JPS5951013B2 - power control device - Google Patents

power control device

Info

Publication number
JPS5951013B2
JPS5951013B2 JP52147882A JP14788277A JPS5951013B2 JP S5951013 B2 JPS5951013 B2 JP S5951013B2 JP 52147882 A JP52147882 A JP 52147882A JP 14788277 A JP14788277 A JP 14788277A JP S5951013 B2 JPS5951013 B2 JP S5951013B2
Authority
JP
Japan
Prior art keywords
transformer
phase
thyristor
control device
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52147882A
Other languages
Japanese (ja)
Other versions
JPS5479443A (en
Inventor
昌義 熊野
功 伊与田
茂 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52147882A priority Critical patent/JPS5951013B2/en
Publication of JPS5479443A publication Critical patent/JPS5479443A/en
Publication of JPS5951013B2 publication Critical patent/JPS5951013B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 この発明は電力送電線や配電線などの系統に並列に設置
し、系統に供給する無効電力を制御する事により、電圧
変動を防止したり、電力系統の安定化を図る為のいわゆ
る無効電力制御装置、殊に連続的に制御出来る可変リア
クタンス形電力制御装置に関するものである。
[Detailed Description of the Invention] This invention prevents voltage fluctuations and stabilizes the power system by installing it in parallel with power transmission lines, distribution lines, etc., and controlling the reactive power supplied to the system. The present invention relates to a so-called reactive power control device, particularly a variable reactance type power control device that can be continuously controlled.

第1図は従来のサイリスタを用いた可変リアクタンス形
電力制御装置を示す構成図である。
FIG. 1 is a configuration diagram showing a conventional variable reactance type power control device using a thyristor.

図に於て、10は発電機、20は送配電線、30は負荷
、40は電力制御装置である。而してトランスの1次巻
線41は送配電線20に接続され、又、トランスの2次
巻線42には互いに逆並列接続されたサイリスタ51、
52及びリアクトル60u、60り、60wが直列接続
されている。又、トランスの1次巻線41には位相コン
デンサ70が並列に接続され、さらにリアクトル81コ
ンデンサ82から成る複数個のフィルタ回路が接続され
ている。第2図は、第1図の動作を説明する為の電圧電
流波形図である。
In the figure, 10 is a generator, 20 is a power transmission/distribution line, 30 is a load, and 40 is a power control device. The primary winding 41 of the transformer is connected to the power transmission/distribution line 20, and the secondary winding 42 of the transformer includes thyristors 51, which are connected in antiparallel to each other.
52 and reactors 60u, 60, and 60w are connected in series. Further, a phase capacitor 70 is connected in parallel to the primary winding 41 of the transformer, and a plurality of filter circuits each including a reactor 81 and a capacitor 82 are further connected. FIG. 2 is a voltage and current waveform diagram for explaining the operation of FIG. 1.

今電力系統よりU相にVuのごとき正弦波の電圧が印加
され、Vuのピーク点より電気角X遅れの位相でサイリ
スタ51Uを点弧すれば、リアクトル60UにVLUな
る電圧が印加され、図示のごときiuなる電流が流れる
。この遅れ電流iuの値はサイリスタの点弧位相αによ
つて制御される。即ち、トランスのl次側から見た等価
リアクタンスはαの値で連続的に変化させることが出来
、進相コンデンサ70との並用により自由に進みから遅
れの電力を送配電線20に供給制御する事が出来る。こ
の結果送配電線の持つリアクタンス21による電圧降下
を補償し、電圧を一J定に保つたり電力系統の安定化を
図ることが出来る。処で、この従来の装置では、第2図
の波形から明らかな様に、サイリスタの点弧位相αを大
きくすればする程、電流波形の歪み、即ち高調波含有丁
率が増大する。
Now, if a sinusoidal voltage such as Vu is applied to the U phase from the power system, and the thyristor 51U is fired at a phase delayed by electrical angle X from the peak point of Vu, a voltage VLU will be applied to the reactor 60U, as shown in the figure. A current iu flows. The value of this delayed current iu is controlled by the firing phase α of the thyristor. That is, the equivalent reactance seen from the l-order side of the transformer can be continuously changed by the value of α, and by using it in parallel with the phase advance capacitor 70, it is possible to freely control the supply of power from lead to lag to the power transmission and distribution line 20. I can do things. As a result, the voltage drop due to the reactance 21 of the power transmission and distribution lines can be compensated for, the voltage can be kept constant at a certain level, and the power system can be stabilized. In this conventional device, as is clear from the waveform in FIG. 2, as the firing phase α of the thyristor increases, the distortion of the current waveform, that is, the harmonic content ratio increases.

一方送配電線の許容歪率は1%以下程度であるので、第
1図のごとく、各高調波成分に対する除去フィルタを設
けなければならず、特に低次高調波に対してはこのフイ
ルタ容量も大きなものが必要であつた。この発明は、上
記従来の装置の欠点に鑑みなされたもので、多重可変リ
アクトル形電力制御装置を構成することによりサイリス
タの点弧位相αを大きくしても、低次高調波成分を発生
せず、フイルタを除去又は大巾に小さくする事を可能な
らしめるものである。
On the other hand, since the permissible distortion rate of power transmission and distribution lines is about 1% or less, it is necessary to provide a removal filter for each harmonic component, as shown in Figure 1, and especially for low-order harmonics, the capacity of this filter is also small. I needed something big. This invention was made in view of the drawbacks of the conventional devices described above, and by configuring a multiple variable reactor type power control device, even if the firing phase α of the thyristor is increased, low-order harmonic components are not generated. , it is possible to remove the filter or make it significantly smaller.

第3図は、この発明の装置の一実施例構成を示す。FIG. 3 shows the configuration of an embodiment of the apparatus of the present invention.

図に於て、電力制御装置40は星状接続の1次巻線41
と、環状及び星状結線の2次巻線42,43を持つトラ
ンスを備え、それぞれの2次巻線42,43には、両方
向性サイリスタ(以下BCRと呼ぶ)53U〜53W及
び54u〜54wとリアクトル61U〜61W,62u
〜62Wの直列体が接続されている。又、トランスの1
次巻線41には並列に進相コンデンサ70が接続されて
いる。第4図a−gは第3図の実施例の動作を説明する
ための各部の波形を示したものである。
In the figure, the power control device 40 has a star-connected primary winding 41.
and a transformer having secondary windings 42, 43 with circular and star connections, and each secondary winding 42, 43 includes bidirectional thyristors (hereinafter referred to as BCR) 53U to 53W and 54u to 54W. Reactor 61U~61W, 62u
~62W series body is connected. Also, transformer 1
A phase advance capacitor 70 is connected in parallel to the next winding 41 . 4a to 4g show waveforms of various parts for explaining the operation of the embodiment of FIG. 3.

トランスの1次巻線42のU相電圧VUlを基準に取り
、各BCR53u〜53Wの点弧位相遅れをαとすれば
各相の電流11,13,15は2π/3位相差を持つて
、第4図A,b,cの様な波形の電流が流れる。
Taking the U-phase voltage VUl of the primary winding 42 of the transformer as a reference, and assuming that the ignition phase delay of each BCR 53u to 53W is α, the currents 11, 13, and 15 of each phase have a 2π/3 phase difference. Currents with waveforms such as those shown in FIG. 4A, b, and c flow.

他方、巻線43のUW間電圧V。On the other hand, the voltage V across UW of the winding 43.

2はVUlに比べπ/6だけ遅れているため、第4図D
,e,fに図示する各相の電流12,14,16はそれ
ぞれ11,13,15に対しπ/6だけ遅れる。
2 is delayed by π/6 compared to VUl, so Fig. 4D
, e, f, the currents 12, 14, 16 of each phase are delayed by π/6 with respect to 11, 13, 15, respectively.

ここで、トランスの2次巻線42と43の比を印加電圧
の大きさ1U11と1Vu21が等しくなる様(即ち、
各相共2次巻線42の巻線/2次巻線43の巻数=ψ可
)に選び、リアクトル61u〜6]W,62U〜62W
を全て等しい値にすれば、トランスの1次巻線41のU
相電流1uの基.本波実効値はi1の2倍の値である。
Here, the ratio of the secondary windings 42 and 43 of the transformer is set so that the applied voltage magnitudes 1U11 and 1Vu21 are equal (i.e.,
The winding of the secondary winding 42 for each phase/the number of turns of the secondary winding 43 = ψ allowed), and the reactors 61u~6]W, 62U~62W
If all are made equal, U of the primary winding 41 of the transformer
Base of phase current 1u. The effective value of the main wave is twice the value of i1.

又、図の波形をフーリエ展開すれば12n±1 (n:
整数)次高調波分以外はαの値に関係なく零となり、大
巾に波形歪みも改善される事がわかる。この結果、従来
設けられていたフイルタを除去する事も可能と・なリフ
イルタを設けるとしても高次高調波分に対すものでよく
、周波数に比例して小さくすることが出来る。第5図は
この発明の他の実施例を示す構成図で、第3図の実施例
と比べ、トランスの1次回路が星状接続され、高圧回路
に適した中性点接地がされる点、及び、サイリスタ51
U〜51Wと52U〜52Wとが逆並列接続されている
点である。
Also, if the waveform in the figure is Fourier expanded, it becomes 12n±1 (n:
It can be seen that all components other than the (integer) order harmonics become zero regardless of the value of α, and waveform distortion is greatly improved. As a result, it is possible to eliminate a conventional filter. Even if a refilter is provided, it is sufficient to deal with high-order harmonics, and the refilter can be made smaller in proportion to the frequency. Fig. 5 is a block diagram showing another embodiment of the present invention, which differs from the embodiment shown in Fig. 3 in that the primary circuit of the transformer is connected in a star pattern and the neutral point is grounded, which is suitable for high-voltage circuits. , and thyristor 51
The point is that U~51W and 52U~52W are connected in antiparallel.

この場合、閉路を形成する為にはサイリスタ51u〜5
1wのどれかと他の相のサイリスタ52U〜52Wの直
列の2個が必らず導通しなければならず、サイリスタへ
のゲート点弧信号は、第6図に示すごとくπ/3ずれた
ダブルパルス又はπ/3以上の期間継続しなければなら
ない。第7図も、この発明の更に他の実施例を示す構成
図で、上記実施例に比べ、トランスの2次巻線52,5
3は共にπ/3位相差を有するよう星状結線され、サイ
リスタ側も星状結線で、共に中性点接地が出来且つ、各
相独立閉路が形成される。
In this case, in order to form a closed circuit, the thyristors 51u to 5
1W and the other phase thyristors 52U to 52W in series must be conductive, and the gate firing signal to the thyristor is a double pulse shifted by π/3 as shown in Figure 6. Or it must continue for a period of π/3 or more. FIG. 7 is also a configuration diagram showing still another embodiment of the present invention, in which the secondary windings 52, 5 of the transformer are
3 are star-connected to have a phase difference of π/3, and the thyristor side is also star-connected so that both can be grounded at the neutral point and form independent closed circuits for each phase.

なお、この実施例では従来の第1図の実施例と同様にト
ランスに環状接続の3次巻線49が設けられ、1線地絡
等事故時の零相成分処理ループを形成しているが、第3
図、第5図の実施例では2次巻線42がこの機能も果し
ている為別に設ける必要がない。第8図は、この発明の
さらに他の実施例を示す構成図で、トランスの2次巻線
は、1次巻線41と同相の巻線42、1次巻線41に対
しπ/6の位相差を有する巻線43に加え、新に1次巻
線に対しそれぞれπ/12及びπ/4の位相差を有す巻
線44,45が設けられている。
In addition, in this embodiment, as in the conventional embodiment shown in FIG. 1, a tertiary winding 49 connected in a ring is provided in the transformer to form a zero-phase component processing loop in the event of an accident such as a one-line ground fault. , 3rd
In the embodiment shown in FIGS. 5 and 5, the secondary winding 42 also fulfills this function, so there is no need to provide it separately. FIG. 8 is a block diagram showing still another embodiment of the present invention, in which the secondary winding of the transformer has a winding 42 in phase with the primary winding 41, and a winding 42 having the same phase as the primary winding 41. In addition to the winding 43 having a phase difference, windings 44 and 45 having a phase difference of π/12 and π/4, respectively, with respect to the primary winding are newly provided.

又、4つの2次回路の相電圧が等しくなる様、巻数比を
選択し、全てのリアタトル61U〜61W,62U〜6
2W,63U〜63W,64U〜64Wの値を等しくす
れば、トランスの1次巻線41に流れる相電流1uは、
第9図に示すごとく、サイリスタの点弧位相αを制御し
ても、ほ・゛正弧波に近づく。このIuをフーリエ展開
すれば24n±1次高調彼成分以外は、αの値にか・わ
らず常に零となる事がわかる。
Also, select the turns ratio so that the phase voltages of the four secondary circuits are equal, and
If the values of 2W, 63U~63W, and 64U~64W are made equal, the phase current 1u flowing through the primary winding 41 of the transformer is:
As shown in FIG. 9, even if the firing phase α of the thyristor is controlled, it approaches a nearly positive arc wave. If this Iu is subjected to Fourier expansion, it can be seen that all components other than the 24n±1st harmonic He component are always zero regardless of the value of α.

第10図は第8図の構成における1次側電流の基本波成
分に対するベクトル図を示したものである。
FIG. 10 shows a vector diagram for the fundamental wave component of the primary current in the configuration of FIG. 8.

さらに、上記第5,7,8図等実施例では、リアクトル
を別に設けているが、トランスのリーケージインダクタ
ンスを利用する事も可能である。
Further, in the embodiments shown in FIGS. 5, 7, and 8, a reactor is provided separately, but it is also possible to utilize the leakage inductance of a transformer.

以上のごとく、この発明はトランスに所定位相差π/6
又はπ/12を有する2次巻線を2又は4個設け、それ
ぞれにリアクトルと逆並列サイリスタスイツチの直列に
接続することにより、サイリスタの点弧位相αを制御し
ても、常にトランスの1次側には12n±1又は24n
±1次以外の高調波成分を含まずに無効電力を供給制御
出来る多重形電力制御装置を実現するもので、高調波除
去用フイルータを不要又は非常に小さくせしめ設備の小
形化とコスト低減を可能ならしめるものである。さらに
、本発明によれば、各2次回路のインピーダンス(リア
クトルの値)やサイリスタの容量を全て等しくすること
が出来る等、装置製作上多くのメリツトを有する。なお
、この発明の電力制御装置は、単に無効電力供給源のみ
ならず、無効電力の制御により、電圧安定化、フリツカ
防止、さらに電力系統の動的安定化対策用にも利用出来
る事は明白である。
As described above, the present invention provides a transformer with a predetermined phase difference of π/6.
Alternatively, by providing two or four secondary windings with π/12 and connecting each with a reactor and an anti-parallel thyristor switch in series, even if the firing phase α of the thyristor is controlled, the primary winding of the transformer is always 12n±1 or 24n on the side
This realizes a multiplexed power control device that can supply and control reactive power without including harmonic components other than the ±1st order, making it unnecessary or extremely small to use a harmonic removal filter, making it possible to downsize equipment and reduce costs. It is something that makes you familiar. Further, according to the present invention, there are many advantages in manufacturing the device, such as the impedance (value of the reactor) of each secondary circuit and the capacity of the thyristor can all be made equal. It is clear that the power control device of the present invention can be used not only as a reactive power supply source, but also for voltage stabilization, flicker prevention, and dynamic stabilization of power systems by controlling reactive power. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力制御装置の構成図、第2図は第1図
の動作説明の為の波形図、第3図はこの発明の1実施例
を示す構成図、第4図は第3図の動作説明の為の波形図
、第5図はこの発明の他の実施例を示す構成図、第6図
は第5図の動作説明の為の波形図、第7図、第8図はそ
れぞれこの発明のさらに他の実施例を示す構成図、第9
図、10図は第8図の動作を説明する為の波形図及びベ
クトル図である。 図に於て、10は系統の発電機、31は負荷、20は送
配電線、40は電力制御装置、41は絶縁トランスの1
次巻線、42〜49は絶縁トランスの2次巻線、51u
〜54wはサイリスタ、60u〜63wはリアクトル、
70は進相コンデンサ、81,82は高調波除去用フイ
ルタを構成するリアクトルとコンデンサで゛ある。
FIG. 1 is a configuration diagram of a conventional power control device, FIG. 2 is a waveform diagram for explaining the operation of FIG. 1, FIG. 3 is a configuration diagram showing one embodiment of the present invention, and FIG. 5 is a configuration diagram showing another embodiment of the present invention. FIG. 6 is a waveform diagram for explaining the operation of FIG. 5. FIGS. 7 and 8 are waveform diagrams for explaining the operation of FIG. Block diagrams showing still other embodiments of the present invention, No. 9
10 are waveform diagrams and vector diagrams for explaining the operation of FIG. 8. In the figure, 10 is the generator of the system, 31 is the load, 20 is the transmission and distribution line, 40 is the power control device, and 41 is 1 of the isolation transformer.
The next winding, 42-49 is the secondary winding of the isolation transformer, 51u
~54w is a thyristor, 60u~63w is a reactor,
70 is a phase advance capacitor, and 81 and 82 are reactors and capacitors that constitute a harmonic removal filter.

