JPS6015016B2 - Method for measuring the concentration of hypobromite aqueous solution - Google Patents

Method for measuring the concentration of hypobromite aqueous solution

Info

Publication number
JPS6015016B2
JPS6015016B2 JP14163578A JP14163578A JPS6015016B2 JP S6015016 B2 JPS6015016 B2 JP S6015016B2 JP 14163578 A JP14163578 A JP 14163578A JP 14163578 A JP14163578 A JP 14163578A JP S6015016 B2 JPS6015016 B2 JP S6015016B2
Authority
JP
Japan
Prior art keywords
concentration
measuring
absorbance
hypobromite
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14163578A
Other languages
Japanese (ja)
Other versions
JPS5567641A (en
Inventor
健国 吾妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14163578A priority Critical patent/JPS6015016B2/en
Publication of JPS5567641A publication Critical patent/JPS5567641A/en
Publication of JPS6015016B2 publication Critical patent/JPS6015016B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は主として次亜臭素酸塩を含有する水を洗浄水
とする湿式ガス処理装贋における洗浄水中に含まれた次
亜臭秦酸塩(以下MBroと略記する)の濃度を測定す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention mainly deals with the treatment of hypobromite (hereinafter abbreviated as MBro) contained in wash water in wet gas treatment equipment using water containing hypobromite as wash water. Concerning a method for measuring the concentration of.

従釆この種の目的方法としては原理的には‘ィはう化カ
リを用いた比色法または(o}酸化還元電位を測る方法
等が考えられる。
As a secondary method of this type, in principle, a colorimetric method using potassium hydride or a method of measuring redox potential can be considered.

しかし前者は、実験室的には頻繁に用いられているが、
工業用計測器としては、よう化カリや酢酸のような公害
対策上問題の多い薬品を使用するうえM旧roとよう化
カリとの反応により生ずる有害な遊離よう素の後処理が
必要であるといった問題点がある。更に遊離よう素は測
定器の鞍液部に付着し易いので、例えば光学的に遊離よ
う素濃度を測定する場合にはよう素の付着損失による誤
差ばかりではなく、窓材の汚染により吸光度が増大して
大きな測定誤差を生ずる恐れがある。また後者の酸化還
元電位を測定する方法は、溶液の酸化還元電位がpHや
共存するBr‐濃度に強く依存するうえ、MBro濃度
の対数値に対応した電位変化しか示さないため満足な測
定値をうろことは困難である。このように従釆知られて
いる測定方法を適用したのでは湿式ガス処理装置のガス
洗浄水中のM旧ro濃度を長期間にわたって正確に測定
するのには適当でない。
However, although the former is frequently used in the laboratory,
As an industrial measuring instrument, it uses chemicals that are problematic in terms of pollution control, such as potassium iodide and acetic acid, and requires post-treatment of harmful free iodine produced by the reaction between Mold and potassium iodide. There are some problems. Furthermore, free iodine tends to adhere to the saddle liquid of the measuring device, so when measuring free iodine concentration optically, for example, there is not only an error due to loss of iodine adhesion, but also an increase in absorbance due to contamination of the window material. This may cause large measurement errors. In addition, the latter method of measuring redox potential does not provide a satisfactory measurement value because the redox potential of the solution strongly depends on the pH and the coexisting Br concentration, and it only shows a potential change corresponding to the logarithm of the MBr concentration. Scales are difficult. Applying the conventionally known measuring method as described above is not suitable for accurately measuring the M old ro concentration in the gas cleaning water of a wet gas treatment equipment over a long period of time.

この発明は上記のような欠点を本質的にもたず、かつ汎
用性のある新規な測定法を提供すためになされたもので
、被検液の290〜斑肌mの範囲の紫外光の吸光度から
Bro‐の濃度を推定することを骨子とすもので、‘ィ
)MBroを含有する被検液をアルカリ性にしてMBr
oの大部分をBro‐の形にした後、Bro‐の290
〜斑仇mの範囲の紫外光吸光度を測定するものである。
This invention was made in order to provide a new and versatile measuring method that essentially does not have the above-mentioned drawbacks. The main purpose of this method is to estimate the concentration of Bro from the absorbance.
After converting most of o into Bro- shape, 290 of Bro-
This is to measure the ultraviolet light absorbance in the range of .

以下、この発明の一実施例について説明する。第1図は
前記‘ィーの方法を適用した系統図で、送給されてくる
被検液1にポンプ2により送給されてくるアルカリ液3
が連続的に注入され、PHが11以上に調節された被検
液laとなった後、ろ過器4を経て測定セル5に導入さ
れる。この測定セル5には、光源6より頚射された紫外
線7が光学フィル夕8(好ましくは分散の小さい金属膜
蒸発干渉フィル夕)を通って波長290〜総帥mの範囲
内の単色光(例えば33仇血)7aとなって入射する。
この単色光7aは測定セル5を通過する間に被検液la
中のBm‐に吸収され、そのイオン濃度に対応して光東
が減少した透過光7bとなって受光器9に入射する。受
光器9は透過光7bの強度に対応した値の電気信号11
を演算器1川こ出力し、演算器10は吸光度信号11に
対応したMBmの濃度信号1 1 aを後続の装置(図
示せず)に出力する。つぎにこのM旧ro含有濃度測定
方法の原理を詳細に説明する。
An embodiment of the present invention will be described below. Figure 1 is a system diagram to which the above-mentioned method is applied.
is continuously injected to become a test liquid la whose pH is adjusted to 11 or more, and then introduced into the measurement cell 5 through the filter 4. In this measurement cell 5, ultraviolet rays 7 emitted from a light source 6 pass through an optical filter 8 (preferably a metal film evaporation interference filter with small dispersion), and monochromatic light (for example, 33) It becomes incident as 7a.
While this monochromatic light 7a passes through the measurement cell 5, the test liquid la
It is absorbed by Bm- in the ion beam, and enters the light receiver 9 as transmitted light 7b whose light intensity is reduced in accordance with the ion concentration. The light receiver 9 receives an electric signal 11 having a value corresponding to the intensity of the transmitted light 7b.
The computing unit 10 outputs an MBm concentration signal 1 1 a corresponding to the absorbance signal 11 to a subsequent device (not shown). Next, the principle of this M old ro content measuring method will be explained in detail.

図において被検液1中のMBro塩は下記の化学方程式
【1}であらわされるところの次亜臭秦酸EBroとB
ro‐との化学平衡状態にある。
In the figure, the MBro salt in test solution 1 is expressed by the following chemical equation [1}: hypobromite EBro and B
It is in chemical equilibrium with ro-.

HBroこBro‐+H+log(Bro‐)/HBr
o) } ...‘1}=−8.73十
pH(260)(ここに( )はグラムイオン/リツト
ルまたはグラムモル/リットルの濃度単位を表わす)式
mからBm−の存在割合とpHとの関係を求めると第2
図に点線で示した特性曲線Aのようになる。
HBrkoBro-+H+log(Bro-)/HBr
o) } . .. .. '1} = -8.730 pH (260) (where () represents the concentration unit of gram ion/liter or gram mole/liter) From equation m, finding the relationship between the abundance ratio of Bm- and pH, 2
The result is a characteristic curve A shown by a dotted line in the figure.

