JPS60148342A - Stationary reactive power regulator - Google Patents

Stationary reactive power regulator

Info

Publication number
JPS60148342A
JPS60148342A JP59005177A JP517784A JPS60148342A JP S60148342 A JPS60148342 A JP S60148342A JP 59005177 A JP59005177 A JP 59005177A JP 517784 A JP517784 A JP 517784A JP S60148342 A JPS60148342 A JP S60148342A
Authority
JP
Japan
Prior art keywords
phase
winding
transformer
reactive power
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59005177A
Other languages
Japanese (ja)
Other versions
JPH0673089B2 (en
Inventor
好男 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59005177A priority Critical patent/JPH0673089B2/en
Publication of JPS60148342A publication Critical patent/JPS60148342A/en
Publication of JPH0673089B2 publication Critical patent/JPH0673089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は高電圧送電線に直結され、主に送電線に発生す
る進相無効電力を補償するために用いられる静止形無動
電力調整装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a static non-active power adjustment device that is directly connected to a high-voltage power transmission line and is used mainly to compensate for phase-advanced reactive power generated in the power transmission line. Regarding.

〔従来技術とその問題点〕[Prior art and its problems]

電力系統の電圧の安定化を図る#M置として、近年サイ
リスタを用いた静止形無動電力補償装置(略@5vC)
が実用化されている。この種の装置は長距離送電線に接
続される場合が多く、シたがって超高圧系統に直結した
とき経済的にすぐれた装置であることが望まれる。
In recent years, a static static power compensator (approximately @5vC) using a thyristor has been used as a #M device to stabilize the voltage of the power system.
has been put into practical use. This type of device is often connected to long-distance power transmission lines, and therefore it is desired that the device be economical when directly connected to an ultra-high voltage system.

第1図は従来公知の装置の接続図である。図において、
遅相容量調整回路1は、リアクトル2と逆並列接続され
たサイリスタスイッチ3との直列回路からなり、各相趙
相容1lll調整回路がデルタ結線□されて三相電力系
MIGに接続されている。この場合、サイリスクスイッ
チ3を位相制御してリアクトル2に流れる電流をオン・
オフ制御することにより遅相容量を調整できるが、サイ
リスクスイッチ3を位相制御することによって遅相容量
調整回路1の各相に流れる電流lu、lv、IWには基
本波場外に多くの高調波成分を含んでいる。4は高、調
波成分を吸収するためのフィルタで、リアクトル6とコ
ンデンサ6との直列共振回路からなり、遅相容量Ill
整回路で発生する高調波の次数に対応した共振周波数の
異なる複数組の高調波フィルタ4を設けることにより、
電力系統側に流出する高調′rf!1fIl流を系統の
許容する値以下に抑えるよう構成されている。このよう
に構成することにより、遅相容意調整回W51で発生し
た遅相容量によって電力系統10の進相無効電力を補償
でき、また高調波フィルタ4によって高調波電流を吸収
できる。ところが、調整装置の端子電圧が系a電圧で抑
えられてしまうので、遅相電力調整回路の通電電流1p
u、 Ipv、 fpwはりアクドル2の容量によって
一義的に決まってしまう。これに対しサイリスクスイッ
チ3の通電しうるf8流容量は上記通s′4流1pu+
Ipv、Ipwに比べて一般に大きく、電流容量に充分
な余裕があるにもかかわらず、系am圧が高いためにサ
イリスタ素子の直列数が多くなり、装置の電力容態に対
してサイリスタスイッチの通電可afs力容量が益々大
きくなり、経済的に不利益をもたらす欠点がある。また
高調波フィルタ4を構成するコンデンサ6およびリアク
トル6についても、系a電圧に耐える絶縁をするために
装置が大形化し、それにともなって装−が高価になる欠
点がある。
FIG. 1 is a connection diagram of a conventionally known device. In the figure,
The slow phase capacitance adjustment circuit 1 consists of a series circuit of a reactor 2 and a thyristor switch 3 connected in antiparallel, and each phase phase capacitance 1llll adjustment circuit is delta-connected and connected to the three-phase power system MIG. In this case, the current flowing through the reactor 2 is turned on and off by controlling the phase of the thyrisk switch 3.
The lagging phase capacitance can be adjusted by off-controlling, but by controlling the phase of the sirisk switch 3, the currents lu, lv, and IW flowing through each phase of the lagging phase capacitance adjustment circuit 1 contain many harmonics outside the fundamental wave field. Contains ingredients. 4 is a filter for absorbing high and harmonic components, which consists of a series resonant circuit of a reactor 6 and a capacitor 6, and has a lagging capacitance Ill.
By providing multiple sets of harmonic filters 4 having different resonance frequencies corresponding to the orders of harmonics generated in the adjustment circuit,
High-frequency 'rf flowing into the power grid! It is configured to suppress the 1fIl flow below the value allowed by the system. With this configuration, the phase-advanced reactive power of the power system 10 can be compensated for by the phase-delay capacity generated by the phase-delay capacity adjustment circuit W51, and the harmonic current can be absorbed by the harmonic filter 4. However, since the terminal voltage of the regulator is suppressed by the system a voltage, the energizing current 1p of the slow phase power regulator circuit
u, Ipv, and fpw are uniquely determined by the capacity of the accelerator 2. On the other hand, the f8 current capacity that can be energized by the cyrisk switch 3 is the above-mentioned s'4 current 1pu+
Although it is generally larger than Ipv and Ipw and has sufficient margin for current capacity, the high system am pressure increases the number of thyristor elements connected in series, making it difficult to energize the thyristor switch depending on the power status of the device. The disadvantage is that the afs force capacity is becoming larger and larger, which is economically disadvantageous. Furthermore, the capacitor 6 and reactor 6 constituting the harmonic filter 4 also have the disadvantage that the device becomes large in size in order to provide insulation that can withstand the system a voltage, and accordingly, the equipment becomes expensive.

