JPS60148139A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60148139A
JPS60148139A JP339784A JP339784A JPS60148139A JP S60148139 A JPS60148139 A JP S60148139A JP 339784 A JP339784 A JP 339784A JP 339784 A JP339784 A JP 339784A JP S60148139 A JPS60148139 A JP S60148139A
Authority
JP
Japan
Prior art keywords
etching
film
insulating film
substrate
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP339784A
Other languages
Japanese (ja)
Inventor
Ryozo Nakayama
中山 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP339784A priority Critical patent/JPS60148139A/en
Publication of JPS60148139A publication Critical patent/JPS60148139A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To enable to easily end an etching, which is performed on the protruded parts of an insulating film deposited on the surface of the Si substrate of a semiconductor device, by a method wherein impurities are introduced in the protruded parts only of the insulating film from the surface and only the rate of the etching, which is performed on the protruded parts, is quickened. CONSTITUTION:First, etching-resistant masks 23 are formed in a semiconductor substrate 21, and after that, an etching is selectively performed on the field region and a recessed part is formed. A channel stopper layer 24 of a field is formed by performing an ion-implantation using the masks 23 respectively as a mask. After then, an insulating film 25 is deposited on the whole surface of the substrate 21. Moreover, a fluid substance film 26 is formed on the insulating film 25 in such a way that the surface of the film 26 becomes nearly flat. Impurities are introduced in the protruded parts only of the insulating film 25 using the fluid substance film 26 as a mask. After that, the protruded parts 27 of the insulating film 25 are selectively removed using an etching method, by which an etching rate at a time when impurities are introduced becomes faster than that at a time when impurities are not introduced.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置の製造方法に係シ、特に微細化が
進んだ集積回路の素子分離技術の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor device, and particularly to improvements in element isolation technology for integrated circuits that are becoming increasingly finer.

〔従来技術とその問題点〕[Prior art and its problems]

半導体集積回路の高集積化、素子の微細化が進むにつれ
て、素子分離も微細化の必要が出て来た。
As semiconductor integrated circuits have become more highly integrated and elements have become smaller, it has become necessary to miniaturize element isolation.

従来の選択酸化法(LOCO8)ではバーズビークが発
生するため2μm以下の素子分離は困難となっている。
In the conventional selective oxidation method (LOCO8), bird's beaks occur, making it difficult to isolate elements of 2 μm or less.

このLOGO8に代わシ、基板の素子分離領域をエツチ
ングして凹部を形成し、との凹部に表面が平坦に寿るよ
うに絶縁膜を埋め込む素子分離法(BOX)が提案され
ている。その−例の基板工程を第1図を用いて説明する
Instead of LOGO8, an element isolation method (BOX) has been proposed in which the element isolation region of the substrate is etched to form a recess, and an insulating film is buried in the recess so that the surface remains flat. An example of the substrate process will be described with reference to FIG.

まずSt基板(1)に選択的に凹部を形成し、その後全
面にCVD法によりS i Ot (21を堆積し、そ
の表面にスピンコード法によりtレジスト膜(3)で平
坦化する(a図)この、後レジスト膜(3)と8+02
膜(2)を両者に対してエツチングレートが等しい条件
に設定された反応性イオンエツチング法(RIE)によ
り基板表面が露出するまで、全面エツチングする(b図
)この後周知の工程で所望の素子を形成する。
First, recesses are selectively formed in the St substrate (1), and then SiOt (21) is deposited on the entire surface by CVD, and the surface is flattened with a T resist film (3) by spin code (Fig. a). ) This post-resist film (3) and 8+02
The entire surface of the film (2) is etched by reactive ion etching (RIE) with the etching rate set to be the same for both until the substrate surface is exposed (Figure b). After this, the desired device is etched using a well-known process. form.