一方、25qoで次亜臭素酸ソーダ濃度1.65× 3
10‐柚oぞ/その水溶液を用いて、後述の紫外吸収ス
ペクトルから計算したBro‐の存在割合を求めると第
2図の実線で示した特性曲線Bのようになる。すなわち
、いずれの特性曲線もpH之11でればMBroの96
%以上がBro‐として存在することに 3なる。なお
第2図の特性曲線Bによれば、PHミ9でBro−は約
50%以下の存在割合を示しているが、その領域でMB
roはMBroとして気相に蒸発したり、化学的反応性
が増すのでその濃度は不安定な4ものとなる。
On the other hand, at 25 qo, the concentration of sodium hypobromite is 1.65 × 3
Using the aqueous solution of 10-yuzu, the abundance ratio of Bro- calculated from the ultraviolet absorption spectrum described below is determined as the characteristic curve B shown by the solid line in FIG. In other words, for both characteristic curves, if the pH is 11, the MBro is 96.
% or more exists as Bro-, which means 3. According to the characteristic curve B in Fig. 2, Bro- has an abundance ratio of about 50% or less at PH Mi9, but in that region, MB
Since ro evaporates into the gas phase as MBr, and its chemical reactivity increases, its concentration becomes unstable.

従ってpHを9以下としてMBro濃度を測定すること
は好し〈ない。第3図は温度25q0でNaBroを1
.65×10‐3mo〆/そ含む柵12の水溶液の紫外
線吸収スペクトル図であり、測定セル5の有効長さは1
.0仇である。
Therefore, it is not preferable to measure the Mbro concentration at a pH of 9 or lower. Figure 3 shows NaBro 1 at a temperature of 25q0.
.. It is an ultraviolet absorption spectrum diagram of an aqueous solution of fence 12 containing 65×10-3 mo〆/containing, and the effective length of measurement cell 5 is 1
.. 0 enemies.

図において波長33仇血に吸収の極大値を示す物質はB
ro‐である。なお、この特性曲線の形状は、舟之11
ではほぼ一定である。第4図は斑12、温度約260に
おけるNaBro濃度と波長33仇血での吸光度との関
係を実測した結果を示す特性図であり、実験範囲内で両
者の間に下記のベールの法則に従う直線関係が見出され
た。
In the figure, the substance that exhibits maximum absorption at wavelength 33 is B.
It is ro-. Note that the shape of this characteristic curve is
It is almost constant. Figure 4 is a characteristic diagram showing the result of actually measuring the relationship between the NaBro concentration at a temperature of about 260℃ and the absorbance at a wavelength of 33℃, and within the experimental range there is a straight line between the two according to Beer's law below. A relationship was found.

log。/1,=3.64×1ぴCI
……(1)(ここにloglo/1,は吸光度で、lo
はM旧ro濃度が零のときの透過光7bの強さ、1,は
M旧ro濃度がCmo夕/そのときの透過光7bの強さ
、夕は測定セル5の有効長(仇)である。)以上述べた
ように第1図の実施例は被検液1にアルカリ液3を添加
し、その−を11以上として被検液1中のM旧roのほ
ぼ全量をBro‐の化学形態とした後、Bro‐の紫外
線吸収領域290〜斑仇mの範囲内の吸光度を測定する
ことにより被検液1中のM旧ro濃度を検知することが
できる。
log. /1, = 3.64 x 1 pi CI
...(1) (here loglo/1, is absorbance, lo
is the intensity of the transmitted light 7b when the M old ro concentration is zero, 1, is the intensity of the transmitted light 7b when the M old ro concentration is Cmo / the intensity of the transmitted light 7b at that time, and 1 is the effective length of the measurement cell 5. be. ) As mentioned above, in the example shown in FIG. 1, alkaline solution 3 is added to test solution 1, and - is set to 11 or more to convert almost the entire amount of M old ro in test solution 1 into the Bro- chemical form. After that, the M old RO concentration in the test liquid 1 can be detected by measuring the absorbance within the range from the UV absorption region 290 to 100 m.

