JP3321891B2 - Static reactive power adjustment device - Google Patents

Static reactive power adjustment device

Info

Publication number
JP3321891B2
JP3321891B2 JP08842093A JP8842093A JP3321891B2 JP 3321891 B2 JP3321891 B2 JP 3321891B2 JP 08842093 A JP08842093 A JP 08842093A JP 8842093 A JP8842093 A JP 8842093A JP 3321891 B2 JP3321891 B2 JP 3321891B2
Authority
JP
Japan
Prior art keywords
reactive power
reactor
adjusting device
thyristor
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08842093A
Other languages
Japanese (ja)
Other versions
JPH06301432A (en
Inventor
時秀 丹生
努 福井
誠 草野
幸雄 有川
利裕 見崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08842093A priority Critical patent/JP3321891B2/en
Publication of JPH06301432A publication Critical patent/JPH06301432A/en
Application granted granted Critical
Publication of JP3321891B2 publication Critical patent/JP3321891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、サイリスタなどのス
イッチング素子によりリアクトルに流れる電流を制御
し、無効電力量を連続的に可変制御することにより配電
線などの電力系統の無効電力量の調整や、電圧の調整に
利用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a reactive current in a power system such as a distribution line by controlling a current flowing in a reactor by a switching element such as a thyristor and continuously and variably controlling the reactive power. , For adjusting the voltage.

【0002】[0002]

【従来の技術】従来のリアクトル1、リアクトル2とコ
ンデンサを直列に接続しリアクトル1とリアクトル2の
接続点に逆並列接続されたサイリスタを接続した無効電
力調整装置の単線結線図を図3に示す。図3中、1はリ
アクトル、2はリアクトル、3はコンデンサ、4は逆並
列接続されたサイリスタである。このように構成された
従来の無効電力調整装置は、コンデンサ3の容量に対し
リアクトル1とリアクトル2の加算した商用周波数での
容量が20%以下に構成されていた。この無効電力調整
装置において前記サイリスタ4の点弧位相角を制御する
ことにより進み無効電力から遅れ無効電力まで制御する
ことが可能であった。図4は、無効電力調整装置のサイ
リスタ点弧角に対する制御無効電力を示す図である。こ
の図より明らかなように、サイリスタ4の点弧位相角に
対し無効電力が進み無効電力から遅れ無効電力まで連続
的に制御可能であることがわかる。図5は、従来の無効
電力調整装置の動作無効電力とサイリスタに流れる電流
の関係を示す図である。つまり進み無効電力から遅れ無
効電力まで制御するときの無効電力量に対するサイリス
タに流れる電流の関係を示している。この図より遅れ無
効電力量が増加するにつれてサイリスタに流れる電流が
増加していることがわかる。サイリスタは図3に示す無
効電力調整装置を構成するに当たり使用される高電圧に
適した1個で使用可能な電圧のサイリスタは見あたらな
い。そのため電圧の低い定格のサイリスタを使用する。
電圧が高電圧であるため複数個直列に接続して使用して
いた。図6は従来の無効電力調整装置のサイリスタ部分
の構成図である。つまり従来のサイリスタ並びに周辺回
路を説明するための図である。図6中サイリスタに並列
に接続されるおもに抵抗とコンデンサからなるスナバー
回路部分5もサイリスタの個数に相応した部品数が必要
であり、サイリスタを点弧するための点弧回路6もサイ
リスタの個数分必要になる。例えば、6.6KV配電線
に使用される無効電力調整装置の場合、配電線の雷サー
ジなどを勘案し4KV定格のサイリスタを10コ直列に
接続していた。またサイリスタの点弧回路とサイリスタ
の絶縁耐圧を考慮し点弧回路も複雑で高価であった。こ
のためサイリスタ部分の構成が大幅に複雑になり従来の
無効電力調整装置の組立作業でサイリスタ部分の組立て
に関する比重が非常に大きく、さらに価格的にもこの部
分の比重が大きく無効電力調整装置の大幅な価格増大に
つながっていた。
2. Description of the Related Art FIG. 3 shows a single-line diagram of a conventional reactive power adjusting device in which a reactor 1, a reactor 2 and a capacitor are connected in series, and a thyristor connected in anti-parallel to a connection point between the reactor 1 and the reactor 2 is connected. . In FIG. 3, 1 is a reactor, 2 is a reactor, 3 is a capacitor, and 4 is a thyristor connected in anti-parallel. In the conventional reactive power adjusting device configured as described above, the capacity at the commercial frequency obtained by adding the reactor 1 and the reactor 2 to the capacity of the capacitor 3 is set to 20% or less. By controlling the firing phase angle of the thyristor 4 in this reactive power adjusting device, it was possible to control from the leading reactive power to the lag reactive power. FIG. 4 is a diagram illustrating the control reactive power with respect to the thyristor firing angle of the reactive power adjusting device. As is apparent from this figure, the reactive power advances with respect to the firing phase angle of the thyristor 4 and can be continuously controlled from reactive power to delayed reactive power. FIG. 5 is a diagram showing the relationship between the operating reactive power of the conventional reactive power adjusting device and the current flowing through the thyristor. That is, it shows the relationship between the amount of reactive power and the current flowing through the thyristor when controlling from the leading reactive power to the lag reactive power. From this figure, it can be seen that the current flowing through the thyristor increases as the delayed reactive power increases. As for the thyristor, there is no thyristor of a single usable voltage suitable for the high voltage used in forming the reactive power adjusting device shown in FIG. Therefore, a thyristor with a low voltage rating is used.
Since the voltage is high, a plurality of them are connected in series and used. FIG. 6 is a configuration diagram of a thyristor portion of a conventional reactive power adjusting device. That is, it is a diagram for explaining a conventional thyristor and a peripheral circuit. In FIG. 6, the snubber circuit portion 5 mainly composed of a resistor and a capacitor connected in parallel to the thyristor also requires a number of parts corresponding to the number of thyristors, and the ignition circuit 6 for igniting the thyristor also has the number of thyristors. Will be needed. For example, in the case of a reactive power adjusting device used for a 6.6 KV distribution line, 10 thyristors rated at 4 KV are connected in series in consideration of a lightning surge on the distribution line. Further, the ignition circuit of the thyristor and the ignition circuit are complicated and expensive in consideration of the dielectric strength of the thyristor. For this reason, the configuration of the thyristor part becomes significantly complicated, and the specific gravity relating to the assembly of the thyristor part in the assembly work of the conventional reactive power adjusting device is extremely large. Price increase.

【0003】また、図7は動作無効電力と高調波電流の
関係を示す図であり、この図より遅れ無効電力が増加す
るにつれて高調波電流も増加している。高調波電流も可
能な限り低減する必要があり、この点から遅れ無効電力
の制御範囲を狭めて使用していた。また、高調波電流を
より低減するために従来の無効電力調整装置に並列に高
調波フィルターなどの高調波を吸収する装置を接続して
いた。この装置の接続により価格が大幅に高くなること
もあった。
FIG. 7 is a diagram showing the relationship between the reactive power and the harmonic current. As shown in FIG. 7, the harmonic current increases as the delay reactive power increases. It is necessary to reduce the harmonic current as much as possible, and from this point, the control range of the delay reactive power has been narrowed. Further, in order to further reduce the harmonic current, a device for absorbing harmonics such as a harmonic filter is connected in parallel with the conventional reactive power adjusting device. The connection of this device could significantly increase the price.

【0004】これらのことは、図3に示す無効電力調整
装置の使用できる範囲に限界があることを示している。
[0004] These facts show that there is a limit to the usable range of the reactive power adjusting device shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】従来の無効電力調整装
置は、高電圧で使用するためサイリスタ部分が複雑な構
成となり組立作業の工数が大であり、また価格も高価で
あった。また高調波電流は図7に示すようになり、従っ
て工業的に実用化を実施する場合に遅れ無効電力量の制
御範囲は高調波電流と、用途拡大はサイリスタ部分の両
者が弊害となっていた。
Since the conventional reactive power adjusting device is used at a high voltage, the thyristor portion has a complicated structure, so that the number of steps of the assembling work is large and the price is expensive. In addition, the harmonic current is as shown in FIG. 7. Therefore, when industrially practically used, both the control range of the delay reactive power amount is the harmonic current, and the thyristor portion is an adverse effect in expanding the application. .