しかしながらこの方法では、絶縁膜(2)を表面からエ
ツチングして、84基板凸部表面が露出した時エツチン
グを終了する訳であるが、この制御が難かしい。すなわ
ち、絶縁膜(2)の膜厚のバラツキ、!:、RIEのバ
ラツギがあるため、必ずオーバーエツチングを行なう必
要があり、このオーバーエツチングのためにSi基板凸
部表面よりも絶縁膜表面の高さが低くなってしまう。(
0図参照)このために、完全な平坦化は不可能であり、
製造工程のマージンも少ない。またSI基板凸部表面付
近での電界集中によシ、log Id−Vg特性のリー
ク電流が増加する等のトランジスタ特性の劣化も引き起
こしてし捷う欠点がある。
However, in this method, the insulating film (2) is etched from the surface and the etching is terminated when the surface of the convex portion of the 84 substrate is exposed, but this control is difficult. In other words, variations in the thickness of the insulating film (2)! : Due to variations in RIE, over-etching must be performed, and this over-etching causes the height of the insulating film surface to be lower than the surface of the convex portion of the Si substrate. (
(See Figure 0) For this reason, complete flattening is impossible,
The margins in the manufacturing process are also small. Further, there is a drawback that electric field concentration near the surface of the convex portion of the SI substrate causes deterioration of transistor characteristics such as an increase in leakage current with log Id-Vg characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、絶縁膜の凸部のみを表面から不純物を
導入する事により、エツチング速度を速くし、これによ
υSt基板凸部表面が露出した時にエツチング速度が遅
くなる様にする事により、Si 基板凸部表面で絶縁膜
のエツチングが制御良く行なえる様にするものである。
The purpose of the present invention is to increase the etching rate by introducing impurities into only the convex portions of the insulating film from the surface, and thereby slow down the etching rate when the convex portions of the υSt substrate surface are exposed. , the etching of the insulating film on the surface of the convex portion of the Si substrate can be performed with good control.

〔発明の概要〕[Summary of the invention]

本発明はまず、牛導体基板に耐エツチングマスクを形成
した後、フィールド領域を選択的にエツチングして凹部
を形成し、次いて耐エツチングマスクをマスクにイオン
注入によりフィールドのチャネルストッパ一層を形成し
、次いて基板全面に凹部に絶縁膜を堆積する。そしてこ
の絶縁膜上に表面がほぼ平坦になるように流動性物質膜
を形成する。そして、この流動性物質膜をマスクにして
絶縁膜の凸部のみに不純物を導入する。その後。
In the present invention, first, an etching-resistant mask is formed on a conductor substrate, and then the field region is selectively etched to form a recess, and then a channel stopper layer for the field is formed by ion implantation using the etching-resistant mask as a mask. Then, an insulating film is deposited in the recesses over the entire surface of the substrate. A fluid material film is then formed on this insulating film so that the surface is substantially flat. Then, using this fluid material film as a mask, impurities are introduced only into the convex portions of the insulating film. after that.

流動性物質膜をマスクに絶縁膜の凸部のみを不純物を導
入した方が導入していないものより、エツチング速度が
速くなるエツチング方法によりエツチングする。こうし
て平坦に埋め込まれた絶縁膜で分離された素子形成領域
に所望の素子を形成する。
Using the fluid material film as a mask, only the convex portions of the insulating film are etched using an etching method in which the etching rate is faster when impurities are introduced than when no impurities are introduced. In this manner, desired elements are formed in the element forming regions separated by the flatly buried insulating film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、絶縁膜をエツチングする時のエツチン
グの制御がし易くなυ、Si基板凸部表面で容易に絶縁
膜のエツチングを終了出来る様になる。すなわち、同一
の絶縁膜に不純物を導入した部分としない部分を制御良
く、形成する事により、そのエツチング速度を変えるだ
けで、絶縁膜を四部を埋め込むエツチングのマージンを
広ける事が出来る。
According to the present invention, it becomes easy to control the etching when etching the insulating film, and the etching of the insulating film can be easily completed on the surface of the convex portion of the Si substrate. That is, by forming in the same insulating film portions with impurities introduced and portions without impurities in a well-controlled manner, it is possible to widen the etching margin for burying all four parts of the insulating film by simply changing the etching rate.

また、エツチングのバラツキ、絶縁膜のバラツキ等のバ
ラツキを絶縁膜のエツチング差を設けた事によシ、オー
バーエツチングが行なえるためにこのオーバーエツチン
グ時間で吸収出来るので、ウェハー内、ロット間の埋め
込みのバラツキが無くなり、Tr特性のバラツキ等の防
止も出来、高歩留シ、高信頼性が得られる。
In addition, variations such as variations in etching and variations in insulating films can be absorbed by over-etching by providing a difference in etching of the insulating film, and can be absorbed within this over-etching time. This eliminates variations in Tr properties, prevents variations in Tr properties, and provides high yield and high reliability.

また、流動性物質膜と絶縁膜のエツチング条件は、広い
範囲に取れる、つまりマージンが広がる。
Further, the etching conditions for the fluid material film and the insulating film can be varied over a wide range, that is, the margin is widened.

例えば、流動性物質膜と絶縁膜は別々にエツチングして
も良いし、同時にエツチングしても良い。
For example, the fluid material film and the insulating film may be etched separately or simultaneously.

また絶縁膜のエツチングに高価で、ダメージ層の形成が
ある反応性イオンエツチング(RIE)を必しも必要と
しないので、低価格のプロセスで形成出来る利点がある
Further, since reactive ion etching (RIE), which is expensive and causes the formation of a damaged layer, is not necessarily required for etching the insulating film, there is an advantage that it can be formed by a low-cost process.

このように完全にバラツキの少ない平坦化が容易に出来
、絶縁膜を再現性良く埋め込める方法が得られる。
In this way, it is possible to easily achieve complete planarization with little variation and to embed the insulating film with good reproducibility.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第2図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

まず例えば面方位(100)5〜1oΩ−一のpび1基
板21を用意してこの上に耐エツチングマスク兼イオン
注入のマスクと々る例えば、熱酸化膜C’6法を用いて
選択的に形成する。
First, prepare a p-1 substrate 21 with a plane orientation (100) of 5 to 10Ω-1, and then apply an etching-resistant mask and an ion implantation mask on the substrate. For example, use a thermal oxide film C'6 method to selectively etch a to form.

その後8iN膜(ハ)をマスクにSi 基板(2υを例
えばKOHを用いて0.6μm程度e t’gする。そ
の後例えばSi 基板表面L21)に熱酸化膜(300
^程度、図示せず)を形成した後、 SiNをマスクに
フィールドのチャネルストッパ一層Q(イ)を1のイオ
ン注入法により形成する。熱酸化とチャネルストッパー
形成の順序を逆にしても良い。
After that, using the 8iN film (c) as a mask, the Si substrate (2υ is et'g about 0.6 μm using KOH, for example. After that, for example, the Si substrate surface L21) is covered with a thermal oxide film (300
After forming a field channel stopper layer Q (not shown) using SiN as a mask, a field channel stopper layer Q (a) is formed by the ion implantation method in step 1. The order of thermal oxidation and channel stopper formation may be reversed.

げ07・!1llilrKf扶巳圓貼1”す8″0・膜
(ハ)を約0.7μm形成する。さらに全面K例えば、
フォトレジスト(ハ)を形成する事により、Si基板表
面を平坦にする。その後フオトレジス)[をマスクに、
イオン注入法により、レジスト層を通してフィールド部
のSi0g部に入らす1をSi基板凸部のCVD−8i
n、膜のみにイオン注入し、Bを含む5ins膜Qηを
形成する。(第2図(a))その後側!゛ば02プラズ
マを用いて、フォトレジストの上部のみをエツチングす
る事によpBを含む8 i 0x膜(5)の表面を露出
させる。(第2図b)その後例えばNH4Fでエツチン
グする事によりBを含む5iOz膜勾を選択的に除去す
る。この時Bを含むSiO□膜(ハ)はイオン注入時の
損傷でBを含まないSigh膜(ハ)に比らべて2〜5
倍以上速くエツチングされる。例えばtを1xlO”l
a&と少量でも2倍のエツチング速度が得られた。その
後、残ったフォトレジスト(イ)を02プラズマで除去
する。
Ge07! 1llilrKf Fumien pasting 1" x 8" 0. A film (c) of about 0.7 μm is formed. Furthermore, for example,
By forming a photoresist (c), the surface of the Si substrate is made flat. Then use Photoregis as a mask.
By ion implantation, 1 is injected into the Si0g part of the field part through the resist layer into the CVD-8i of the convex part of the Si substrate.
n, ions are implanted only into the film to form a 5-ins film Qη containing B. (Figure 2 (a)) Back side! For example, by etching only the upper part of the photoresist using 02 plasma, the surface of the 8 i 0x film (5) containing pB is exposed. (FIG. 2b) Thereafter, the 5iOz film gradient containing B is selectively removed by etching with NH4F, for example. At this time, the SiO□ film (c) containing B was damaged by 2 to 5
Etched more than twice as fast. For example, t is 1xlO"l
Even with a small amount of a&, twice the etching speed was obtained. Thereafter, the remaining photoresist (a) is removed using 02 plasma.

(第2図C)その後、SiN膜C23)を例えばCF、
ガスと02ガスとN2ガスを含むCDE (ケミカルド
ライエツチング)で除去し、熱酸化膜(24をNH4F
を用いてエツチング除去する。(第2図d) この時% S + Oz膜(ハ)のエツジは丸みを得ら
れる。
(FIG. 2C) After that, the SiN film C23) is coated with, for example, CF,
Thermal oxidation film (24 is NH4F) is removed by CDE (chemical dry etching) containing
Remove by etching. (Fig. 2d) At this time, the edges of the %S + Oz film (c) can be rounded.

また4図は盛り上がって形成されてるが、盛り上がって
なくても良い。この盛り上がりはSiN膜(ハ)の膜厚
の分だけ変化出来る。これはとの膜部分だけのオーバー
エツチングが出来る。
Also, although the shape shown in Figure 4 is raised, it does not have to be raised. This swell can be changed by the thickness of the SiN film (c). This allows over-etching of only the film portion.

この後、通常の工程で素子を形成する。After this, elements are formed through normal steps.

この実施例においては Bを入れた部分(ハ)とBを入れてない部分(ハ)のN
H,F’に対するエツチングレートがそれぞれ例えば3
200A/minと800^/min 04倍の差があ
ったとすれば(5)をエツチングするに約2分12秒か
かる。これに追加としてSiN膜(ハ)部分として、(
ハ)を2分30秒もオーツ(−エツチング出来る。これ
は、約100%以上のオーツく一エッチも可能という事
であり5in2の四部への埋め込みのマージンが大幅に
広くなり、容易になる。又、通常工程ではオーバーエツ
チングは20%(形成する膜のバラツキは通常10%以
内)?Cあるので、第2図dのようにフィールド絶縁膜
はSi基板凸部のエツジ盛シ上がっているように形成さ
れるので、膜べ、9によってここで発生する電界集中は
防止されるので寄生チャネルは発生しないので、 Tr
特性の劣化も無い。さらに盛り上がって形成されている
だめ、後の工程でのフィールドの膜ベリに対しても盛り
上がっている分、マージンが広がる。またNH,Fを用
いているため、安価なプロセスが可能で処理も簡単であ
シ、スループットも多く出来る利点がある。またHIE
等のエツチングを用いてないため、タメージ層の形成等
がなく信頼性に対して、何ら配慮する必要もなく高信頼
性の素子が形成される。
In this example, N of the part with B (c) and the part without B (c)
For example, if the etching rate for H and F' is 3
If there is a difference of 04 times between 200 A/min and 800 A/min, it will take about 2 minutes and 12 seconds to etch (5). In addition to this, as the SiN film (c) part, (
C) can be oat-etched for 2 minutes and 30 seconds. This means that it is possible to oat-etch more than about 100%, and the margin for embedding in the four parts of 5 in 2 is greatly widened, making it easier. In addition, in the normal process, the overetching is 20% (the variation in the formed film is usually within 10%), so the field insulating film seems to have a raised edge on the convex part of the Si substrate, as shown in Figure 2 (d). Tr
There is no deterioration in characteristics. Since it is formed with a further bulge, the margin is widened by the bulge against film burrs in the field in a later process. Furthermore, since NH and F are used, there are advantages in that the process can be performed at low cost, the processing is simple, and the throughput can be increased. Also HIE
Since etching such as etching is not used, there is no formation of a damage layer, and a highly reliable element is formed without any consideration for reliability.

またBは、軽い質量であるため、比較的加速電圧が少さ
くても、深くまでイオン注入される。例えば、300に
のダブルチャージのB++イオンをイオン注入すれば良
いので、それ程の高加速電圧をも必要としなく、フィー
ルド酸化膜厚は薄くなる方向に向っているので、今後は
低加速でも可能となるので、さらに有利となる。また、
Si基板凸へのBのつきぬけに対してSiN膜がストッ
パーとして働くので、Si基板への影響は無くなる。
Furthermore, since B has a light mass, ions can be implanted deeply even if the accelerating voltage is relatively low. For example, it is sufficient to implant B++ ions double-charged to 300, so there is no need for such a high acceleration voltage, and the field oxide film thickness is becoming thinner, so in the future it may be possible to use low acceleration. Therefore, it becomes even more advantageous. Also,
Since the SiN film acts as a stopper against the penetration of B into the convex portion of the Si substrate, there is no effect on the Si substrate.

又、 8iN g 0!3 オヨU Si 0zll!
(23t CVD −S i 02 テホ後も残してい
るが、CVD−8iOxデポ前に除去してもかまわない
Also, 8iN g 0!3 Oyo U Si 0zll!
(Although it remains after the 23t CVD-S i 02 test, it may be removed before the CVD-8iOx deposit.

またBのイオン注入の分布を図2(a)では凸部全部に
表示しているが、8iN膜上部のみでも良い。
Further, although the B ion implantation distribution is shown in the entire convex portion in FIG. 2(a), it may be shown only in the upper part of the 8iN film.

この方法でイオン注入工程を簡単にする事が出来る。This method can simplify the ion implantation process.

又、凹部の側壁のテーパ角度は90°二45°の範囲に
あれば良い。またこれらの組合せでも良い。
Further, the taper angle of the side wall of the recess may be in the range of 90° to 45°. A combination of these may also be used.

又、B等のイオン注入は第2図(blの所で行なっても
良い。さらにB等のイオンがSt基板表面につきぬけて
も、チャネルイオン注入程度の量にくらべて小さい量な
らばかまわない。又、つきぬけた場合に反対の導電型の
不純物をイオン注入して電気的に中性にもできる。又、
この工程でチャネルドーズを兼ねてもかまわ々い。
In addition, ions such as B may be implanted at the location shown in Figure 2 (bl).Furthermore, even if ions such as B penetrate the St substrate surface, it does not matter if the amount is small compared to the amount of channel ion implantation. .Also, if it passes through, it can be made electrically neutral by ion-implanting impurities of the opposite conductivity type.Also,
This step may also serve as a channel dose.

〔発明の他の実施例〕[Other embodiments of the invention]

不純物の種類はB以外でも良い。例えば、P。 The type of impurity may be other than B. For example, P.

As等でもよ(Ar、Xeなどの不活性元素でもよい。It may be As, etc. (Inert elements such as Ar or Xe may also be used.

その他いかなる元素であっても、イオン注入によj5s
jO,のエツチングが速くなれば良い。
Any other element can be j5s by ion implantation.
The faster the etching of jO, the better.

また、NH,Fでエツチングしたが、他のエツチング法
でも良い。例えばCF4を用いたRIE等のドライエツ
チングやHF系のエツチングでも良い。
Further, although etching was performed using NH and F, other etching methods may be used. For example, dry etching such as RIE using CF4 or HF-based etching may be used.

この場合フォトレジストと絶縁膜を同時にエツチングし
ても良い。乞の場合、第1のマスク材でエツチングが止
まるようなエツチング条件を選らぶと良い。
In this case, the photoresist and the insulating film may be etched at the same time. In such a case, etching conditions should be selected such that etching is stopped at the first mask material.

また第1のマスクとしてSin、とSiNを用いたが、
一層でも良いし、他の材料例えばpot y S ’ 
+At、03.等の組み合せや一層でも良い。
Also, although Sin and SiN were used as the first mask,
It may be made of a single layer or may be made of other materials such as pot y S'
+At, 03. A combination of these or a single layer may be used.

絶縁膜の膜厚は、凹部の断差と同等かそれ以上であれば
良い流動性物質膜は一層のフォトレジストを用いたが、
二層以上の多層構造でも良い。また、レジスト膜の他、
スピンオングラス、ポリイミド、低温の熱処理で溶融す
るPSG等のガラス膜を用いる事も出来る。
The thickness of the insulating film should be equal to or greater than the difference between the recesses.A single layer of photoresist was used as the fluid material film.
A multilayer structure of two or more layers may be used. In addition to the resist film,
It is also possible to use a glass film such as spin-on glass, polyimide, or PSG that melts through low-temperature heat treatment.

また絶縁膜を熱処理でデンシファイしてもかまわない。Further, the insulating film may be densified by heat treatment.

またNMO8で説明したが、PMO8,バイポーラ、0
MO8,808等に応用出来る。
Also, as explained in NMO8, PMO8, bipolar, 0
It can be applied to MO8, 808, etc.

不純物の導入にイオン注入を用いたが、熱拡散法でも良
い。又、イオンビームリソグラフィ法でも良い、この場
合、平坦にする必要も々くマスクも必要としない。
Although ion implantation was used to introduce impurities, a thermal diffusion method may also be used. Alternatively, ion beam lithography may be used; in this case, there is no need for flattening and no mask.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は従来の素子分離の工程を示す断
面図、第2図(al〜(d)は本発明の一実施例を示す
断面図である。 図において、 1.21・・・84基板、22・・・5iOz、23・
・・SiN膜、24・・・チャネルストッパーF、2,
25・・・S r Ox膜、3.26・・・レジス°゛
ト膜、27・・Bを含むSiO□膜。 代理人 弁理士 則 近 憲 佑(他1名)第 1 図 第 2 図
FIGS. 1(a) to 1(C) are cross-sectional views showing a conventional element isolation process, and FIGS. 2(al to d) are cross-sectional views showing an embodiment of the present invention. In the figures, 1. 21...84 substrate, 22...5iOz, 23...
...SiN film, 24...Channel stopper F, 2,
25...SrOx film, 3.26...Resist film, 27...SiO□ film containing B. Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に第1の少なくとも一層以上のマスク材を
形成して、前記第1のマスク材をマスクにフィールド領
域に凹部を形成する工程と基板全面に第1の絶縁膜を形
成する工程と前記基板表面を平坦にするように第2の少
なくとも一層以上の膜を形成する工程と前記第1の絶縁
膜の凸部の少なくとも一部に不純物を導入して前記第1
の絶縁膜の不純物を導入してない部分よりもエツチング
速度が速くなる第3の膜を形成する工程と前記第3の膜
を選択的にエツチング除去する事により、前記凹部に第
1の絶縁膜を残置させる工程とを具備した事を特徴とす
る半導体装置の製造方法。
a step of forming a first layer of at least one mask material on a semiconductor substrate and forming a recess in a field region using the first mask material as a mask; a step of forming a first insulating film on the entire surface of the substrate; forming a second film of at least one layer so as to flatten the surface of the substrate; and introducing an impurity into at least a portion of the convex portion of the first insulating film.
The first insulating film is formed in the recess by forming a third film whose etching rate is faster than in the part of the insulating film where impurities are not introduced, and by selectively etching and removing the third film. A method for manufacturing a semiconductor device, comprising the step of leaving behind.
JP339784A 1984-01-13 1984-01-13 Manufacture of semiconductor device Pending JPS60148139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP339784A JPS60148139A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP339784A JPS60148139A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60148139A true JPS60148139A (en) 1985-08-05

Family

ID=11556226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP339784A Pending JPS60148139A (en) 1984-01-13 1984-01-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60148139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674784A (en) * 1996-10-02 1997-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming polish stop layer for CMP process
US5830773A (en) * 1996-04-17 1998-11-03 Advanced Micro Devices, Inc. Method for forming semiconductor field region dielectrics having globally planarized upper surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830773A (en) * 1996-04-17 1998-11-03 Advanced Micro Devices, Inc. Method for forming semiconductor field region dielectrics having globally planarized upper surfaces
US5674784A (en) * 1996-10-02 1997-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming polish stop layer for CMP process

Similar Documents

Publication Publication Date Title
US4572765A (en) Method of fabricating integrated circuit structures using replica patterning
JPS58118113A (en) Method of producing semiconductor device
JPS6232630A (en) Formation of contact plug
US4398964A (en) Method of forming ion implants self-aligned with a cut
JPS5975659A (en) Manufacture of semiconductor device
JPS60148139A (en) Manufacture of semiconductor device
JPS60111437A (en) Manufacture of semiconductor device
JP3897071B2 (en) Manufacturing method of semiconductor device
JPH04209534A (en) Manufacture of semiconductor device
JPH0562463B2 (en)
JPS645463B2 (en)
EP0111097B1 (en) Method for making semiconductor devices having a thick field dielectric and a self-aligned channel stopper
KR0162138B1 (en) Element isolation method of semiconductor apparatus
JPS63228732A (en) Manufacture of semiconductor device
JPH0467648A (en) Manufacture of semiconductor device
JPH0481329B2 (en)
JPH0574928A (en) Production of semiclnductor device
JPS61174645A (en) Manufacture of semiconductor device
JPH0620989A (en) Contact hole formation
JPH11340326A (en) Manufacture of semiconductor device
JPH0555362A (en) Manufacture of semiconductor integrated circuit device
JPS5893342A (en) Manufacture of semiconductor device
JPH0621243A (en) Manufacture of semiconductor device
JPH03257948A (en) Manufacture of semiconductor device
JPS58202571A (en) Manufacture of semiconductor device