第2図は改良された従来の無効電力H差装置の接続図で
ある0図において、7は三相二巻IW変圧器で、−次巻
!!8はデルタ結線されて母線10を介して電力系統に
接続されており、二次巻a19には各相巻線ごとにサイ
リスクスイッチ11が接続されている。高調波フィルタ
4については第1図の従来装置と同様に電力系統に直結
するよう構成されているが、−次巻H8をデルタMff
lすることによって第3高m波電流が一次巻線内を環飾
し電力系統には流出しないので、第3i%贋波を吸収す
るための高調波フィルタを除く高次の高調波フィルタが
設けられる。変圧n7は定格電流を流したとき一次二次
4111 M 間のもれインピーダンスによる電圧降下
(インピーダンス電圧)がたとえば装置の定格電圧の1
00%になるような高インピーダンス変圧器で、サイリ
スクスイッチ11が図示しない制御装置によって位相角
制御され、その結果変圧器の二次巻線が所定の時間ごと
に短路を繰り返すことにより、変圧器7の一次側には前
記インピーダンス電圧によって規制された装置の定格電
流に相当する電流が流入し、所定のが相電力を発生させ
ることができる。また二次巻[9の電圧と電流は両者の
積が装置容量とほぼ等しくなる条件のもとで任意に設定
できるので、サイリスタスイッチ11に使用するサイリ
スタ素子の電流容量と削電圧とを勘案して素子の直列数
が最も少なくなるような電圧と電流値に設定できる。し
たがって第1図の従来n造に比べてサイリスタスイッチ
11を要求される遅相電力発生容世(装置容量)に見合
う通堪容汽とすることが可能になる。ところが、このよ
うに構成された装置においては、第3高調波sM6が電
力系統側に流出しないよう一次巻線をデルタ結線してお
り、この装置が進相無効電力を多く発生する超高圧電力
系統に接続される場合には、−次□巻線の各相巻線を系
統の線間電圧に耐えるよう&Cすることと、中性点側の
対地絶縁を低減絶縁できないこととのために、変圧器が
大形かつ高価になるという問題点があり、かつ高調波フ
ィルタ4が超高圧電力系統に直結されるために、第1図
の従来構造で述べたと同様な欠点がある。
Fig. 2 is a connection diagram of an improved conventional reactive power H difference device. In Fig. 0, 7 is a three-phase two-turn IW transformer; ! 8 is delta-connected and connected to the power system via a bus 10, and a silisk switch 11 is connected to the secondary winding a19 for each phase winding. The harmonic filter 4 is configured to be directly connected to the power system as in the conventional device shown in FIG.
By doing this, the 3rd high m-wave current surrounds the primary winding and does not flow into the power system, so a high-order harmonic filter other than the harmonic filter for absorbing the 3i% counterfeit wave is installed. It will be done. When the rated current flows through the transformer n7, the voltage drop (impedance voltage) due to the leakage impedance between the primary and secondary 4111M is, for example, 1 of the rated voltage of the device.
00%, the phase angle of the si-risk switch 11 is controlled by a control device (not shown), and as a result, the secondary winding of the transformer repeats short circuits at predetermined intervals, so that the transformer A current corresponding to the rated current of the device regulated by the impedance voltage flows into the primary side of the device 7, and a predetermined phase power can be generated. In addition, since the voltage and current of the secondary winding [9] can be set arbitrarily under the condition that the product of both is approximately equal to the device capacity, the current capacity and cutting voltage of the thyristor element used in the thyristor switch 11 should be taken into consideration. The voltage and current values can be set to minimize the number of elements connected in series. Therefore, compared to the conventional N-type construction shown in FIG. 1, it is possible to make the thyristor switch 11 more durable than the conventional type shown in FIG. However, in a device configured in this way, the primary winding is connected in delta to prevent the third harmonic sM6 from flowing into the power system, and this device is used in ultra-high voltage power systems that generate a lot of phase-advanced reactive power. When connected to a transformer, each phase winding of the -order There are problems in that the device is large and expensive, and since the harmonic filter 4 is directly connected to the ultra-high voltage power system, there are drawbacks similar to those described in the conventional structure shown in FIG.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に伝みてなされたもので、進相無効
電力を発生する超高圧1カ系統に直結して使用される場
合においても#!置の大形化と経済的不利益をもたらさ
ない静止形飢効電力IW整装置を提供することを目的と
する。
The present invention was made in response to the above-mentioned situation, and even when used directly connected to a single ultra-high voltage system that generates phase-advanced reactive power, #! It is an object of the present invention to provide a stationary power consumption IW adjustment device that does not cause an increase in the size of the equipment or economic disadvantage.