なお、ろ過器4は、被検液1をアルカリ性とした際発生
する可能性のある鉄、カルシウム等の金属イオンの水酸
化物、その他の共存する固形物をろ別するためのもので
あり、光源7としては特に限定されるものではなく市販
のタングステンランプまたは重水秦ランプの波長33M
m前後に発輝帯をもつものであればよい。
The filter 4 is for filtering out hydroxides of metal ions such as iron and calcium, which may be generated when the test liquid 1 is made alkaline, and other coexisting solids. The light source 7 is not particularly limited, and may be a commercially available tungsten lamp or heavy water lamp with a wavelength of 33M.
Any material having an emission band around m may be used.

また、測定セル5の必要有効長は、例えば測定波長33
仇mで、Bro‐による吸光度が0.03のときを測定
下限界とするならば、MBroの検出下限界濃度8.4
×10‐6moそ/〆(重量比で1肌)を得るためには
約4.3肌以上とすればよい。
In addition, the required effective length of the measurement cell 5 is, for example, the measurement wavelength 33
If the lower limit of measurement is when the absorbance due to Bro- is 0.03, then the lower detection limit concentration of MBro is 8.4.
In order to obtain x10-6moso/〆 (1 skin in weight ratio), it is sufficient to use approximately 4.3 skin or more.

また受光器14は、光電子増倍管またはシリコンフオト
セル等を用いればよい。
Further, the light receiver 14 may be a photomultiplier tube, a silicon photocell, or the like.

以上説明した実施例では、光学フィル夕8は、33仇m
の単色光を透過するものを用いた構成を示したが、筆ず
しも単色光である必要はなく、Bro‐の吸収帯城であ
る290〜斑瓜mの範囲内の光を透過する光学フィル夕
であれば同様に用いることができることは云うまでもな
い。
In the embodiment described above, the optical filter 8 has a length of 33 meters.
Although we have shown a configuration using an optical device that transmits monochromatic light of It goes without saying that any filter can be used in the same way.

また被検液laのpHは、必ずしも11以上としなけれ
ばならにし、ものではなく、測定精度が粗であってもよ
いような場合にはpH9.9崖度以上とすることで目的
を達しうるものである。第5図はこの発明に係る前記‘
ィーの測定方法の第2の実施例で、測定セル5を通過し
た被検液laにはポンプ2bによって送給されてくる還
元液3bが連続的に注入され、液中のM旧roがBr‐
に還元された被検液lbとなったのち比較セル5bに導
入される。
In addition, the pH of the test solution la must be at least 11, and in cases where the measurement accuracy may be rough, the purpose can be achieved by setting the pH to 9.9 or higher. It is something. FIG. 5 shows the above-mentioned ' according to this invention.
In the second embodiment of the method for measuring ro, the reducing liquid 3b fed by the pump 2b is continuously injected into the test liquid la that has passed through the measuring cell 5, and the M old ro in the liquid is continuously injected. Br-
After the sample liquid is reduced to lb, it is introduced into the comparison cell 5b.

一方、単色光7aは回転セクタ12により一定時間隔で
交互に光路が切換えられ、その一方は反射板13を経て
試料セル5、半透板14を経て受光器9に入射し、他方
は回転セクタ12を透過して比較セル5b、反射鏡15
、半透板14を経て受光器9に入射する。受光器9から
出力される吸光度信号11は回転セクタ12の回転に同
期して測定セル5の透過光7bの強さ1,比較セル5b
の透過光7cの強さらとの二値の間を交互に切換わる矩
形波信号となって出力される。還元液3bには水溶液中
で290〜38価血の紫外域に吸収帯を有しないチオ硫
酸ソーダ、亜硫酸ソーダなどを用いれば、還元反応によ
り生成される硫酸ソーダ、臭化ソーダも上記紫外城に吸
収帯をもたないから上記矩形波信号の二つの値1,,1
2から演算器1川ま被検液1の吸光度をlog12/1
,として演算し、この吸光度からM旧m濃度を推定する
ことができる。このようにすると、被検液の汚濁などに
よる吸光度の低下によるMBro濃度の測定誤差を生じ
ることが回避される。
On the other hand, the optical path of the monochromatic light 7a is alternately switched at regular intervals by the rotating sector 12, one of which passes through the reflector 13, passes through the sample cell 5, passes through the semi-transparent plate 14, and enters the light receiver 9, and the other passes through the rotating sector 12. 12 to the comparative cell 5b and the reflecting mirror 15.
, enters the light receiver 9 through the semi-transparent plate 14. The absorbance signal 11 output from the light receiver 9 is synchronized with the rotation of the rotating sector 12, and the intensity of the transmitted light 7b of the measurement cell 5 is 1, and the intensity of the light 7b of the comparison cell 5b is
The transmitted light 7c is output as a rectangular wave signal that alternately switches between two values: high and high. If sodium thiosulfate, sodium sulfite, etc., which do not have an absorption band in the ultraviolet region of 290 to 38 valent blood in an aqueous solution, is used as the reducing solution 3b, the sodium sulfate and sodium bromide produced by the reduction reaction will also be in the above-mentioned ultraviolet range. Since it does not have an absorption band, the two values of the above rectangular wave signal are 1,,1
From 2 to the computer 1, calculate the absorbance of the test liquid 1 by log12/1
, and the M old m concentration can be estimated from this absorbance. In this way, it is possible to avoid a measurement error in the MBr concentration due to a decrease in absorbance due to contamination of the test liquid or the like.

なお、還元液3b中に被検液la中のMBm量と比較し
て過剰量のチオ硫酸ソーダまたは亜硫酸ソーダが含有さ
れていると、被検液laと混合された時点で酸化還元反
応が瞬間的に進行し、M旧roをBr‐に還元する。
Note that if the reducing solution 3b contains an excessive amount of sodium thiosulfate or sodium sulfite compared to the amount of MBm in the test solution la, the oxidation-reduction reaction will occur instantaneously when mixed with the test solution la. The process progresses as follows, reducing M old ro to Br-.

例えば、被検液la中のMBroがNaBroである場
合には、下記の化学反応(D)又は(m)が進行する。
For example, when MBro in the test liquid la is NaBro, the following chemical reaction (D) or (m) proceeds.

9NaBro+Na2S203十2NaOH→がa2S
04十則aBr十日20 ・・・(0)NaBr
o+Na2S03→Na2S04十NaBr
・・・・・・(m)還元剤の添加量は上記反応式(
0),(m)から推察される通り、被検液la中のMB
mのモル濃度に対して、チオ硫酸ソーダを用いる場合に
は0.2倍以上、亜硫酸ソーダの場合には特モル以上と
すればよい。
9NaBro + Na2S203 12NaOH→ is a2S
04 10 rules aBr 10 days 20... (0) NaBr
o+Na2S03→Na2S04 ten NaBr
・・・・・・(m) The amount of reducing agent added is calculated according to the above reaction formula (
As inferred from 0) and (m), MB in the test solution la
When using sodium thiosulfate, the molar concentration may be 0.2 times or more, and when using sodium sulfite, the molar concentration may be at least 0.2 times.

以上のように、この発明によれば被検液の波長290〜
斑仇血の紫外光の吸光度からMBroの濃度を検知する
ことを要旨とするもので、【ィ}彼険液中のOM旧ro
を被検液をpH9.5以上、好ましくはpHil以上の
アルカリ性にした後「吸光度を測定することによりM旧
ro濃度を検知することが可能となる。
As described above, according to the present invention, the wavelength of the test liquid is 290~
The purpose of this method is to detect the concentration of MBr from the absorbance of ultraviolet light in blood.
After making the test solution alkaline to pH 9.5 or higher, preferably pHil or higher, it is possible to detect the M old ro concentration by measuring the absorbance.

この発明の方法は従来技術で推考される方法と比較して
、被検液の前処理が簡単であるかまたはタ無用であり、
被検液のM旧m濃度を広範囲に銭たって迅速かつ長期間
にわたって正確に測定することができるので実用的装置
における測定に適用して大きな効果が得られる。
Compared to the methods deduced in the prior art, the method of the present invention simplifies or eliminates the pretreatment of the test liquid;
Since it is possible to accurately measure the concentration of M and old M in a test liquid quickly and over a long period of time over a wide range, it can be applied to measurements in practical devices with great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

0 第1図はこの発明の一実施例の系統図、第2図は溶
液のpHと次亜臭素酸イオンの存在割合との関係を示す
特性図、第3図は次亜臭素醗ソーダ1.65十10‐3
Cmoど/そを含む水溶液の紫外線吸収スペクトル図、
第4図は次亜臭素酸ソーダ水溶液のタM旧ro濃度と3
3Mmの紫外光の吸光度との関係を示す特性図、第5図
はこの発明の他の実施例の系統図である。 図において、1,la,lbは被検液、2,2bは−ポ
ンプ、3はアルカリ液、3bは還元液、40はろ過器、
5は測定セル、5bは比較セル、6は光源、7は紫外光
、7aは単色光、7b,7cは透過光、8はフィル夕、
9は受光器、1川ま演算器、1 1は吸光度信号、1
1 aはMBro濃度信号、12は回転セクタである。 なお図中同一符号夕はそれぞれ同一または相当部分を示
す。第1図 第2図 第3図 第4図 第5図
0 Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the pH of the solution and the proportion of hypobromite ions, and Fig. 3 is a diagram showing the relationship between the pH of the solution and the proportion of hypobromite ions. 6510-3
Ultraviolet absorption spectrum diagram of an aqueous solution containing Cmo,
Figure 4 shows the concentration of sodium hypobromite aqueous solution and 3
A characteristic diagram showing the relationship with the absorbance of ultraviolet light of 3 Mm, and FIG. 5 is a system diagram of another embodiment of the present invention. In the figure, 1, la, lb are test liquids, 2, 2b are pumps, 3 is alkaline liquid, 3b is reducing liquid, 40 is a filter,
5 is a measurement cell, 5b is a comparison cell, 6 is a light source, 7 is ultraviolet light, 7a is monochromatic light, 7b and 7c are transmitted light, 8 is a filter,
9 is a light receiver, 1 is a calculation unit, 1 is an absorbance signal, 1
1a is an MBro concentration signal, and 12 is a rotating sector. Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 被検液のPHを9.5以上とし、上記被検液による
290〜380nmの範囲の紫外光の吸光度を測定し、
この吸光度から上記被検液の次亜臭素酸塩含有濃度を推
定するようにした次亜臭素酸塩水溶液の濃度測定方法。 2 吸光度を測定する被検液に過剰量の環元剤を添加し
てその吸光度を測定し、この二つの吸光度の差または比
の値から次亜臭素酸塩含有濃度を求めるようにした特許
請求の範囲第1項記載の次亜臭素酸塩水溶液の濃度測定
方法。3 還元剤および還元剤添加による生成物の何れ
もが290〜380nmの範囲の紫外光に吸収帯を有し
ない物質であることを特徴とする特許請求の範囲第2項
記載の次亜臭素酸塩水溶液の濃度測定方法。 4 吸光度を測定する紫外光が330nmを主成分とす
る単色光であることを特徴とする特許請求の範囲第1項
ないし第3項の何れかに記載の次亜臭素酸塩水溶液の濃
度測定方法。
[Scope of Claims] 1. The pH of the test liquid is set to 9.5 or higher, and the absorbance of ultraviolet light in the range of 290 to 380 nm by the test liquid is measured,
A method for measuring the concentration of a hypobromite aqueous solution, in which the concentration of hypobromite in the test liquid is estimated from this absorbance. 2. A patent claim in which an excessive amount of a cyclizing agent is added to a test liquid whose absorbance is to be measured, and its absorbance is measured, and the concentration of hypobromite is determined from the difference or ratio between these two absorbances. A method for measuring the concentration of an aqueous hypobromite solution according to item 1. 3. The hypobromite salt according to claim 2, wherein both the reducing agent and the product obtained by adding the reducing agent are substances that have no absorption band for ultraviolet light in the range of 290 to 380 nm. Method for measuring concentration of aqueous solution. 4. The method for measuring the concentration of a hypobromite aqueous solution according to any one of claims 1 to 3, wherein the ultraviolet light for measuring absorbance is monochromatic light having a wavelength of 330 nm as a main component. .
JP14163578A 1978-11-16 1978-11-16 Method for measuring the concentration of hypobromite aqueous solution Expired JPS6015016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14163578A JPS6015016B2 (en) 1978-11-16 1978-11-16 Method for measuring the concentration of hypobromite aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14163578A JPS6015016B2 (en) 1978-11-16 1978-11-16 Method for measuring the concentration of hypobromite aqueous solution

Publications (2)

Publication Number Publication Date
JPS5567641A JPS5567641A (en) 1980-05-21
JPS6015016B2 true JPS6015016B2 (en) 1985-04-17

Family

ID=15296619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14163578A Expired JPS6015016B2 (en) 1978-11-16 1978-11-16 Method for measuring the concentration of hypobromite aqueous solution

Country Status (1)

Country Link
JP (1) JPS6015016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252594A (en) * 2021-03-16 2021-08-13 同济大学 Method for monitoring and early warning disinfection by-products by using UV absorbance

Also Published As

Publication number Publication date
JPS5567641A (en) 1980-05-21

Similar Documents

Publication Publication Date Title
Boltinghouse et al. Development of an optical relative humidity sensor. Cobalt chloride optical absorbency sensor study
US4849178A (en) Apparatus for measuring ozone concentration
Valencia et al. Determination of trace amounts of beryllium in water by solid-phase spectrophotometry
Chamkouri et al. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization
Mills et al. Colorimetric polymer film sensors for dissolved carbon dioxide
KR0158691B1 (en) Quantitative determination method of chemicals for processing semiconductor and an apparatus thereof
Yamamoto et al. Solvent extraction-spectrophotometric determination of anionic surfactants in sea water
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
JPS6015016B2 (en) Method for measuring the concentration of hypobromite aqueous solution
Hendrickson et al. Determination of polyacrylamide by spectrofluorometry
Karayannis Comparative kinetic study for rate constant determination of the reaction of ascorbic acid with 2, 6-dichlorophenolindophenol
White et al. Characteristics of boron-benzoin complex
Morosanova et al. Silica-titania xerogels: Solid-phase spectrophotometric and field test determination of hydrogen peroxide in disinfectants
Sanemasa et al. A new method for determining cyclodextrin complex formation constants with electrolytes in aqueous medium.
JP2882516B2 (en) Analysis of compounds in water
Olenin et al. Sols of silver nanoparticles as analytical reagents for the determination of active chlorine in water samples by spectrophotometry and photometric titration
JPH09292336A (en) Method and apparatus for measuring chromaticity and water-treatment control method using method and apparatus thereof
CN113588579A (en) Blood ion concentration detection device and method, and calcium ion concentration detection method
Hasty et al. Bromate oxidation of methyl orange. Part II. Effect of bromide and application to the determination of bromide
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
Kabasakalis Fluorimetric determination of silver with brilliant green in aqueous systems and its application in photographic fixing solutions
Pascual-Reguera et al. Determination of tungsten with pyrocatechol violet by first-derivative solid-phase spectrophotometry
JPS5927249A (en) Method for measuring concentration of chlorine dioxide
Radić et al. Kinetic-potentiometric determination of aluminium in acidic solution using a fluoride ion-selective electrode
Rollefson et al. The absorption spectrum and photochemical decomposition of hydriodic acid