダイオード佃域、
5・・・第2のダイオード領域、6. 7. 8・・・
P−型ウェル、11.12・・・P+型層、18・・・
ソース・ドvイン領域、19. 20−Nff1層、2
l−PEG膜、QM・・・MNOS)ランジスタ、Q8
・・・MO8FET%D、・・・第1の降伏電圧を持つ
ダイオード、D、・・・第2の降伏電圧を持つダイオー
ド。 第1頁の続き ■Int、C1,’ 識別記号 H01L 29/91 [相]発明者鍋谷 慎二 @発明者萩原 隆旦 [相]発明者谷1)施工 庁内整理番号 7638−5F 小平市上水本町14501地 株式会社日立製作所武蔵
工場内国分寺市東恋ケ窪1丁目28幡地 株式会社日立
製作所中央研究所内 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
Figure 1 (Al-(DJ) is a cross-sectional diagram showing an example of the present invention in the order of manufacturing steps, Figure 2 is a schematic plan view 1, Figure 3 is a circuit configuration diagram. Figure 4 is a characteristic graph of junction breakdown voltage. 1. Semiconductor substrate, 2. Field insulating film, 3.
...Memory cell area, 4...First diode area,
5... second diode region, 6. 7. 8...
P- type well, 11.12...P+ type layer, 18...
Source domain area, 19. 20-Nff1 layer, 2
l-PEG film, QM...MNOS) transistor, Q8
... MO8FET%D, ... diode with first breakdown voltage, D, ... diode with second breakdown voltage. Continuing from page 1 ■ Int, C1,' Identification code H01L 29/91 [Phase] Inventor Shinji Nabetani @ Inventor Ryutan Hagiwara [Phase] Inventor Tani 1) Construction Agency Reference number 7638-5F Kodaira City Josui 14501 Honmachi Hitachi, Ltd. Musashi Factory 1-28 Higashi-Koigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory 1-28 Higashi-Koigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】 1、半導体基板に形成しfc第1の降伏電圧を持つ第1
のダイオードと第2の降伏電圧を持つ第2のダイオード
を夫々個別KQ電圧ダイオードとして構成し、6異なる
接合耐圧によって異なる定電圧を得るように構成したこ
とを特徴とする半導体装置。 2、前記第1のダイオードと前記第2のダイオードとを
同一プロセスでかつ同一不純物濃度で形成してなる特許
請求の範囲第1項記載の半導体装置。
[Claims] 1. A first layer formed on a semiconductor substrate and having an fc first breakdown voltage.
and a second diode having a second breakdown voltage, each of which is configured as an individual KQ voltage diode, and is configured to obtain different constant voltages depending on six different junction breakdown voltages. 2. The semiconductor device according to claim 1, wherein the first diode and the second diode are formed in the same process and with the same impurity concentration.
JP59007215A 1984-01-20 1984-01-20 Semiconductor device Pending JPS60152057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007215A JPS60152057A (en) 1984-01-20 1984-01-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007215A JPS60152057A (en) 1984-01-20 1984-01-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60152057A true JPS60152057A (en) 1985-08-10

Family

ID=11659773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007215A Pending JPS60152057A (en) 1984-01-20 1984-01-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60152057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533439A2 (en) * 1991-09-20 1993-03-24 Hitachi, Ltd. Constant-voltage diode, power converter using the same and process of producing constant-voltage diode
US6769416B2 (en) 2001-05-11 2004-08-03 Mitsubishi Denki Kabushiki Kaisha Evaporated fuel processing module
JP2007335882A (en) * 1992-09-21 2007-12-27 Siliconix Inc BiCDMOS STRUCTURE AND MANUFACTURING METHOD THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533439A2 (en) * 1991-09-20 1993-03-24 Hitachi, Ltd. Constant-voltage diode, power converter using the same and process of producing constant-voltage diode
EP0533439A3 (en) * 1991-09-20 1994-07-27 Hitachi Ltd Constant-voltage diode, power converter using the same and process of producing constant-voltage diode
JP2007335882A (en) * 1992-09-21 2007-12-27 Siliconix Inc BiCDMOS STRUCTURE AND MANUFACTURING METHOD THEREOF
US6769416B2 (en) 2001-05-11 2004-08-03 Mitsubishi Denki Kabushiki Kaisha Evaporated fuel processing module

Similar Documents

Publication Publication Date Title
US5491105A (en) LDMOS transistor with self-aligned source/backgate and photo-aligned gate
US6159799A (en) Method of manufacturing semiconductor device comprising high voltage regions and floating gates
US5500392A (en) Planar process using common alignment marks for well implants
US5229308A (en) Bipolar transistors with high voltage MOS transistors in a single substrate
US6104060A (en) Cost savings for manufacturing planar MOSFET devices achieved by implementing an improved device structure and fabrication process eliminating passivation layer and/or field plate
US4379305A (en) Mesh gate V-MOS power FET
US4570175A (en) Three-dimensional semiconductor device with thin film monocrystalline member contacting substrate at a plurality of locations
JP2667465B2 (en) Semiconductor device
JPS60152057A (en) Semiconductor device
US7419883B2 (en) Method for fabricating a semiconductor structure having selective dopant regions
EP1142014B1 (en) A method of manufacturing a peripheral transistor of a non-volatile memory
JPH10294475A (en) Semiconductor device and its manufacture
US6459128B1 (en) Field-effect transistor
US3316128A (en) Semiconductor device
JPS6228587B2 (en)
JPH0371673A (en) Vertical mosfet
JPS6153762A (en) Semiconductor integrated circuit device
KR930001420B1 (en) Eprom and method of fabricating therefor
KR940005739B1 (en) Diode for generating reference voltage and manufacturing method thereof
JPS62243352A (en) Semicontoctor device
JPS61124165A (en) Manufacture of semiconductor device
KR930004299B1 (en) I2l device and method of manufacturing of the same
KR930008855B1 (en) Manufacturing method of cascaded transistor
KR0152356B1 (en) Method of fabricating semiconductor device
JP2828644B2 (en) Method for manufacturing semiconductor integrated circuit