Claims (1)

【特許請求の範囲】 1 1次側が送配電線に並列接続され、2次側に逆並列
接続されたサイリスタとリアクトルとの直列回路を有す
るトランス、および該トランスの1次側に並列接続され
たコンデンサを有し、上記サイリスタの点弧位相を制御
し、上記送配電線への供給電力を制御する電力制御装置
に於て、上記トランスは所定の位相差を有する複数個の
2次巻線を有し、それぞれに上記サイリスタとリアクト
ルの直列回路を備えた事を特徴する電力制御装置。 2 トランスの2次巻線間の位相差を等しく選ぶと共に
それぞれのリアクトルの値を等しく選ぶ事を特徴とする
特許請求の範囲第1項に記載の電力制御装置。
[Claims] 1. A transformer having a series circuit of a thyristor and a reactor whose primary side is connected in parallel to a power transmission/distribution line and whose secondary side is connected in anti-parallel, and whose primary side is connected in parallel. In the power control device that includes a capacitor and controls the firing phase of the thyristor to control the power supplied to the power transmission and distribution line, the transformer has a plurality of secondary windings having a predetermined phase difference. 1. A power control device comprising a series circuit of the thyristor and the reactor, each of which has a series circuit of the thyristor and the reactor. 2. The power control device according to claim 1, wherein the phase difference between the secondary windings of the transformer is selected equally, and the values of the respective reactors are selected equally.
JP52147882A 1977-12-08 1977-12-08 power control device Expired JPS5951013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52147882A JPS5951013B2 (en) 1977-12-08 1977-12-08 power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52147882A JPS5951013B2 (en) 1977-12-08 1977-12-08 power control device

Publications (2)

Publication Number Publication Date
JPS5479443A JPS5479443A (en) 1979-06-25
JPS5951013B2 true JPS5951013B2 (en) 1984-12-12

Family

ID=15440335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52147882A Expired JPS5951013B2 (en) 1977-12-08 1977-12-08 power control device

Country Status (1)

Country Link
JP (1) JPS5951013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199434A (en) * 1981-05-30 1982-12-07 Tokyo Shibaura Electric Co Control system for stationary type reactive power generator
US4602206A (en) * 1983-06-28 1986-07-22 General Electric Company Capacitance control for a static var generator
JPH071470B2 (en) * 1983-09-09 1995-01-11 日新電機株式会社 Reactive power compensator
JPS6066628A (en) * 1983-09-19 1985-04-16 日新電機株式会社 Reactive power compensator

Also Published As

Publication number Publication date
JPS5479443A (en) 1979-06-25

Similar Documents

Publication Publication Date Title
US6737837B1 (en) Device and a method for control of power flow in a transmission line
CA2174295C (en) Voltage source type power converting apparatus
US4967334A (en) Inverter input/output filter system
US6594164B2 (en) PWM controlled power conversion device
JP3759613B2 (en) Transmission line power flow controller with unequal variations in transmission angle advance and delay directions
US5532575A (en) Multilevel converter with capacitor voltage balancing
US4680531A (en) Method for attenuating at least one electric harmonic of the system frequency in a multi-phase alternating-current system
EP0211881B1 (en) A.c. power supply systems
US4621198A (en) Method and system for interconnecting two synchronous or asynchronous electrical alternating three-phase networks by means of variable reactive impedances
Rastogi et al. Filtering of harmonic currents and damping of resonances in power systems with a hybrid-active filter
US5703767A (en) Apparatus and method to prevent saturation of interphase transformers
US5489838A (en) Method and apparatus for generating a synchronizing signal for a controlled series compensator
EP0621678B1 (en) Overvoltage protection circuit
JPH09121545A (en) Three-phase rectifier circuit
Karady Concept of a combined short circuit limiter and series compensator (power lines)
JPS5951013B2 (en) power control device
EP0864194B1 (en) Polyphase static var compensator arrangement
US4750098A (en) Unrestricted frequency changer with current source output
US4001670A (en) Static reactive power generating apparatus
US4510399A (en) Demodulator circuit for parallel AC power systems
Shayma'a et al. Influence of a proposed converter transformer on harmonic suppression for HVDC systems
US2419464A (en) Electronic power conversion apparatus
JPS62182815A (en) Thyristor control type voltage phase controlled auto-transformer
JPS60148342A (en) Stationary reactive power regulator
JPS61207137A (en) Harmonic filter for power