JPS60149768A - Metallized film having high adhesion - Google Patents

Metallized film having high adhesion

Info

Publication number
JPS60149768A
JPS60149768A JP197884A JP197884A JPS60149768A JP S60149768 A JPS60149768 A JP S60149768A JP 197884 A JP197884 A JP 197884A JP 197884 A JP197884 A JP 197884A JP S60149768 A JPS60149768 A JP S60149768A
Authority
JP
Japan
Prior art keywords
pulse
voltage
discharge
value
glow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP197884A
Other languages
Japanese (ja)
Inventor
Masayasu Nihei
二瓶 正恭
Fumio Taguchi
田口 文夫
Satoshi Ogura
小倉 慧
Eiji Ashida
栄次 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP197884A priority Critical patent/JPS60149768A/en
Publication of JPS60149768A publication Critical patent/JPS60149768A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain stable electric discharge even during low voltage and to form a film having high adhesion with high efficiency by shaping an acceleration voltage in the pulse form and performing metallization with the pulse peak value thereof as an abnormal glow discharge area or glow arc transfer area. CONSTITUTION:A peak value and a base value are set in a pulse oscillating circuit 10 and the voltage is modulated to the higher frequency in order to rectify the AC voltage increased by a transformer 6 to DC by a rectifier stack 7 and shaping the DC voltage in the pulse form. The set values are compared and amplified with the value detected in a current detector 9 in a differential amplifier 11 and a power control transistor 8 is controlled by the differential signal thereof to regulate the pulse width of the high frequency so as to attain the set pulse voltage. The pulse voltage is thus made to the value approximate to the max. value of the abnormal glow discharge or glow arc area in the above- mentioned way, by which the efficiency of metallization is improved. Since the voltage is made into lower pulses by modulating the high-frequency pulses, the pulse discharge is easily accomplished even during the low pulses and the quality of the metallized film is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はパルスエネルギーを利用したスパッタメタライ
ズ法に係り、特に高着密性の膜が得られ・かつ、高能率
なメタライズ法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputter metallization method using pulsed energy, and particularly to a highly efficient metallization method that provides a film with high adhesion.

〔発明の背景〕[Background of the invention]

スパッタメタライズ法は加速されたイオンがターゲット
に衝突し・そのエネルギーによりターゲット表面の原子
や分子が外部に放出される現象を利用したものである。
The sputter metallization method utilizes the phenomenon in which accelerated ions collide with a target and the energy causes atoms and molecules on the target surface to be ejected to the outside.

第1図に一般的な直流二極スパッタ法の原理を示す。直
流高圧電源1.陽極2、基板3、陰(愼4、チャンバー
5から構成されている。一般にチャンバー5の雰囲気ば
Arガス雰囲気で行われ、その圧力は10−’〜10−
3Torrでスパッタされる。雰囲気圧力を一定にし電
圧を上げて行くと、ターゲット4からの蒸発1増加して
行く、さらに増加させるとグロー放電からアーク放電に
移行し、電流は突起物などの電流の流れ易すいところに
集中しターゲットや基板を損傷し使用できなくなる。ま
た、電圧の増加と共に基板の温度が増加するため・一般
に直流二極スパッタ法では3KV前後、マグネトロンス
パッタでは0.6KV前後でスパッタ蒸着が行われてい
る。そのため・高能率で密着性の良い膜が得られないな
どの欠点がある。また、上記の変形として放電を間歇的
にして膜を形成する方式がある。これは。
FIG. 1 shows the principle of the general DC bipolar sputtering method. DC high voltage power supply 1. It is composed of an anode 2, a substrate 3, a negative electrode 4, and a chamber 5. Generally, the atmosphere of the chamber 5 is an Ar gas atmosphere, and the pressure is 10-' to 10-
Sputtered at 3 Torr. When the atmospheric pressure is kept constant and the voltage is increased, the evaporation from the target 4 increases.If it increases further, the glow discharge shifts to an arc discharge, and the current is concentrated in places where the current easily flows, such as protrusions. This will damage the target and the board, making it unusable. Furthermore, since the temperature of the substrate increases as the voltage increases, sputter deposition is generally performed at around 3 KV in DC bipolar sputtering and around 0.6 KV in magnetron sputtering. Therefore, there are drawbacks such as the inability to obtain a film with high efficiency and good adhesion. Further, as a modification of the above method, there is a method in which a film is formed by intermittently discharging. this is.

間歇的に放電することにより基板の温度上昇を軽減しプ
ラスチックにメタライズすることを目的としている。膜
質を向上させるには低厚中で放電した方が良いことが知
られている。しかし、間歇的に放電するため低圧中の放
電が不安定とがる。また、間歇的に放電するため能率が
悪いなどの欠点がある。
The purpose is to reduce the temperature rise of the substrate and metallize the plastic by discharging intermittently. It is known that in order to improve film quality, it is better to perform discharge in a low thickness. However, because it discharges intermittently, the discharge at low pressure becomes unstable. Additionally, there are drawbacks such as poor efficiency due to intermittent discharge.

〔発明の目的〕[Purpose of the invention]

本発明の目的I″iと記した間順を解決し、高能率高密
着性の膜が得られ、低圧中でも安定した放電が得られる
パルスメタライズ法全提供するにある。
The object of the present invention is to provide an entire pulse metallization method that solves the problems described as I''i, provides a highly efficient and highly adhesive film, and provides stable discharge even at low pressures.

〔発明の概要〕[Summary of the invention]

本発明は低圧中の放電現象が第2図に示す宵、圧、ル流
曲線を示すことに注目した。一般にスパッタメタライズ
法は正視クロー放電、異常クロー放電域で行われている
。本発明は加速電圧をパルス化[7、このパルス7[圧
を異常グロー放電の最高値付近、またはグロー・アーク
域にし高能率化すると共に・高周波パルスを変調して低
パルス化するたd)・低圧中でも容易にパルス放電、が
できるようにI〜て高品質化すること全特徴とする。第
3図に本発明のパルス放1.波形の模式図を示す。[2
1のように高周波パルスを変調し低パルス化している。
The present invention has focused on the fact that the discharge phenomenon at low pressure shows the light, pressure, and flow curves shown in FIG. Sputter metallization is generally performed in the emmetropic claw discharge and abnormal claw discharge regions. The present invention pulses the accelerating voltage [7, this pulse 7 [pressure is set near the highest value of abnormal glow discharge or in the glow arc region to improve efficiency, and modulates the high frequency pulse to reduce the pulse d)・All features include high quality so that pulse discharge can be easily performed even at low pressure. FIG. 3 shows pulse emission 1 of the present invention. A schematic diagram of the waveform is shown. [2
As shown in 1, the high frequency pulse is modulated to reduce the pulse.

電圧V4iま高周波パルスのピーク電圧、v3は時間゛
r1における高周波パルス爾、圧の平均値で、これを低
周波に訃けるピーク電圧とする。また・■1け時間T 
2における高周波パルスのパルス幅を小さくし平均詐圧
を下げて低周波に2けるベース電圧としている。v2は
低周波に訃ける平均用土で周波におけるピーク電圧、ベ
ース電圧の設定は高周波のパルス幅を変えることにより
行っているため低圧雰囲気での低パルス放電が容鴇とな
る。
The voltage V4i is the peak voltage of the high frequency pulse, and v3 is the average value of the high frequency pulse voltage at time r1, which is taken as the peak voltage at the low frequency. Also, ■ 1 digit time T
The pulse width of the high frequency pulse at 2 is made small, the average false pressure is lowered, and the base voltage is set at 2 at low frequency. v2 is the average soil that depends on the low frequency, and the peak voltage and base voltage at the frequency are set by changing the high frequency pulse width, so low pulse discharge in a low pressure atmosphere is effective.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を第4〜第7図を用いて説明する。 Examples will be described below with reference to FIGS. 4 to 7.

2代4図は本発明の模式図である。トランス1により昇
圧された交流電、圧を繋、7肛スタツク7で直流にし、
直流にされた電圧をパルス化するため、パルス発掘回路
10でピークパルス値とベース値に設定され、さらに高
周波に変調される。設定された値は電流検出器9で検出
された値と差動増幅器11で比較増幅され、1鳩差信号
により電力制御トランジスタ8を制御し設定されたパル
スが圧になるよう高周波のパルス幅を調整している。な
お、異常グロー放電域では電圧と電流は比例関係にある
ので電流で制御した。定電圧制御にすると、なんらかの
原因でアーク放電域に入ると大電流が流れトランジスタ
を破壊するためである。また、スパッタ方式はマグネト
ロン方式とした。磁石12をターゲット4の裏面に取付
けArイオンがターゲットに効率良くあたるようにした
。熱電対13は幕板の温度全測定するものである。
Figures 2 and 4 are schematic diagrams of the present invention. The AC voltage and voltage boosted by the transformer 1 are connected, and converted to DC by the 7-hole stack 7.
In order to pulse the DC voltage, it is set to a peak pulse value and a base value in the pulse detection circuit 10, and is further modulated to a high frequency. The set value is compared and amplified with the value detected by the current detector 9 in the differential amplifier 11, and the power control transistor 8 is controlled by the 1-point difference signal to adjust the high frequency pulse width so that the set pulse becomes a voltage. I'm making adjustments. In addition, in the abnormal glow discharge region, voltage and current are in a proportional relationship, so the current was controlled. This is because if constant voltage control is used, if for some reason the circuit enters the arc discharge region, a large current will flow and destroy the transistor. In addition, the sputtering method was a magnetron method. A magnet 12 is attached to the back surface of the target 4 so that Ar ions can efficiently hit the target. The thermocouple 13 measures the entire temperature of the curtain plate.

スパッタ条件は、ターゲット:銅(150X50X1t
)、基板−刀うス、ターゲットから基板オでの距離:3
5mm、雰囲気圧力ニ 8 X 10−3Torr (
A、r ) 、ペースTAR: 0. L A一定、ピ
ーク放電1時間(T 1 )十ベース放屯時間(T2)
=10mSeC一定、高周波パルス周波数: 500 
KHz。
The sputtering conditions are: target: copper (150x50x1t
), board-to-sword, distance from target to board: 3
5mm, atmospheric pressure 28 x 10-3 Torr (
A, r), Pace TAR: 0. LA constant, peak discharge 1 hour (T 1) 10 base discharge time (T2)
=10mSeC constant, high frequency pulse frequency: 500
KHz.

平均電流:0.5A一定にし、パルスピーク電流(電圧
)全変化(平均電流が0.5 A一定の条件であるため
ピーク値を変えるとパルス幅も変わる)させて1・膜厚
とビークル流(電圧)との関係を第5図に示す。平均′
電流を0,5A一定にし、ピーク電流を増加させると、
それに供って膜厚は増加し、12Aで直流方式(直流方
式は直流マグネトロン方式)Q、5Aの1,7倍となっ
た。12Aの放電域はグローアーク移行域で電流が増加
し電圧が異常グロー・アーク域での最大m流6A時の電
圧1800Vより500V低下している。しかし、アー
クが集中することなく、はぼ、ターゲット全域で放電し
、ターゲットを破]1↓させることはなかった。しかし
、30Aになるとアークの集中がh3められた。すなわ
ち、パルスピークI直i−を異常グロー族πの最大値か
、り゛ローアーク移行城の初)υ]段階が望ましい。一
方、30分放電後の基板温度は直流方式は96′C・本
発明はパルスピーク“R流6Aで100 ’c、12A
で103 ’Cで直流方式と大差ない。しかし、本発明
は膜厚が1.7倍になっている。また、膜厚を直流方式
の膜厚1.3μm 1m i nと同じにするため本発
明でVi6A、30分放電を15分にし、はぼ直流方式
の膜厚にした場合について調べた。その結果、45℃と
なり、同じjIQ厚であれば基板温度を1/2にするこ
とがでへた。
Average current: 0.5A constant, pulse peak current (voltage) completely changed (because the average current is constant 0.5A, changing the peak value will also change the pulse width) 1. Film thickness and vehicle flow (voltage) is shown in FIG. average'
When the current is kept constant at 0.5A and the peak current is increased,
Along with this, the film thickness has increased, and at 12A, it is 1.7 times that of the DC method (the DC method is the DC magnetron method) Q and 5A. In the 12A discharge region, the current increases in the glow arc transition region, and the voltage is 500V lower than the voltage of 1800V at the maximum m flow of 6A in the abnormal glow arc region. However, the arc was not concentrated and discharged over the entire target area, and the target was not destroyed. However, at 30A, the concentration of arc decreased by h3. That is, it is desirable that the pulse peak I - is the maximum value of the abnormal glow family π or the beginning of the low arc transition stage) υ]. On the other hand, the substrate temperature after 30 minutes of discharge is 96'C for the DC method, and 100'C for the pulse peak "R flow of 6A, 12A for the present invention".
It is 103'C, which is not much different from the DC method. However, in the present invention, the film thickness is 1.7 times greater. In addition, in order to make the film thickness the same as the film thickness of 1.3 μm 1 min in the DC method, a case was investigated in which the Vi6A, 30 minute discharge was changed to 15 minutes in the present invention, and the film thickness was made almost the same as the DC method. As a result, the temperature was 45° C., and with the same jIQ thickness, it was possible to reduce the substrate temperature to 1/2.

また、上記の条件で密着強度を調べた。試験方法は薄嘆
の上にエポキシ接着剤で円筒ロットを接着しロットを引
張って倒し付着強度を調べた。その結果、本発明は55
g/w’−直流方式は36g/mm2で、従来法より本
発明は40係と増加した。
In addition, the adhesion strength was examined under the above conditions. The test method involved gluing cylindrical rods together with epoxy adhesive and then pulling the rods down to examine the adhesion strength. As a result, the present invention has 55
The g/w'-DC method has a value of 36 g/mm2, which is an increase of 40 g/mm2 compared to the conventional method.

これに、平均電流(電圧)が直流方式と同じでもピーク
エネルギーが大きいため密着強度が増加したものと考え
られる。上記の結果からパルスピーク値は異常グロー放
電の最高値、またはグロー・アーク初1υ1段階にする
ことが有効であることが明らかとなったので、ピーク値
t−I3異常グローの最向値付近の6への一定値にし、
また、ベース電流、[1: (]、 I A (一定)
、T1+T2=10m5ec (一定)として、ピーク
電流のパルス幅比:を変化させ膜厚と電流(電圧)との
関係を直流方式と比較した、結果を図6に示す。変均電
流が0.5〜3Aの範囲では直流方式に比べ1.4〜1
.8倍の膜厚が得られる。しかし・3A以上では平均電
流の増加と共に差は少なくなり約5Aで同じ値となる。
In addition, it is thought that even though the average current (voltage) is the same as that of the DC method, the peak energy is large, so the adhesion strength is increased. From the above results, it is clear that it is effective to set the pulse peak value to the highest value of the abnormal glow discharge or the first 1υ1 step of the glow arc. Set it to a constant value of 6,
Also, the base current, [1: (], I A (constant)
, T1+T2=10 m5ec (constant), the pulse width ratio of the peak current was varied, and the relationship between the film thickness and the current (voltage) was compared with that of the DC method. The results are shown in FIG. When the variable average current is in the range of 0.5 to 3A, it is 1.4 to 1 compared to the DC method.
.. Eight times the film thickness can be obtained. However, above 3A, the difference decreases as the average current increases and becomes the same value at about 5A.

すなわち、ピーク電流のパルス幅T1は’1’l+’I
’2の80%以下であることが望ましい。
That is, the pulse width T1 of the peak current is '1'l+'I
It is desirable that it be 80% or less of '2.

これらの傾向はAt、AHなどの金属にも見られた。These trends were also observed in metals such as At and AH.

また、第7図に拡散接合などのインサート材などに用い
られる3、c+Bt−Nr金合金例である。直流方式は
電流が3A、本発明は3.5Aになると3.9Br−N
+金合金ターゲットは熱歪により割れが生じそれ以上の
実験はできなかった。しかし5本発明は0.5〜3への
範囲で直流方式の1.6〜2倍の膜厚が得られる。この
ように特に脆いターゲットに対し本発明が有効であるこ
とが明らかである。
Further, FIG. 7 shows an example of a 3,c+Bt-Nr gold alloy used as an insert material for diffusion bonding and the like. In the DC method, the current is 3A, and in the present invention, when the current is 3.5A, it is 3.9Br-N.
+ The gold alloy target cracked due to thermal strain and further experiments could not be conducted. However, in the present invention, a film thickness of 1.6 to 2 times that of the DC method can be obtained in the range of 0.5 to 3. Thus, it is clear that the present invention is effective for particularly fragile targets.

また、従来法のパルス放電式で同様な実験をしたが、雰
囲気圧力9 X 10−2Torr以下でのパルス放雷
、は安定せず良好な膜を形成で微ず密着強度などの評価
ができなかった。しかし、本発明は3×10−”l’o
rrまで安定したパルス放心が得られ、密度が高く密着
性の良い膜が形成された。また、本発明は直流パルスば
かりでなく高周波交流にすれば不導体ターゲット高速高
品質でメタライズでき4)。さらにターゲット部をウェ
ハに変えることによりドライエツチングに利用で久高速
ドライエツチングが可能となる。
In addition, similar experiments were conducted using the conventional pulse discharge method, but pulsed lightning under an atmospheric pressure of 9 x 10-2 Torr or less was unstable and formed a good film, but it was not possible to evaluate the adhesion strength etc. Ta. However, in the present invention, 3×10-”l'o
Stable pulse eccentricity was obtained up to rr, and a film with high density and good adhesion was formed. In addition, the present invention can metalize nonconducting targets at high speed and with high quality by using not only DC pulses but also high-frequency AC pulses4). Furthermore, by changing the target portion to a wafer, it is possible to use it for dry etching and perform high speed dry etching.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、パルス放電電圧を異
常クロー放電の最高電圧あるいはグロー・アーク移行[
或にすることにより、平均電圧が低くても、パルス放電
時のイオンエネルギーが大微いため密着性が良く、従来
直流法(直流マグネトロン方式)より密着強度が40係
増加する。また、低パルス放電でも高周波パルスを変調
し低パルス化しているので低圧中の放電が容易となり、
膜にガスの吸着が少々く密度の高い膜が得られる。一方
、上記の理由などにより膜厚速度は従来法に比べ1.5
〜2倍の膜厚速度が得られる。直流法と膜厚を同じにす
れば基板の温度を172にすることができるので基板の
損傷やターゲットの破損を防止できる。
As is clear from the above examples, the pulse discharge voltage can be set to the highest voltage of abnormal claw discharge or glow-arc transition [
By doing so, even if the average voltage is low, the ion energy during pulse discharge is very small, so the adhesion is good, and the adhesion strength is increased by a factor of 40 compared to the conventional DC method (DC magnetron method). In addition, even in low-pulse discharge, the high-frequency pulse is modulated to reduce the pulse, making it easier to discharge at low pressure.
A dense film with little gas adsorption can be obtained. On the other hand, due to the reasons mentioned above, the film thickness rate is 1.5% compared to the conventional method.
~2 times the film thickness rate can be obtained. If the film thickness is the same as in the DC method, the temperature of the substrate can be set to 172°C, so damage to the substrate and target can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の直流二極スパッタ法の原理図、第2図
は低圧雰囲気における放電現象を示す線図、第3図は本
発明と従来法の放電波形の比較図、第4図は本発明の原
理図、第5図は本発明の効果の一例でビーク喧と膜厚と
の関係の説明図、第6゜第7図は本発明の効果の一例で
ピーク値を異常グロー放電の備高値にしピーク値のパル
ス幅ヲ変工た場合の膜厚との関係の線図である。 2・・・陽極、3・・・基板、4・・・ターゲット、6
・・・昇圧トランス、9・・・電流検出器、10・・・
パルス発振器、第1図 第4区 八0ルズビ−2零圧電:t/
Figure 1 is a diagram of the principle of the conventional DC bipolar sputtering method, Figure 2 is a diagram showing the discharge phenomenon in a low pressure atmosphere, Figure 3 is a comparison diagram of the discharge waveforms of the present invention and the conventional method, and Figure 4 is A diagram of the principle of the present invention. Figure 5 is an example of the effect of the present invention, and is an explanatory diagram of the relationship between peak height and film thickness. Figures 6 and 7 are examples of the effect of the present invention, and the peak value is determined by abnormal glow discharge. It is a diagram showing the relationship between the peak value and the film thickness when the pulse width of the peak value is changed. 2...Anode, 3...Substrate, 4...Target, 6
...Step-up transformer, 9...Current detector, 10...
Pulse oscillator, Figure 1 Section 4 80 Lesby-2 Zero piezoelectric: t/

Claims (1)

【特許請求の範囲】[Claims] 1、パルスピーク値を異常グロー放電域又はグロー・ア
ーク移行域としてメタライズされたことを特徴とする高
密着性メタライズ膜。
1. A highly adhesive metallized film characterized by being metalized with a pulse peak value as an abnormal glow discharge region or a glow-arc transition region.
JP197884A 1984-01-11 1984-01-11 Metallized film having high adhesion Pending JPS60149768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP197884A JPS60149768A (en) 1984-01-11 1984-01-11 Metallized film having high adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP197884A JPS60149768A (en) 1984-01-11 1984-01-11 Metallized film having high adhesion

Publications (1)

Publication Number Publication Date
JPS60149768A true JPS60149768A (en) 1985-08-07

Family

ID=11516624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP197884A Pending JPS60149768A (en) 1984-01-11 1984-01-11 Metallized film having high adhesion

Country Status (1)

Country Link
JP (1) JPS60149768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199672A (en) * 1984-04-12 1986-05-17 ラモツト・ユニヴア−シテイ・オ−ソリテイ−・フオ−・アプライド・リサ−チ・エンド・インダストリアル・デイヴエロプメント・リミテツド Method and apparatus for surface treatment of article to be processed
JPH07126889A (en) * 1993-11-04 1995-05-16 Honda Motor Co Ltd Sliding part constituting body
JPH0824809B2 (en) * 1988-12-20 1996-03-13 スパークラー フィルターズ インコーポレーテッド Nutsche filter driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199672A (en) * 1984-04-12 1986-05-17 ラモツト・ユニヴア−シテイ・オ−ソリテイ−・フオ−・アプライド・リサ−チ・エンド・インダストリアル・デイヴエロプメント・リミテツド Method and apparatus for surface treatment of article to be processed
JPH0824809B2 (en) * 1988-12-20 1996-03-13 スパークラー フィルターズ インコーポレーテッド Nutsche filter driving device
JPH07126889A (en) * 1993-11-04 1995-05-16 Honda Motor Co Ltd Sliding part constituting body

Similar Documents

Publication Publication Date Title
US4693805A (en) Method and apparatus for sputtering a dielectric target or for reactive sputtering
US5830330A (en) Method and apparatus for low pressure sputtering
US3763031A (en) Rf sputtering apparatus
US5069770A (en) Sputtering process employing an enclosed sputtering target
US6579428B2 (en) Arc evaporator, method for driving arc evaporator, and ion plating apparatus
US20090200158A1 (en) High power impulse magnetron sputtering vapour deposition
RU2510097C2 (en) Method to deposit electrically insulating layers
JP2004536426A (en) Plasma generation method and apparatus
JPS5489944A (en) Gold plating
US3479269A (en) Method for sputter etching using a high frequency negative pulse train
US7179350B2 (en) Reactive sputtering of silicon nitride films by RF supported DC magnetron
JPS60149768A (en) Metallized film having high adhesion
Popa et al. Reflection of an ion-acoustic soliton by a bipolar potential wall structure
JPS627852A (en) Formation of thin film
RU2058429C1 (en) Method for film spraying
JP2001152330A (en) Film deposition method and film deposition apparatus
TW200406500A (en) Sputter process and apparatus for the production of coatings with optimized internal stresses
JPS5928569A (en) Dry plating method
JPS6270567A (en) Trigger mechanism
Garcia-Garcia et al. AC bipolar pulsed power supply for reactive magnetron sputtering
JP2002012970A (en) Apparatus and method for sputtering
JPS61127862A (en) Method and device for forming thin film
JP2002053950A (en) Method and apparatus for depositing film on insulating substrate
JPS621471B2 (en)
RU1832134C (en) Device for applying coatings in vacuum