〔発明の要点〕[Key points of the invention]

本発明によれば、前述の目的は、−次二次巻線間が高イ
ンピーダンスの三巻線変圧器を用い、二次側に設けたサ
イリスクスイッチをオン・オフ割部して遅相態動電力を
調整し、電力系統で発生する進相無効電力を補償し、デ
ルタtJ線した三次巻線と三次側に設けた高調波フィル
タによって高調波を吸収して電力系統への高1i波の流
出を防ぐとともに、三次巻線の電圧をフィルタの絶縁コ
ストを考慮した最適値に設定して高調波フィルタを小形
化し、−次巻線はスター結線して絶縁を簡素化するよう
構成することにより達成された。
According to the present invention, the above-mentioned object is achieved by using a three-winding transformer with high impedance between the negative and secondary windings, and by dividing the on/off portion of the si-risk switch provided on the secondary side into a slow phase state. The dynamic force is adjusted to compensate for the phase-advanced reactive power generated in the power system, and the harmonics are absorbed by the tertiary winding with a delta tJ line and the harmonic filter installed on the tertiary side, and high 1i waves are transmitted to the power system. In addition to preventing leakage, the harmonic filter is made smaller by setting the voltage of the tertiary winding to an optimal value that takes into account the insulation cost of the filter, and the negative winding is star-connected to simplify insulation. achieved.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実凡例を添付図面を参照しつつ説明する
An example of the present invention will be explained below with reference to the accompanying drawings.

第3図は本発明の実施例を丞す装置の接続図である0図
において27は静止形龍効電力ma用の三相三巻線変圧
器で、デルタ結線された三次巻線30と、進相無効電力
を発生する超高圧電力系820にMf:#llされるス
ター結線された一次巻線28と、−次巻線との間が高イ
ンピーダンスになるよう形成された二次巻線29とを備
え、二次巻線29の各相巻線にはそれぞれ逆並列接続サ
イリスクスイッチ11が接続され、三次巻線30にはり
アクドル25とコンデンサ26との直列共振回路からな
る高調波フィルタ24が接続されている。このように構
成された静止形無動電力HN装置において、変圧器27
の一次二次間の%インピーダンス電圧を遅相無効電力発
生容量を考慮して40%から100%近い高インピーダ
ンスになるようあらかじめ設定するとともに、電力系統
の進相無効電力の発生状況に対応してサイリスクスイッ
チ11のオン・オフ動作を位相角制御することにより、
変圧器27のインピーダンス電圧にもとづいて発生する
遅相電力をwN整することができ、その結果電力系統1
0側の進相無効電力を補償することができる。二次巻線
29の電圧および電流の決定にあたって、サイリスクス
イッチ11を構成するサイリスタ素子の11飾容量とそ
の直列数を考慮した経済設計とすることは第2図の従来
構造における場合と同様である。
FIG. 3 is a connection diagram of a device including an embodiment of the present invention. In FIG. A star-connected primary winding 28 connected to an ultra-high voltage power system 820 that generates phase-advanced reactive power and a secondary winding 29 formed so as to have high impedance between the -order winding. An anti-parallel connection switch 11 is connected to each phase winding of the secondary winding 29, and a harmonic filter 24 consisting of a series resonant circuit of an axle 25 and a capacitor 26 is connected to the tertiary winding 30. is connected. In the static non-active power HN device configured in this way, the transformer 27
The % impedance voltage between the primary and secondary is set in advance to a high impedance of 40% to nearly 100%, taking into account the lagging reactive power generation capacity, and also in response to the generation status of leading reactive power in the power system. By controlling the phase angle of the on/off operation of the thyrisk switch 11,
The lagging power generated based on the impedance voltage of the transformer 27 can be adjusted by wN, and as a result, the power system 1
It is possible to compensate for the phase advancing reactive power on the 0 side. In determining the voltage and current of the secondary winding 29, an economical design is adopted that takes into consideration the decorative capacitance of the thyristor elements constituting the thyristor switch 11 and the number of them in series, as in the case of the conventional structure shown in FIG. be.