【0006】この発明は上記のような従来の無効電力調
整装置の持つ問題点を解決するためになされたもので、
進み無効電力の制御範囲に対し遅れ無効電力制御範囲
を、高調波電流を並列に高調波フィルターを設置する必
要のないレベルまで低減した上で、同一レベルまで制御
可能とし、また組立作業工数も部品点数の削減により大
幅に低減し、かつ価格的にも大幅に低減することにより
無効電力調整装置の実用性の向上をはかることを目的と
している。
The present invention has been made to solve the above-mentioned problems of the conventional reactive power adjusting device.
The control range of the lag reactive power has been reduced to the level where it is not necessary to install a harmonic filter in parallel with the control range of the lead reactive power. It is intended to improve the practicality of the reactive power adjusting device by greatly reducing the number of points and greatly reducing the price.

【0007】[0007]

【課題を解決するための手段】この発明に係る無効電力
調整装置は配電線などの高電圧の電力系統にリアクタン
ス分を含む高電圧を低電圧に低減しその低電圧になった
交流変圧器の2次側に第1のリアクトルとコンデンサ
を直列に接続し、交流変圧器と、交流変圧器の2次側に
接続された第1のリアクトルとの接続点に逆並列接続さ
れたサイリスタを接続し、交流変圧器に含まれるリアク
タンス分を第2のリアクトルとして無効電力調整回路に
組み込ませたこの装置において、そのコンデンサ容量に
対し、交流変圧器のリアクタンス分と交流変圧器の2次
側に接続された第1のリアクトルのリアクタンス分とを
加算した商用周波数での容量が30%以上としたことで
サイリスタ電流を小さくし、かつ高調波電流を抑制し
ものである。
SUMMARY OF THE INVENTION A reactive power regulator according to the present invention reduces a high voltage including a reactance component to a low voltage in a high voltage power system such as a distribution line, and converts the low voltage into an AC transformer. the secondary side is connected to <br/> the first reactor and the capacitor in series, an AC transformer, the secondary side of the AC transformer
A thyristor connected in anti-parallel is connected to a connection point with the connected first reactor, and a reactor included in the AC transformer is connected.
To the reactive power adjustment circuit as the second reactor
In the apparatus with built-in for that capacitance, the AC transformer reactance to the AC transformer in the first commercial frequency and reactance component was <br/> sum of the reactor that is connected to the secondary side of the by capacity was 30% or more
The thyristor current is reduced and the harmonic current is suppressed .

【0008】[0008]

【作用】交流変圧器とリアクトルとコンデンサを直列に
接続し、コンデンサの容量に対し、交流変圧器のリアク
タンスとリアクトルのリアクタンスの容量和が30%と
し、無効電力調整装置の無効電力制御範囲が大幅に拡大
した。
[Action] An AC transformer, a reactor, and a capacitor are connected in series, and the total sum of the reactance of the AC transformer and the reactance of the reactor is 30% of the capacitance of the capacitor. The reactive power control range of the reactive power adjusting device is large. Expanded to.

【0009】[0009]

【実施例】図1は、本発明の無効電力調整装置の一実施
例の構成を説明するための図である。11はリアクタン
ス分を含む交流変圧器、12は交流変圧器11の2次側
に接続されたリアクトル2、13はコンデンサ、14は
逆並列接続されたサイリスタである。例えば、交流変圧
器の1次側が6.6KVの配電線に接続され2次側の電
圧を660Vとした場合、サイリスタの定格電圧は4K
Vのものを採用すればよくサイリスタの部分の構成は図
2に示すごとく逆並列接続された1組のサイリスタ14
と2個の点弧回路16と1個のスナバー回路15でよ
く、図6に比較すると非常に簡単になり部品点数が削減
され組立作業が簡単になる。一方サイリスタに流れる電
流は6.6KVを660Vに電圧を下げることにより増
大するが価格的には6.6KVで10個のサイリスタを
使用するより660Vで電流容量が増大した定格のサイ
リスタ1個の方が一般的には価格が安くなるとともに部
品点数の削減により価格も大幅に低減される。また点弧
回路とサイリスタ間の電圧も従来に比較して大幅に低い
ため絶縁設計上低価格構成が可能になる。
FIG. 1 is a diagram for explaining the configuration of an embodiment of a reactive power adjusting device according to the present invention. 11 is an AC transformer including a reactance component, 12 is a reactor 2 connected to the secondary side of the AC transformer 11, 13 is a capacitor, and 14 is a thyristor connected in anti-parallel. For example, if the primary side of an AC transformer is connected to a 6.6KV distribution line and the secondary side voltage is 660V, the rated voltage of the thyristor is 4K.
V may be employed, and the configuration of the thyristor portion is a set of thyristors 14 connected in anti-parallel as shown in FIG.
And two firing circuits 16 and one snubber circuit 15, which are very simple as compared with FIG. 6, the number of parts is reduced, and the assembling work is simplified. On the other hand, the current flowing through the thyristor increases by lowering the voltage from 6.6 KV to 660 V. However, in terms of price, one thyristor rated at 660 V and having an increased current capacity is used instead of using ten thyristors. However, in general, the price is reduced, and the price is greatly reduced by reducing the number of components. Also, the voltage between the ignition circuit and the thyristor is significantly lower than in the past, so that a low-cost configuration is possible in terms of insulation design.

【0010】図8は、従来の無効電力調整装置と本発明
の無効電力調整装置のサイリスタに流れる電流の比較説
明図である。つまり従来の無効電力調整装置を660V
で使用する場合と本発明の無効電力調整装置の2次側の
電圧を660Vにし同一電圧での比較を示す図である。
従来の場合には横軸はコンデンサ容量に対するリアクト
ル1とリアクトル2を加算した商用周波数での容量比
FIG. 8 is a diagram illustrating the comparison of the currents flowing through the thyristors of the conventional reactive power adjusting device and the reactive power adjusting device of the present invention. That is, the conventional reactive power adjusting device is 660 V
FIG. 7 is a diagram showing a comparison between the case where the power supply is used at the same voltage and the case where the secondary voltage of the reactive power adjusting device of the present invention is set to 660V.
In the conventional case, the horizontal axis is the capacitance ratio at the commercial frequency obtained by adding the reactor 1 and the reactor 2 to the capacitor capacity

【0011】[0011]

【数1】 (Equation 1)

【0012】を示し本発明の場合、横軸はコンデンサ容
量に対する変圧器のリアクタンス分と変圧器2次側に接
続されたリアクトル12のリアクタンス分の加算した商
用周波数での容量比を示している。縦軸はサイリスタ電
流を示している。この図に示されたデータはコンデンサ
容量に対するリアクトル1または交流変圧器のリアクタ
ンス分に相当する容量とリアクトル2またはリアクトル
12を加算した商用周波数での容量に対し遅れ無効電力
100%動作時及び遅れ無効電力50%動作時の例のデ
ータである。図中横軸に平行した直線(a)と遅れ無効
電力100%動作時の曲線との交点Aは従来の無効電力
調整装置での動作時のサイリスタ電流値を示している。
また横軸に平行した直線(b)と遅れ無効電力50%及
び100%の動作時曲線との交点をそれぞれB、Cで示
しているが、Bは従来の無効電力調整装置の動作時のサ
イリスタ電流を示しCは本発明による無効電力調整装置
の動作時のサイリスタ電流を示す。
In the case of the present invention, the horizontal axis represents the capacitance ratio at the commercial frequency obtained by adding the reactance of the transformer to the capacitance of the capacitor and the reactance of the reactor 12 connected to the secondary side of the transformer. The vertical axis indicates the thyristor current. The data shown in the figure is based on the capacitance corresponding to the reactance of the reactor 1 or the AC transformer with respect to the capacitance of the capacitor and the capacitance at the commercial frequency obtained by adding the reactor 2 or the reactor 12. It is data of an example at the time of 50% power operation. The intersection A between the straight line (a) parallel to the horizontal axis and the curve at the time of 100% delayed reactive power operation indicates the thyristor current value during operation of the conventional reactive power adjusting device.
The intersections of the straight line (b) parallel to the horizontal axis and the operating curves of the delayed reactive power of 50% and 100% are indicated by B and C, respectively, where B is the thyristor during the operation of the conventional reactive power adjusting device. C indicates the thyristor current during the operation of the reactive power adjusting device according to the present invention.

【0013】この図より従来の無効電力調整装置に対し
本発明による無効電力調整装置は同一無効電力で動作す
るときのサイリスタに流れる電流が大幅に低減すること
がわかり、さらに従来の無効電力調整装置で遅れ無効電
力50%動作時のサイリスタ電流と本発明による無効電
力調整装置で遅れ無効電力100%動作時のサイリスタ
電流がほぼ同一レベルにある。このことは従来の無効電
力調整装置で遅れ無効電力制御範囲が50%まで制御可
能であったサイリスタで本発明の無効電力調整装置では
遅れ無効電力調整範囲が100%まで可能となり工業的
に実用の範囲が大幅に拡大した。
From this figure, it can be seen that the reactive power adjusting device according to the present invention greatly reduces the current flowing through the thyristor when operating at the same reactive power, as compared with the conventional reactive power adjusting device. Thus, the thyristor current at the time of 50% delayed reactive power operation and the thyristor current at the time of 100% delayed reactive power operation of the reactive power adjusting device according to the present invention are substantially at the same level. This is a thyristor that can control the delay reactive power control range up to 50% with the conventional reactive power adjustment device, and the delay reactive power adjustment range can be up to 100% with the reactive power adjustment device of the present invention, so that it is industrially practical. The range has been greatly expanded.

【0014】図9は、従来の無効電力調整装置と本発明
の無効電力調整装置の動作無効電力に対する高調波電流
を比較した図を示す。本図中曲線(a)は従来の高調波
電流を示し、また(b)は本発明による無効電力調整値
の高調波電流を示している。本図より本発明による高調
波電流は従来装置に比較し大幅に低減していることがわ
かる。このことにより本発明による無効電力調整装置に
並列に高調波フィルターを設置することなく電力系統に
設置可能で実用の価値も大幅に向上した。
FIG. 9 is a diagram showing a comparison of harmonic currents with respect to reactive reactive power of the conventional reactive power adjusting device and the reactive power adjusting device of the present invention. In the figure, a curve (a) shows a conventional harmonic current, and (b) shows a harmonic current of the reactive power adjustment value according to the present invention. From this figure, it can be seen that the harmonic current according to the present invention is significantly reduced as compared with the conventional device. As a result, the reactive power adjusting device according to the present invention can be installed in a power system without installing a harmonic filter in parallel, and the practical value is greatly improved.

【0015】図10は、従来の無効電力調整装置のリア
クトル2と本発明による無効電力調整装置のリアクトル
12の動作無効電力に対する実効容量を比較した図であ
る。実効容量とはリアクトル2またはリアクトル12に
流れる電流は商用周波数成分の電流に加え、多くの高調
波電流も流れている。その高調波電流も含めた容量であ
る。本図中曲線(a)は従来のリアクトル2、曲線
(b)は本発明の無効電力調整装置のリアクトル12の
実効容量を示している。本図より本発明によるリアクト
ル12の実効容量は従来装置に比較し大幅に低減してい
ることを示している。このことは小型、軽量、低価格を
示すとともにリアクトル12に流れる電流に含まれる高
調波電流による騒音の低減につながる。
FIG. 10 is a diagram comparing the effective capacity of the reactor 2 of the conventional reactive power adjusting device with respect to the operating reactive power of the reactor 12 of the reactive power adjusting device according to the present invention. The effective capacity means that the current flowing through the reactor 2 or the reactor 12 includes many harmonic currents in addition to the current of the commercial frequency component. This is the capacity including the harmonic current. In the figure, the curve (a) shows the effective capacity of the conventional reactor 2 and the curve (b) shows the effective capacity of the reactor 12 of the reactive power adjusting device of the present invention. This figure shows that the effective capacity of the reactor 12 according to the present invention is significantly reduced as compared with the conventional device. This leads to a reduction in noise due to harmonic current contained in the current flowing through the reactor 12 while exhibiting a small size, light weight and low cost.

【0016】上記に記載したように本発明による無効電
力調整装置は本装置に使用するサイリスタの同一電流容
量で従来の無効電力調整装置に比較し遅れ無効電力制御
範囲が大幅に拡大し、高調波電流も大幅に低減し、その
上本装置に使用するリアクトル2の実効容量も低減し、
リアクトル2の小型、軽量、低価格が可能となり騒音も
低減するなどの効果により工業的な使用価値が増大す
る。
As described above, the reactive power adjusting device according to the present invention greatly expands the delay reactive power control range as compared with the conventional reactive power adjusting device at the same current capacity of the thyristor used in the present device, The current is also greatly reduced, and the effective capacity of the reactor 2 used in this device is also reduced,
The industrial value of use of the reactor 2 is increased due to effects such as reduction in size, weight, and cost of the reactor 2 and reduction in noise.

【0017】[0017]

【発明の効果】本発明によれば、高電圧を低電圧にする
リアクタンス分を含む交流変圧器と、交流変圧器の2次
側に直列に接続されたリアクトル及びサンデンサと、
流変圧器とリアクトルの接続点に逆並列接続されたサイ
リスタを接続して構成し、コンデンサの容量に対し、交
流変圧器に含まれるリアクタンス分とリアクトルのリア
クタンス分を加算した商用周波数の容量30%以
であるため、無効電力調整装置を構成するサイリスタ
部分の構成の部品点数が削減され、組立作業が削減され
るとともに材料費が低減する。また、サイリスタに流れ
る電流も低減される。さらに高調波電流が低減し配電線
などに与える影響が軽減される。さらに、従来のリアク
トル2に対し、本発明のリアクトル12の実効容量が低
減するなどの効果があり、工業的に実用性が増大する
また本発明は特別高圧の電力系統にも同様に適用可能で
ある。
According to the present invention, the high voltage to a low voltage
An AC transformer including a reactance component, a reactor and Sandensa connected in series to the secondary side of the AC transformer, exchange
Connect the anti-parallel connected thyristors to the junction of the flow transformers and reactors configured, with respect to the capacity of the capacitor, the commercial frequency and reactance component by adding the reactance and re Akutoru included in AC transformer Is 30% or more , the number of components in the thyristor portion constituting the reactive power adjusting device is reduced, so that assembling work is reduced and material costs are reduced. Further, the current flowing through the thyristor is also reduced. Further, the harmonic current is reduced, and the influence on distribution lines and the like is reduced. Further, with respect to conventional reactor 2, there are effects such as effective capacity of the reactor 12 of the present invention is reduced, industrial utility is increased.
Further, the present invention is similarly applicable to an extra high voltage power system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無効電力調整装置の一実施例の構成を
示す図
FIG. 1 is a diagram showing a configuration of an embodiment of a reactive power adjusting device according to the present invention.

【図2】本発明のサイリスタ部分の構成を説明する図FIG. 2 is a diagram illustrating a configuration of a thyristor portion of the present invention.

【図3】従来の無効電力調整装置の単線結線図FIG. 3 is a single-line diagram of a conventional reactive power adjusting device.

【図4】無効電力調整装置のサイリスタ点弧角に対する
制御無効電力を示す図
FIG. 4 is a diagram showing control reactive power with respect to the thyristor firing angle of the reactive power adjusting device.

【図5】従来の無効電力調整装置の動作無効電力とサイ
リスタに流れる電流の関係を示す図
FIG. 5 is a diagram showing the relationship between the operating reactive power of the conventional reactive power adjusting device and the current flowing through the thyristor;

【図6】従来の無効電力調整装置のサイリスタ部分の構
成を示す図
FIG. 6 is a diagram showing a configuration of a thyristor portion of a conventional reactive power adjusting device.

【図7】動作無効電力と高調波電流の関係を示す図FIG. 7 is a diagram showing a relationship between reactive reactive power and harmonic current.

【図8】従来の無効電力調整装置と本発明の無効電力調
整装置のサイリスタに流れる電流の比較説明図
FIG. 8 is a diagram illustrating a comparison between currents flowing through thyristors of a conventional reactive power adjusting device and a reactive power adjusting device of the present invention.

【図9】従来の無効電力調整装置と本発明の無効電力調
整装置の動作無効電力に対する高調波電流を比較した本
発明の装置の効果説明図
FIG. 9 is an explanatory diagram of the effect of the device of the present invention comparing the harmonic current with respect to the operating reactive power of the conventional reactive power adjusting device and the reactive power adjusting device of the present invention.

【図10】従来の無効電力調整装置のリアクトル2と本
発明の無効電力調整装置のリアクトル12の動作無効電
力に対する実効容量を比較した図
FIG. 10 is a diagram comparing the effective capacity of the reactor 2 of the conventional reactive power adjustment device with respect to the operating reactive power of the reactor 12 of the present invention.

【符号の説明】[Explanation of symbols]

1 リアクトル1 11 交流変圧器 12 リアクトル2 13 コンデンサ 14 逆並列接続サイリスタ 15 スナバー回路 16 サイリスタ点弧回路 DESCRIPTION OF SYMBOLS 1 Reactor 1 11 AC transformer 12 Reactor 2 13 Capacitor 14 Antiparallel connection thyristor 15 Snubber circuit 16 Thyristor ignition circuit

フロントページの続き (72)発明者 有川 幸雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 見崎 利裕 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−113521(JP,A) 実開 平2−50725(JP,U) (58)調査した分野(Int.Cl.7,DB名) G05F 1/70 H02J 3/18 Continued on the front page (72) Inventor Yukio Arikawa 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. References JP-A-3-113521 (JP, A) JP-A-2-50725 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G05F 1/70 H02J 3/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リアクタンス分を含む高電圧を低電圧に
逓減する交流変圧器と、その交流変圧器の2次側に直列
に接続された第1のリアクトル及びコンデンサと、前記
交流変圧器と前記第1のリアクトルとの接続点に逆並列
接続されたサイリスタを接続して構成し、前記交流変圧
器に含まれるリアクタンス分を第2のリアクトルとして
無効電力調整回路に組み込ませたことを特徴とする無効
電力調整装置。
And 1. A AC transformer for decreasing the high voltage including a reactance component to the low voltage, a first reactor and a capacitor connected in series to the secondary side of the AC transformer, the
Connect the anti-parallel connected thyristors in the connection point between the the AC transformer first reactor configured, the AC transformer
Reactance contained in the vessel as the second reactor
A reactive power adjusting device incorporated in a reactive power adjusting circuit .
【請求項2】 コンデンサの容量に対し、前記交流変圧
器に含まれるリアクタンス分と交流変圧器の2次側に接
続された第1のリアクトルのリアクタンス分を加算し
た商用周波数の容量が30%以上としたことでサイリス
タ電流を小さくし、かつ高調波電流を抑制したことを特
徴とする特許請求範囲第1項記載の無効電力調整装置。
To the capacity of 2. A capacitor, the capacity of the commercial frequency of the reactance component by adding the first reactor which is connected to the secondary side of the reactance to the AC transformer included in the AC transformer 30% Sairis
2. The reactive power adjusting device according to claim 1 , wherein the control current is reduced and the harmonic current is suppressed .
JP08842093A 1993-04-15 1993-04-15 Static reactive power adjustment device Expired - Fee Related JP3321891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08842093A JP3321891B2 (en) 1993-04-15 1993-04-15 Static reactive power adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08842093A JP3321891B2 (en) 1993-04-15 1993-04-15 Static reactive power adjustment device

Publications (2)

Publication Number Publication Date
JPH06301432A JPH06301432A (en) 1994-10-28
JP3321891B2 true JP3321891B2 (en) 2002-09-09

Family

ID=13942297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08842093A Expired - Fee Related JP3321891B2 (en) 1993-04-15 1993-04-15 Static reactive power adjustment device

Country Status (1)

Country Link
JP (1) JP3321891B2 (en)

Also Published As

Publication number Publication date
JPH06301432A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
Jintakosonwit et al. Implementation and performance of automatic gain adjustment in a shunt-active filter for harmonic damping throughout a power distribution system
Walker Force-commutated reactive-power compensator
GB2457709A (en) Reactive power compensation circuit
US7759910B2 (en) System for transmission of electric power
JP2795183B2 (en) Static var compensator
Dongyu et al. Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype
US5907234A (en) Thyristor-switched capacitor bank
JP3321891B2 (en) Static reactive power adjustment device
Sen et al. A low-cost microcontroller-based prototype design for power factor improvement in transmission line using thyristor switched capacitor scheme
JP3319010B2 (en) Static reactive power adjustment device
Chen et al. Analysis and comparison of passive & active harmonic suppression filters in distribution systems
JP3319216B2 (en) Constant voltage harmonic absorption power supply
Jacobson et al. Comparison of thyristor switched capacitor and voltage source GTO inverter type compensators for single phase feeders
JPH07200083A (en) Static type reactive power compensator
JP2763618B2 (en) Static type reactive power regulator
JP3003552B2 (en) Self-excited reactive power compensator
CA1085916A (en) Controlled reactance regulator circuit
Bhavaraju Analysis and design of some new active power filters for power quality enhancement
JPH0869333A (en) Stationary reactive power compensation device
JPS6126433A (en) System stabilizer
JP2505025Y2 (en) Harmonic absorber
JP2535816B2 (en) Reactive power compensator
Al-Dhalaan A comparison of alternative HVDC converter schemes
Szczotka Kompenzace harmonických proudů v průmyslových aplikacích
JPH05143183A (en) Thyristor overvoltage preventing circuit for thyristor control reactor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees