JPS60149120A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JPS60149120A
JPS60149120A JP591784A JP591784A JPS60149120A JP S60149120 A JPS60149120 A JP S60149120A JP 591784 A JP591784 A JP 591784A JP 591784 A JP591784 A JP 591784A JP S60149120 A JPS60149120 A JP S60149120A
Authority
JP
Japan
Prior art keywords
exhaust
controlling
gas
cpu55
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP591784A
Other languages
Japanese (ja)
Inventor
Tadashi Murakami
正 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP591784A priority Critical patent/JPS60149120A/en
Publication of JPS60149120A publication Critical patent/JPS60149120A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To provide reliably even films, by detecting exhaust gas pressure of reacting gas and controlling automatically the exhaust gas pressure to be kept at a given pressure, where the reacting gas is supplied over semiconductor-wafers and desired films are produced on the wafers with vapor phase or surface chemical reaction. CONSTITUTION:A CVD apparatus is provided with a supply line 40 and an exhaust line 50 of reaction gas which is connected with a differential-pressure detector 51 and an opening and closing damper 52 for controlling the exhaust gas pressure. The detector 51 is connected to CPU55 for controlling the exhaust gas pressure via a current-voltage converter 53 and an analog-digital converter 54. The output of the CPU55 for controlling the amount of the exhaust gas is connected to a motor-driven operating device 58 via a digital-analog converter 56 and a driver 57 for the motor-driven operating device 58 to actuate the operating device 58 with the output signal of the CPU55 to open and close the damper 52. The line 40 is provided with an injection nozzle 42 through which the reacting gas is supplied via a controller 41 for controlling the gas amount. The output of the controller 41 is connected to the input of the CPU55 for the flow rate of the reacting gas via an analog-digital converter 43 and the output of the CPU55 for controlling the flow rate of the reacting gas is connected to the input of the controller 41 via a digital-analog converter 44.

Description

【発明の詳細な説明】 この発明は半導体製造装置に係り、特にその半導体ウェ
ハーに対して反応ガスを供給して所望の膜を形成して々
るCVD ( Che+nical VaporDep
osition )装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor manufacturing equipment, and in particular to CVD (Che+nical VaporDep) which supplies a reactive gas to a semiconductor wafer to form a desired film.
position) device.

〔発明の技術的背景〕[Technical background of the invention]

周知のようにCVD装置においては第1図,第2図及び
第3図に示す横形及び縦形及び連続形CVD装置10,
2ヱ,と等がある。これらCVD装置J O 、 2 
0 、 3 、0はそれぞれ形状及び手法が異なるもの
であるがいずれのものもサセプタ51.21.31に対
して半導体ウェハー12、22.32を収容した状態で
、反応ガスを矢印方向に装置内に供給し.て、この反応
ガスによって半導体ウェハー1 2 、 2 2 、 
、9 2の気相オたは表面を化学反応せしめて所望の膜
を形成するものである。この場合、従来は、第4図に示
すようにガス供給源1から供給ζhる反応ガスが供給系
ライン2に設けられたガス制御用マスフロコントローラ
3を介して装置内に供給される。そして、供給された反
応ガスは図示しない圧力測定器に基づいて操作者(オペ
レータ)が圧力調整用の排気手動操作弁4を操作して所
定の状態に保たれる。ここで、この排気子BθI操作弁
4から排出された反応ガスは排気動力源5によって排気
系ライン6に設けられた〃スー処理ユニット7を介して
外気に放出される。
As is well known, in CVD apparatuses, there are horizontal, vertical, and continuous type CVD apparatuses 10 shown in FIGS. 1, 2, and 3.
There are 2ヱ, etc. These CVD devices JO, 2
0, 3, and 0 have different shapes and methods, but in each case, the reaction gas is introduced into the apparatus in the direction of the arrow with the semiconductor wafers 12, 22, 32 accommodated in the susceptor 51, 21, 31. supply to. This reaction gas causes the semiconductor wafers 1 2 , 2 2 ,
, 92 is subjected to a chemical reaction in the gas phase or on the surface to form a desired film. In this case, conventionally, as shown in FIG. 4, a reaction gas supplied from a gas supply source 1 is supplied into the apparatus via a gas control mass flow controller 3 provided in a supply system line 2. The supplied reaction gas is maintained at a predetermined state by an operator operating an exhaust manual operation valve 4 for pressure adjustment based on a pressure measuring device (not shown). Here, the reaction gas discharged from the exhaust element BθI operating valve 4 is discharged to the outside air by the exhaust power source 5 via the soot processing unit 7 provided in the exhaust system line 6.

〔背景技術の問題点〕[Problems with background technology]

ところで、上記CVD装置1 0 、 2 0 、 、
’? 0はいずれの本のも、その排気能力が装置の据付
場所及び隣接物との関連等の条件によって変動すると共
に、CVD反応において排気系に副産物が生成される。
By the way, the above CVD apparatuses 1 0 , 2 0 , ,
'? In all books, the exhaust capacity varies depending on conditions such as the installation location of the device and the relationship with adjacent objects, and by-products are generated in the exhaust system during the CVD reaction.

特に、この副産物はS iH4,5iH2Ct2゜5i
HCt3.5iCt4とPH5r AsH3、B2H6
を含むCVD反応の場合、排気系に蓄積された固定反応
生成物が排気バランスを壊す要因となっていた。
In particular, this by-product is SiH4,5iH2Ct2゜5i
HCt3.5iCt4 and PH5r AsH3, B2H6
In the case of a CVD reaction involving the following, fixed reaction products accumulated in the exhaust system were a factor that disrupted the exhaust balance.

この場合、第2図及び第3図に示すCVD装置20、−
罎」にあっては、特にサセプタ21..91がそれぞれ
回転あるいは移動するように構成されているため反応ガ
スのフローノ4’ターンが複雑となり、排気バランスが
壊れ易い。
In this case, the CVD apparatus 20 shown in FIGS. 2 and 3, -
In particular, the susceptor 21. .. 91 are configured to rotate or move, respectively, so the flow no. 4' turn of the reactant gas becomes complicated, and the exhaust balance is likely to be destroyed.

このため、従来はオRレークが排気手動操作弁4を直接
的に操作して反応ガスのフローパターンを均一にする如
く排気バランスを設定していた。しかしながらこのよう
に手動式に行なう排気バランス調整は特に、低濃度の成
長の場合、反応ガスのフローパターンを均一に設定する
ことがむすかしぐ成長膜の比抵抗ρ8のはらつき、膜厚
むら及び膜欠陥等を発生することがあった。
For this reason, conventionally, the exhaust balance has been set so that the OR lake directly operates the exhaust manual operation valve 4 to make the flow pattern of the reaction gas uniform. However, manual exhaust balance adjustment like this makes it difficult to set the flow pattern of the reactant gas uniformly, especially in the case of low-concentration growth. Defects, etc. may occur.

〔発明の目的〕[Purpose of the invention]

この発明は上記の事情に鑑みてなされたもので高精度な
気相成長を可能せしめて、均一な膜を確実に形成し得る
ようにした極めて良好なCVD装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an extremely good CVD apparatus that enables highly accurate vapor phase growth and reliably forms a uniform film.

〔発明の概要〕[Summary of the invention]

′すなわち、この発明は半導体ウェノ・−に対し」1 て反応ガスを供給し、気相または表面での化学反応によ
って所望の膜を形成してなるCVD装置において、前記
反応ガスの排気圧を検出して、自動的に該排気圧を所定
の状態に制御する制御手段を備えたことを特徴とする。
That is, the present invention provides a CVD apparatus in which a reactive gas is supplied to a semiconductor substrate and a desired film is formed by a chemical reaction in the gas phase or on the surface, and the exhaust pressure of the reactive gas is detected. The present invention is characterized by comprising a control means for automatically controlling the exhaust pressure to a predetermined state.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第5図はCVD装置“のガス排気系統を取り出して示す
もので、図中40及び50はそれぞれ反応ガスの供給ラ
イン及び排気ラインである。
FIG. 5 shows the gas exhaust system of the CVD apparatus, in which reference numerals 40 and 50 are a reaction gas supply line and an exhaust line, respectively.

すなわち、排気ライン50にはその中間部に差圧検出器
51及び排気ガス調整用の開閉ダン・ぐ52が設けられ
る。このうち差圧検出器51の信号出力端は電流/電圧
(I/V )変換部53及び騨変換部54を介して排気
系統制御用のマイクロコンピュータ55(以下、CPU
と称す)の排気圧入力端(a 、 in)に接続される
。そして、このCPU 55の排気量調整出力端(a 
、 out)はい変換部56及び?[: ift!+操
作用のドライバ57を介してサーrk?回路(図示せず
)を内蔵[7て々る電動操作器58に接続される。この
電動操作器581d−上記開閉ダン・や52に対して機
械的に連結されておシ、上記CPU 55の出力信号に
連動して開閉ダン/4’ 52を作動させ、排気ライン
50の排気量を調整する。
That is, the exhaust line 50 is provided with a differential pressure detector 51 and an opening/closing valve 52 for adjusting exhaust gas in the middle thereof. The signal output terminal of the differential pressure detector 51 is connected to a microcomputer 55 (hereinafter referred to as CPU) for controlling the exhaust system via a current/voltage (I/V) converter 53 and an input converter 54.
is connected to the exhaust pressure input end (a, in) of the exhaust pressure input terminal (a, in). Then, the displacement adjustment output terminal (a
, out) Yes conversion unit 56 and ? [: ift! +Serrk? via the operating driver 57. It has a built-in circuit (not shown) [7] and is connected to the electric operating device 58. This electric actuator 581d is mechanically connected to the opening/closing switch 52 and operates the opening/closing switch 52 in conjunction with the output signal of the CPU 55 to control the displacement of the exhaust line 50. Adjust.

一方、上記供給ライン40は反応ガス制御用マスフロコ
ントローラ41を介して噴出用ノズル42が設けられて
おシ、このマスフロコントローラ41の出力端はφ変換
部43を介して上記CPU 55の反応ガス流量入力端
(b 、 1n)K接続される。そして、このCPU 
55の反応ガス流量調整出力端(b 、 out)はジ
偵変換部44を介して上記マスフロコントローラ41の
入力端に接続される。
On the other hand, the supply line 40 is provided with an ejection nozzle 42 via a mass flow controller 41 for controlling the reaction gas, and the output end of the mass flow controller 41 is connected to the reaction gas of the CPU 55 via a φ converter 43. Gas flow input end (b, 1n) is connected to K. And this CPU
The reaction gas flow rate adjustment output end (b, out) of 55 is connected to the input end of the mass flow controller 41 via the digital converter 44.

ここで、上記CPU 55はその排気及び反応ガス流量
設定入力端(c、in) (ci、ln)にデジタルス
イッチ59.60が接続されており、これらデジタルス
イッチ59.60の設定値によって上記開閉ダンパ52
及びマスフロコントローラ41を制御する。この際、上
記CPU 55の排圧及び反応ガス流量出力端(c、o
ut) (d、out)にそれぞれ接続された排圧及び
流量表示器61゜62は上記排気ライン50及び供給ラ
イン40の排圧及び流量を表示する。
Here, digital switches 59.60 are connected to the exhaust and reaction gas flow rate setting input terminals (c, in) (ci, ln) of the CPU 55, and the opening/closing is controlled by the setting values of these digital switches 59.60. Damper 52
and controls the mass flow controller 41. At this time, the exhaust pressure and reaction gas flow rate output ends (c, o
Exhaust pressure and flow rate indicators 61 and 62 connected to ut) (d, out) respectively display the exhaust pressure and flow rate of the exhaust line 50 and supply line 40.

さて、このように構成されたCVD装置は次のように動
作する。
Now, the CVD apparatus configured as described above operates as follows.

すなわち、上記CVD装置を駆動する場合にはまずデジ
タルスイッチ59.60をそれぞれ所定の排気及び反応
ガス流量値に設定1〜で各設定値をCPU 55に読み
込ませる。すると、このCPU 55はその設定値をい
変換部44を介してマスフロコントローラ41に出力し
て、このマスフロコントローラ4ノをノズル42より所
定の量の反応ガスが噴射するように制御する。
That is, when driving the CVD apparatus, first, the digital switches 59 and 60 are set to predetermined exhaust gas and reaction gas flow values, respectively, and each set value is read into the CPU 55 by setting 1 to 1. Then, the CPU 55 outputs the set value to the mass flow controller 41 via the conversion section 44, and controls the mass flow controller 4 so that a predetermined amount of reaction gas is injected from the nozzle 42.

一方、この際上記CPU 55はその排気設定値をい変
換部56及びドライバ57を介し−て電動操作器58に
出力する。ここで、この電動操作器58はその設定値に
基づいて開閉ダンパ52を制御して排気量を調整する。
On the other hand, at this time, the CPU 55 outputs the exhaust setting value to the electric actuator 58 via the converter 56 and the driver 57. Here, the electric operating device 58 controls the opening/closing damper 52 based on the set value to adjust the displacement amount.

そして、排気ライン50の排気圧が変化した場合にはま
ず、これを差圧検出器51が検出して電気信号に変換し
、その検出データを■ρ変換部53及びめ変換部54を
介して上記CPU55に出力する。すると、このCPU
 S 5は入力された検出データを演算プログラムによ
シ単位変換1、上記設定値との比較を行ない誤差値の1
15の変化分のデータを増加または減算して上記電動操
作器58に新設定値を出力する。ここで、この電動操作
器58はその新設定値に基づいて上記開閉ダンパ52を
制御して排気量を調整する。
When the exhaust pressure in the exhaust line 50 changes, first, the differential pressure detector 51 detects this and converts it into an electrical signal, and the detected data is transmitted via the ρ converter 53 and the ρ converter 54. It is output to the CPU 55. Then, this CPU
S5 converts the input detection data into units using the calculation program, compares it with the above set value, and calculates the error value.
The new set value is output to the electric actuator 58 by increasing or subtracting the data corresponding to the change in 15. Here, the electric operating device 58 controls the opening/closing damper 52 based on the new set value to adjust the displacement amount.

また、供給ライン40の反応ガスの流量が変化した場合
にはこれを上記マスフロコントローラ4ノが検出して、
その検出データをA/l) e換部43を介してCPU
 55に出力する。すると、とのCPU 5−5は上述
した排気ライン系と略同様に数値制御式に上記マスフロ
コントローラ41を制御して反応ガスの流量を調整する
Further, when the flow rate of the reaction gas in the supply line 40 changes, the mass flow controller 4 detects this and
The detected data is sent to the CPU via the A/l) e exchange unit 43.
55. Then, the CPU 5-5 numerically controls the mass flow controller 41 to adjust the flow rate of the reaction gas in substantially the same way as the exhaust line system described above.

このように、上記CVD装置は排気ライン50の排気圧
を検出して、自動的に排気圧を所定の状態に設定するよ
うに構成した。これにより、上記CVD装置は常に反応
ガスに対する排気バランスが所定の状態に保たれるため
、例えば低濃度成長状態でのρBばらつき、膜厚のむら
、膜欠陥等を防止でき高精度の気相成長を可能とする。
In this way, the CVD apparatus is configured to detect the exhaust pressure in the exhaust line 50 and automatically set the exhaust pressure to a predetermined state. As a result, the above-mentioned CVD apparatus always maintains the exhaust balance with respect to the reactant gas in a predetermined state, so it is possible to prevent ρB variations, film thickness unevenness, film defects, etc. in low-concentration growth states, and to achieve high-precision vapor phase growth. possible.

−また、この発明は上記実施例のように数値制御式に排
気圧を制御するだけに限ることなく、リニア式に制御す
るように構成しても略同様に有効である。よって、この
発明の要旨を逸脱しない範囲で種々の変形を実施し得る
ことは云う迄もない。
-Also, the present invention is not limited to controlling the exhaust pressure numerically as in the embodiment described above, but is equally effective even if the exhaust pressure is controlled linearly. Therefore, it goes without saying that various modifications can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明によれば高精度な気相成
長を可能せしめて、均一な膜を確実に形成し得るように
した極めて良好なCVD装置を提供することができる。
As described in detail above, according to the present invention, it is possible to provide an extremely good CVD apparatus that enables highly accurate vapor phase growth and reliably forms a uniform film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び算3図はそれぞれこの発明の適用さ
れるCVD装置の概略を示す構成説明図、第4図は従来
の排気系統を示す構成図・第5図はこの発明の一実施例
に係るCVD装置の要部を示す構成図である。 10.20.30・・・CVD装置、J 1.21,3
1゜・・・サセプタ、12,22.32・・・半導体ウ
エノ1−140・・・供給ライン、41・・・マスフロ
コントローラ、42・・・ノズル、43・・・帥変換部
、−44・・・い変換部、50・・・排気ライン、51
・・・差圧検出器、52・・・開閉ダンノ’?、53・
・・I7’V変換部、54・・・0変換部、55・・・
マイクロコンピュータ、56・・・D/A 変換m、5
7 ”・ドライノ々、58・・・電動操作器、59.6
0・・・デジタルスイッチ、61・・・排圧表示器、6
2・・・流量表示器。 出願人代理人 弁理士 鈴 江 武 彦第1図 10 1 第2図 第3図 第4図 第5図
Figures 1, 2, and 3 are explanatory configuration diagrams showing the outline of a CVD apparatus to which the present invention is applied, Figure 4 is a configuration diagram showing a conventional exhaust system, and Figure 5 is an illustration of a conventional exhaust system. FIG. 1 is a configuration diagram showing main parts of a CVD apparatus according to an example. 10.20.30...CVD equipment, J 1.21,3
1゜... Susceptor, 12, 22. 32... Semiconductor wafer 1-140... Supply line, 41... Mass flow controller, 42... Nozzle, 43... Wire conversion unit, -44 ... Conversion part, 50 ... Exhaust line, 51
... Differential pressure detector, 52... Open/close Danno'? , 53・
...I7'V conversion section, 54...0 conversion section, 55...
Microcomputer, 56...D/A conversion m, 5
7” Dry nose, 58...Electric actuator, 59.6
0...Digital switch, 61...Exhaust pressure indicator, 6
2...Flow rate indicator. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 10 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェハーに対して反応ガスを供給し、気相まだは
表面での化学反応によって所望の膜を形成してなるCV
D装置において、前記反応ガスの排気圧を検出して、自
動的に該排気圧を所定の状態に制御する制御手段を備え
たことを特徴上するCVD装置。
CV that supplies a reactive gas to a semiconductor wafer and forms a desired film through a chemical reaction in the gas phase or on the surface.
A CVD apparatus characterized in that D apparatus includes a control means for detecting the exhaust pressure of the reaction gas and automatically controlling the exhaust pressure to a predetermined state.
JP591784A 1984-01-17 1984-01-17 Cvd apparatus Pending JPS60149120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP591784A JPS60149120A (en) 1984-01-17 1984-01-17 Cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP591784A JPS60149120A (en) 1984-01-17 1984-01-17 Cvd apparatus

Publications (1)

Publication Number Publication Date
JPS60149120A true JPS60149120A (en) 1985-08-06

Family

ID=11624244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP591784A Pending JPS60149120A (en) 1984-01-17 1984-01-17 Cvd apparatus

Country Status (1)

Country Link
JP (1) JPS60149120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139640A (en) * 1998-08-12 2000-10-31 Advanced Micro Devices, Inc. Chemical vapor deposition system and method employing a mass flow controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139640A (en) * 1998-08-12 2000-10-31 Advanced Micro Devices, Inc. Chemical vapor deposition system and method employing a mass flow controller

Similar Documents

Publication Publication Date Title
JP4102564B2 (en) Improved pressure flow controller
US20060226786A1 (en) Inductively-coupled plasma etch apparatus and feedback control method thereof
WO2003052517A3 (en) Photolithography overlay control using feedforward overlay information
JP2005106821A (en) System and method for calibration of gas flow in bypass loop
US7413914B2 (en) Method and apparatus for manufacturing semiconductor device, method and apparatus for controlling the same, and method and apparatus for simulating manufacturing process of semiconductor device
JPH09143722A (en) Method for correcting program for forming thin film of semiconductor element and apparatus for measuring thickness of thin film
KR101116979B1 (en) Semiconductor production system and semiconductor production process
JP2003504613A (en) System and method for linearizing sensor response
JP2646788B2 (en) Steam flow rate measuring device
Schaper et al. Control of MMST RTP: repeatability, uniformity, and integration for flexible manufacturing [ICs]
JPS60149120A (en) Cvd apparatus
US20190139796A1 (en) Monitoring apparatus and semiconductor manufacturing apparatus including the same
JPS5810131A (en) Detector for opening of throttle valve
KR20040101197A (en) Film formation method
JPH0641759A (en) Vapor-phase growth device and calibrating method for mass-flow controller in vapor-phase growth device
JPH04311036A (en) Insulating film formation method
JPH0642938B2 (en) Vaporized gas flow controller
JPH06265565A (en) Current speed detector for gas
JP3311762B2 (en) Mass flow controller and semiconductor device manufacturing equipment
KR100234905B1 (en) System and method for monitoring exhaust pressure of semiconductor fabricating system
JPH0232352B2 (en)
JP2849589B2 (en) Heating equipment
KR20230137163A (en) An apparatus and method for determining an error of a liquid flow meter in a substrate processing system
KR20000056692A (en) Auto gas distribution ratio controller for a load-lock unuit
JPH11286782A (en) Substrate treating device