第3図の実施例の特徴とするところは、変圧器27をデ
ルタ結線された三次巻線30を備えた三巻線変圧器とし
たことである。このように構成された装置においては、
サイリスクスイッチのオン・オフ制御に付随して発生す
る高調波のうち、篤3高調波はデルタ結線された三次巻
線内を顔流し、電力系!+1110側に流出するのを防
止できるので、超高圧電力系統に接続される一次巻線2
8をスター結線とすることができる。したがって−次巻
線の各相巻線の負担電圧の低減と、中性点側が有効接地
されることによる低減絶縁とが期待できるので、−次巻
線の絶縁が簡素化され、変圧器27を小形軽量化するこ
とができる。また三次巻線30を高調波フィルタ専用の
巻線として利用するよう構成したことで、三次巻線30
の電圧をリアクトル26とコンデンサ26の経済性を考
慮して決めることにより、従来′m造に比べて高調波フ
ィルタを小形かつ安価に構成することができる。また、
三次巻線の分離インピーダンス(三巻線変圧器の等価回
路からめられる)を高調波フィルタ24を構成するりア
クドル25の一部として利用できるためにリアクトル2
5の容量を低減できる利点がある。また三次巻線30に
接続された高調波フィルタ24を構成するコ?デンサ2
6は、必要に応じて進相コンデンサとしても利用するこ
とができる。
The embodiment of FIG. 3 is characterized in that the transformer 27 is a three-winding transformer having a tertiary winding 30 connected in delta. In a device configured in this way,
Among the harmonics generated due to the on/off control of the Cyrisk switch, the third harmonic flows through the delta-connected tertiary winding and is used in the power system! The primary winding 2 connected to the ultra-high voltage power system can be prevented from flowing to the +1110 side.
8 can be star connected. Therefore, it can be expected that the burden voltage of each phase winding of the secondary winding will be reduced, and that the neutral point side will be effectively grounded, resulting in reduced insulation. Therefore, the insulation of the secondary winding will be simplified, and the transformer 27 will be It can be made smaller and lighter. In addition, by configuring the tertiary winding 30 to be used as a winding exclusively for the harmonic filter, the tertiary winding 30
By determining the voltage in consideration of the economic efficiency of the reactor 26 and the capacitor 26, the harmonic filter can be constructed smaller and at a lower cost than the conventional construction. Also,
Because the separated impedance of the tertiary winding (which can be seen from the equivalent circuit of a three-winding transformer) can be used to configure the harmonic filter 24 or as part of the accelerator 25, the reactor 2
There is an advantage that the capacity of 5 can be reduced. Also, the component that constitutes the harmonic filter 24 connected to the tertiary winding 30? Densa 2
6 can also be used as a phase advance capacitor if necessary.

上述のように第3図の実施例においては、遅相電力を一
次二次巻線間のもれインピーダンスを利用して発生する
とともに、三次巻線の分離インピーダンスを高調波フィ
ルタのインダクタンスの一部として利用するなど、変圧
器の各巻線相互間のもれインピーダンスの配分の影響を
受けやすい構成にな−っている。もれインピーダンスの
配分としては、−次二次巻線間のもれインピーダンスを
遅相容量に見合う高インピーダンスとするとともに一二
次三次間のもれインピーダンスをある程度大きくするこ
とにより、二次巻線側で主に発生する高調波を吸収する
フィルタにこのもれインピーダンスを利用できるととも
に、−次二次巻線間で発生する遅相容量と二次巻線側の
進相容量とが結合して発生遅相無効電力が減少するのを
防止する利点が得られる。
As described above, in the embodiment shown in FIG. 3, the delayed phase power is generated by using the leakage impedance between the primary and secondary windings, and the separation impedance of the tertiary winding is generated by using a part of the inductance of the harmonic filter. The configuration is such that it is easily affected by the distribution of leakage impedance between the windings of the transformer. As for the distribution of leakage impedance, the leakage impedance between the -order secondary winding is set to a high impedance commensurate with the slow phase capacitance, and the leakage impedance between the primary, secondary and tertiary windings is increased to a certain extent. This leakage impedance can be used for a filter that absorbs harmonics mainly generated on the side, and the lagging phase capacitance generated between the -th order secondary winding and the phase leading capacitance on the secondary winding side are combined. This provides the advantage of preventing the generated delayed phase reactive power from decreasing.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、遅相無効電力を発生する変圧器
をデルタ結線された三次巻線を備えた三巻線変圧器で構
成し、−次二次巻線間のもれインピーダンスを遅相容量
に見合う高インピーダンスとするとともに、二次巻線側
にサイリスクスイッチを設けて遅相電力を制御し、かつ
デルタ結線された三次巻線を高調波フィルタ専用巻線と
して利用Tるよう#成した。その結果、まず、第3高調
波を三次巻線で吸収するとともに他の次数の高調波は高
調波フィルタで吸収され亀カ系銃側に高調波電流が流出
するのを防止できる。また三次巻線の電圧を高調波フィ
ルタの絶縁コストを考慮した最適値に設定できるので、
電力系統に高調波フィルタを直結する従来晴造に比べて
高調波フィルタを小形かつ安価に1成することができる
。さらに三次巻線の分離インピーダンスを高調波フィル
タのインダクタンスの一部として利用できるため亀高調
波フィルタのりアクドル@景を低減することができる。
As described above, the present invention configures a transformer that generates delayed phase reactive power as a three-winding transformer with a delta-connected tertiary winding, and slows the leakage impedance between the negative and secondary windings. In addition to providing a high impedance commensurate with the phase capacity, a si-risk switch is installed on the secondary winding side to control the delayed phase power, and the delta-connected tertiary winding is used as a dedicated winding for harmonic filters. accomplished. As a result, first, the third harmonic is absorbed by the tertiary winding, and harmonics of other orders are absorbed by the harmonic filter, thereby preventing harmonic current from flowing to the tortoise gun side. In addition, the voltage of the tertiary winding can be set to the optimal value considering the insulation cost of the harmonic filter.
Compared to conventional systems that directly connect a harmonic filter to the power system, the harmonic filter can be made smaller and cheaper. Furthermore, since the separated impedance of the tertiary winding can be used as part of the inductance of the harmonic filter, it is possible to reduce the burden of the harmonic filter.

さらにまた−次巻線をスター結線することが可能になり
、装置が進相無効電力を発生する超高圧送電系統に直結
される場合には、各相巻線および中性点側の絶縁を前案
化でき、変圧器の小形化に貢献できる。したがって進相
無効電力を発生する電力系統に直結される場合において
も、装置の大形化と経済的不利益をもたらすことのない
静止形無動電力li整装置を提供できる。
Furthermore, it is now possible to star-connect the secondary windings, and if the device is directly connected to an ultra-high voltage power transmission system that generates phase-advanced reactive power, insulation on each phase winding and neutral point side should be This can contribute to the miniaturization of transformers. Therefore, even when directly connected to a power system that generates phase-advanced reactive power, it is possible to provide a stationary non-active power adjustment device that does not increase the size of the device or cause economic disadvantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の然効堪カ調N装置の接続図、第2図は改
良された従来の無効電力訪整装置の接続図、第3図は本
発明の実施例を示す熱動電力調整装置の接続図である。 111−・・サイリスタスイッチ、1.21−・・連相
無効電力flli整回路、4.24・・・高調波フィル
タ、5゜25・・・ リアクトル、6.26・・・コン
デンサ、7・・・顛洩変圧器、27・・・三相三@腺変
圧器1.8.28・・・−次巻線、9.29・・・二次
巻線、30・・・三次巻線、1oI20−・・電力系統
。 第1図 第2図 第3図
Fig. 1 is a connection diagram of a conventional reactive power adjustment device, Fig. 2 is a connection diagram of an improved conventional reactive power adjustment device, and Fig. 3 is a thermodynamic power adjustment diagram showing an embodiment of the present invention. It is a connection diagram of a device. 111--Thyristor switch, 1.21--Synchronized reactive power flli adjustment circuit, 4.24--Harmonic filter, 5゜25--Reactor, 6.26--Capacitor, 7--・Leakage transformer, 27...Three-phase three@gland transformer 1.8.28...-Secondary winding, 9.29...Secondary winding, 30...Tertiary winding, 1oI20 -...Electric power system. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 工)進相無効電力を発生する三相電力系統に接続された
漏洩変圧器の二次巻線側に設けられた逆並列接続サイリ
スクスイッチにより前記変圧器の二次巻#i!電流をオ
ン・オフMaして遅相無効電力を発生し制御する装置に
おいて、前記変圧器がデルタ結線された三次巻線と、こ
の三次巻線に接続されたりアクドルとコンデシサとの直
列共振回路か−うなる高調波フィルタとを備えたことを
特徴とする静止形無効椹力wIN整装置。 2、特許請求の範囲第1項記載の装置において、変圧器
の一次巻線がスター結線され、−次巻線との間のインピ
ーダンス電圧が前記二次巻線の定格電圧の40%を超え
100%以下であることを特徴とする静止形無効11力
mm装置。
[Claims] Engineering) The secondary winding of a leakage transformer connected to a three-phase power system that generates phase-advanced reactive power is controlled by an anti-parallel connection thyrisk switch provided on the secondary winding side of the transformer. #i! In a device that generates and controls slow-phase reactive power by turning on and off current, the transformer has a delta-connected tertiary winding, and a series resonant circuit connected to this tertiary winding or an accelerator and a condenser. - A stationary invalid force wIN adjustment device, characterized in that it is equipped with a humming harmonic filter. 2. In the device according to claim 1, the primary winding of the transformer is star-connected, and the impedance voltage between it and the secondary winding exceeds 40% of the rated voltage of the secondary winding. % or less.
JP59005177A 1984-01-13 1984-01-13 Static reactive power regulator Expired - Fee Related JPH0673089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005177A JPH0673089B2 (en) 1984-01-13 1984-01-13 Static reactive power regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005177A JPH0673089B2 (en) 1984-01-13 1984-01-13 Static reactive power regulator

Publications (2)

Publication Number Publication Date
JPS60148342A true JPS60148342A (en) 1985-08-05
JPH0673089B2 JPH0673089B2 (en) 1994-09-14

Family

ID=11603951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005177A Expired - Fee Related JPH0673089B2 (en) 1984-01-13 1984-01-13 Static reactive power regulator

Country Status (1)

Country Link
JP (1) JPH0673089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188119A (en) * 2021-11-08 2022-03-15 南方电网科学研究院有限责任公司 Inductance-adjustable reactor and inductance adjusting method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188119A (en) * 2021-11-08 2022-03-15 南方电网科学研究院有限责任公司 Inductance-adjustable reactor and inductance adjusting method thereof

Also Published As

Publication number Publication date
JPH0673089B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
AU587801B2 (en) A.c. power supply systems
US4661763A (en) Phase shifter
JP2795183B2 (en) Static var compensator
JPS60148342A (en) Stationary reactive power regulator
GB2297004A (en) Method for turning off a three phase static reactive power compensator
JPS5951013B2 (en) power control device
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
US3416063A (en) Stabilized sine wave inverter
JP3319169B2 (en) Static var compensator
JPH0626068Y2 (en) AC filter equipment
JPH0246215Y2 (en)
JPS5834922B2 (en) Tansoutanmakihen Atsukino Denatsuchiyouseihoshiki
JP3526170B2 (en) Reactive power adjustment device
JP2682241B2 (en) Power failure countermeasure device
JP3526171B2 (en) Reactive power adjustment device
JP3053281B2 (en) DC / AC converter
JPS6263322A (en) Reactive power compensator
JPH04217820A (en) Power flow control method, controller and control system
JP3321891B2 (en) Static reactive power adjustment device
SU1173487A1 (en) Apparatus for feeding electric installations
JPH08340637A (en) Method of compensating reactive power, etc., of power system having generator facilities
JPH06289946A (en) Static reactive power adjusting device
JPS6038950B2 (en) DC power supply
JPH08305452A (en) Constant voltage higher harmonic absorbing power unit
JPS62182813A (en) Thyristor control type voltage phase controlled autotransformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees