JPS6014769A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6014769A
JPS6014769A JP58124316A JP12431683A JPS6014769A JP S6014769 A JPS6014769 A JP S6014769A JP 58124316 A JP58124316 A JP 58124316A JP 12431683 A JP12431683 A JP 12431683A JP S6014769 A JPS6014769 A JP S6014769A
Authority
JP
Japan
Prior art keywords
metal
mat
current collector
fuel cell
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58124316A
Other languages
Japanese (ja)
Other versions
JPH0527230B2 (en
Inventor
Kazunao Sato
佐藤 一直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58124316A priority Critical patent/JPS6014769A/en
Publication of JPS6014769A publication Critical patent/JPS6014769A/en
Publication of JPH0527230B2 publication Critical patent/JPH0527230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To feed reaction gas uniformly while to make thin a cell, by forming a current collector board with metal fiber mat added with Ni, or Ni added with Cr or Co. CONSTITUTION:Predetermined amount of fiber metal having the diameter of 10-100mum and the length of 1-10mum is put into organic solvent or aqueous solution added with organic binder such as methyl-cellulose, polyvinyl alcohol and agitated sufficiently. Then said solution is left standstill or filtered through paper or cloth to produce fiber metal mat. Thereafter, said metal fiber mat is heated under the temperature of 800-1,100 deg.C to produce a porous and mechanically strong mat where small chips of fiber metal are sintered each other. The sintered porous metal mat can be utilized as a current collector board.

Description

【発明の詳細な説明】 この発明は、燃料電池に関するものであり、とりわけ、
溶融炭酸塩を電解質とする燃料電池に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fuel cells, and in particular,
This invention relates to a fuel cell using molten carbonate as an electrolyte.

の集電板/は第2図に示したごとく、ガス流路として多
数の貫通孔6を備えたもので、一般には溶融塩に対する
耐食性を考慮して、ニッケル金属が用いられ、7〜2話
の厚みをもっている。燃料側電極コはニッケル金属粉を
主成分とする焼結体からなる多孔質な電極である。電解
質層3はLiA10□を主成分とする多孔質構造体にL
1□CO3,に2C03などの炭酸塩を混入させたもの
からなっている。
As shown in Figure 2, the current collector plate/ is equipped with a large number of through holes 6 as gas flow paths, and nickel metal is generally used in consideration of its corrosion resistance against molten salt. It has a thickness of The fuel side electrode is a porous electrode made of a sintered body whose main component is nickel metal powder. The electrolyte layer 3 is a porous structure mainly composed of LiA10□.
It consists of 1□CO3 mixed with carbonate such as 2C03.

酸化剤側電極ダは燃料側電極コと同様に多孔質な構造を
もっている。この酸化剤側電極ダはN1焼結体を用いる
場合とNiO焼結体を用いる場合があるが、いずれにし
ろ電池の動作状態ではNiOにわずかLiイオンが加わ
ったNio Q、i+)となっている。酸化剤側電極q
の集電板jは燃料側電極の集 ゛電板/と同様の構造を
もつステンレス製のものである。なお、集電板lおよび
Sの貫通孔6の形状は円である必要はないが、一般には
直径l〜3陥の円孔になっている。
The oxidant side electrode has a porous structure similar to the fuel side electrode. This oxidizer side electrode may be made of N1 sintered body or NiO sintered body, but in any case, in the operating state of the battery, it becomes NiO with a small amount of Li ions added (Nio Q, i+). There is. Oxidizer side electrode q
The current collector plate j is made of stainless steel and has the same structure as the current collector plate of the fuel side electrode. Although the shape of the through holes 6 in the current collector plates 1 and S does not necessarily have to be circular, they are generally circular holes with a diameter of 1 to 3 recesses.

次に、この種の溶融炭酸塩形燃料電池の動作について説
明する。燃料電池は周知のとと<H2などの燃料ガスと
空気などの酸化剤ガスとの電気化学的な反応によって直
接電気として取り出すものである。この種の電気化学反
応を有効に行なわせるために、一般には多孔質な電極が
用いられる。
Next, the operation of this type of molten carbonate fuel cell will be explained. A fuel cell generates electricity directly through an electrochemical reaction between a fuel gas such as H2 and an oxidant gas such as air. In order to carry out this type of electrochemical reaction effectively, porous electrodes are generally used.

燃料側電極コおよび酸化剤側電極ダにおける反応は、次
のとおりである。
The reactions at the fuel side electrode and the oxidant side electrode are as follows.

(燃料(11!I ) H2+ Co3−> H2t]
−Co2+、ze (1)一 (酸化剤側)Co2+−20□+コe−+C03(2)
つまり、燃料側電極λにおいて燃料、H2が電解質層3
中のC01−と反応して水とCO□と電子を生成し、酸
化剤側電極すにおいてはCO2と酸化剤o2および一 外部負荷を通って流れてきた電子が反応してCo3を生
成し、電解質層3の中へ溶解することによって電池反応
が進行する−0 これを第1図を用いて説明する。まず、燃料ガスは集電
板/まで流され、ここで集電板lの貫通孔6を通って燃
料側電極−へ運ばれる。この燃料側電極−の微細な孔の
中で、上記(1)式の反応が進行する。一方、酸化剤側
においても、集電板Sの貫通孔6より供給された酸化剤
ガスは(2)式に従って反応する。
(Fuel (11!I) H2+ Co3-> H2t]
-Co2+, ze (1) - (oxidizing agent side) Co2+ -20□+Coe-+C03 (2)
In other words, at the fuel side electrode λ, the fuel, H2, is transferred to the electrolyte layer 3.
It reacts with CO1- inside to generate water, CO□, and electrons, and at the oxidizer side electrode, CO2, oxidizer O2, and electrons flowing through an external load react to generate Co3. The cell reaction proceeds by dissolving into the electrolyte layer 3. This will be explained using FIG. First, the fuel gas is allowed to flow to the current collector plate 1, where it passes through the through hole 6 of the current collector plate 1 and is carried to the fuel side electrode. The reaction of formula (1) above proceeds in the fine pores of this fuel-side electrode. On the other hand, also on the oxidizing agent side, the oxidizing agent gas supplied from the through hole 6 of the current collector plate S reacts according to equation (2).

従来の燃料電池は以上のように構成されていたので、集
電板より電極へガスを供給する際、反応ガスを均一に供
給することが困難であり、また、機械的強度を保つため
には/〜、2m程度のかなり厚い板を用いる必要がある
などの欠点があった。
Conventional fuel cells were constructed as described above, so when supplying gas from the current collector plate to the electrodes, it was difficult to supply the reactant gas uniformly, and in order to maintain mechanical strength, There were drawbacks such as the need to use a fairly thick plate of about 2 m.

さらに、この種の燃料電池の電極として重要な微細孔の
孔径の制御を粉末焼結技術だけで行なうため所望の多孔
性を得るのが難がしいという欠点もあった。
Furthermore, since the diameter of the micropores, which are important for the electrodes of this type of fuel cell, is controlled only by powder sintering technology, it is difficult to obtain the desired porosity.

この発明は、以上のような従来のものの欠点を除去する
ためになされたもので、集電板として繊維状の金属マッ
トを用いることにより、機械的強度罠富み、燃料ガスも
均一に供給しうる集電板を備えた燃料電池を提供するこ
とを目的とするものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by using a fibrous metal mat as a current collector plate, it has high mechanical strength and can evenly supply fuel gas. The object of the present invention is to provide a fuel cell equipped with a current collector plate.

また、この発明の目的は、ニッケル、ステンレススチー
ルマタハニッケルにクロム、コバルトナどを加えた繊維
状の金属マットでなる集電板を備えた燃料電池を提供す
ることである。
Another object of the present invention is to provide a fuel cell equipped with a current collector plate made of a fibrous metal mat made of nickel, stainless steel matachal nickel, and chromium, cobalt nickel, etc. added thereto.

以下、この発明を実施例について説明する。まず、線径
10〜lθθμm、長さ1A−lθ陀の範囲にある繊維
状金属を用意する。この繊維状金属は丸棒から削り出す
などの方法で得ることができる。
Hereinafter, this invention will be explained with reference to examples. First, a fibrous metal having a wire diameter of 10 to 1θθμm and a length of 1A to 1θ is prepared. This fibrous metal can be obtained by cutting a round bar.

次に有機溶媒又は水溶液の中へ所定の量の繊維状金属を
入れ、均一に分散するよう充分攪拌する。
Next, a predetermined amount of fibrous metal is placed in an organic solvent or aqueous solution and stirred sufficiently to ensure uniform dispersion.

このときの溶液にはメチルセルロースやポリビニルアル
コールのような有機系バインダを添加すると、繊維状金
属が均一分散し易い。ついでこの溶液を静置するか、ま
たは紙、布などで漉くがして繊維状金属のマットを作る
。出来上がったものは紙のような形状をもつ。以上の工
程はいわゆる和紙などを作るときに用いられる紙漉き技
術の応用によっても容易に達成できる。かくして得られ
た繊維状金属マットをgoo〜/100℃で加熱するこ
とにより、繊維状金属の小片が互い焼結され多孔質かつ
機械的強度の強いマットが形成される。
Adding an organic binder such as methyl cellulose or polyvinyl alcohol to the solution at this time facilitates uniform dispersion of the fibrous metal. This solution is then allowed to stand or is filtered with paper or cloth to create a fibrous metal mat. The finished product has a paper-like shape. The above process can also be easily accomplished by applying paper-making techniques used to make so-called Japanese paper. By heating the fibrous metal mat thus obtained at a temperature of ~/100[deg.] C., the fibrous metal pieces are sintered together to form a porous mat with strong mechanical strength.

この焼結後の多孔性金属マットを集電板として用いると
、ガス供給の均一な燃料電池が得られる。
When this sintered porous metal mat is used as a current collector plate, a fuel cell with uniform gas supply can be obtained.

次に、いくつかの実施例をさらに詳細に説明する。Next, some embodiments will be described in more detail.

実施例 / まず、線径J O〜!; 01t1rL、長さ/ 〜!
r mの繊維状ニラケルコθgrを用意する。次に/チ
メチルセルローズ21を用意し、この中ヘニツケル繊維
を入れたのち充分に撹拌する。ついで、この溶液を底面
積約’l00cr&の容器へ移し、静置する。こののち
、上澄み液を捨て沈殿物を乾燥する。充分乾燥した後、
約lθky / cdの圧力で加圧した。その後、グθ
O℃で30分加熱することにより、メチルセルローズを
分解除去する。さらに水素雰囲気中で、1000℃、7
5分加熱し、ニッケル繊維同志の焼結をはかった。得ら
れた繊維状ニッケルマットは膜厚的0. II v+m
であった。第3図は−その断面拡大図を示し、繊維状ニ
ッケルマツドアは繊維状ニッケル?aの焼結体で構成さ
れる。
Example / First, the wire diameter JO~! ; 01t1rL, length/~!
rm fibrous Nirakeruko θgr is prepared. Next, prepare thimethylcellulose 21, add Henickel fiber therein, and stir thoroughly. Next, this solution is transferred to a container with a bottom area of about 100 cr and left to stand. After this, the supernatant liquid is discarded and the precipitate is dried. After drying thoroughly,
It was pressurized at a pressure of about lθky/cd. After that, gθ
Methyl cellulose is decomposed and removed by heating at 0° C. for 30 minutes. Furthermore, in a hydrogen atmosphere, at 1000℃, 7
It was heated for 5 minutes to sinter the nickel fibers together. The obtained fibrous nickel mat has a film thickness of 0. II v+m
Met. Figure 3 shows an enlarged cross-sectional view of the fibrous nickel pine door. It is composed of a sintered body of a.

ここで得られた繊維状ニッケル7aの多孔質膜でなる金
属マットを燃料側電極の集電板釦用いて燃料電池を組み
立てると、燃料ガスの電極への均一な拡散がはかれる。
When a fuel cell is assembled using the metal mat made of the porous membrane of fibrous nickel 7a obtained here as a current collector plate button of the fuel side electrode, uniform diffusion of fuel gas to the electrodes is achieved.

実施例 コ 線径30〜SOμm、長さl〜3朋の繊維状ニッケル、
10grとニッケル/grを用意する。これをlチポリ
ビニルアルコール水溶液somlに入れ充分攪拌したの
ち、マイラーフィルムなどの基板上に引き延ばす。充分
乾燥した後、得られたフィルムを基板フィルムからはが
し、約tokg/cdの圧力で加圧する。ついで、ダθ
θ℃で30分加熱することにより、ポリビニルアルコー
ルを分解除去スる。こののち、水素雰囲気下でqoo℃
、io分加熱し、焼結する。ここで得られた繊維状ニッ
ケルマツ)/?の断面拡大図を第9図に示ず。繊維状ニ
ッケルマット/7は繊維状ニッケルクaとニッケル粉末
7bで構成される。図かられかるようにニッケル粉末7
bは繊維状ニッケル7a同志を結びつける役割をはだし
又いる。これを燃料側の集電板に用いるのは実施例/と
同様である。
Example: Fibrous nickel with a wire diameter of 30 to SO μm and a length of l to 3 mm,
Prepare 10gr and nickel/gr. This is poured into a polyvinyl alcohol aqueous solution (SOML) and thoroughly stirred, and then spread on a substrate such as a Mylar film. After sufficiently drying, the obtained film is peeled off from the substrate film and pressed at a pressure of about tokg/cd. Then, Daθ
Polyvinyl alcohol is decomposed and removed by heating at θ°C for 30 minutes. After this, qoo℃ under hydrogen atmosphere.
, io minutes to sinter. Fibrous nickel pine obtained here)/? An enlarged cross-sectional view of is not shown in FIG. Fibrous nickel mat/7 is composed of fibrous nickel a and nickel powder 7b. Nickel powder 7 as shown in the figure
b plays the role of binding the fibrous nickel 7a together. The use of this as the current collector plate on the fuel side is the same as in Example.

なお、金属マットの金朽成分は、ニッケルg。In addition, the metal decay component of the metal mat is nickel g.

〜lθθチ、クロムθ〜20%、コバルトθ〜−〇−の
成分の範囲のもので好適な結果を得ることができた。
Suitable results could be obtained with the components in the range of ~1θθ, chromium θ ~20%, and cobalt θ ~ -0-.

また、上記の実施例では、繊維状ニッケルマットを燃料
側の集電板に用いる場合について説明したが、ステンレ
スマット等の他の金属マットも同様の方法で得られる。
Furthermore, in the above embodiments, a case has been described in which a fibrous nickel mat is used as the current collector plate on the fuel side, but other metal mats such as a stainless steel mat can also be obtained in a similar manner.

特にステンレスマットは耐食性にすぐれ℃いるため、酸
化剤側電極の集電板に用いた場合、上記実施例と同様の
効果を奏する。
In particular, stainless steel mat has excellent corrosion resistance, so when used as the current collector plate of the oxidizing agent side electrode, it produces the same effects as in the above embodiment.

この場合のステンレス側斜としては、ステンレスJ10
..j/l、、3コlのいずれかが好適である。
In this case, the stainless steel side slope is stainless steel J10
.. .. J/l, or 3 liters is suitable.

以上のように、この発明によれは、集電板を繊維状金属
の焼結体でなる金属マットで構成することにより、反応
ガスを均一に供給し、電池の薄型化などが得られる効果
がある・
As described above, the present invention has the effect of uniformly supplying reactive gas and making the battery thinner by configuring the current collector plate with a metal mat made of sintered fibrous metal. be·

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶融炭酸塩形燃料電池の分解側面図、第
一図はその集電板のfIl視図、第3図はこの発明の一
実施例の要部拡大断面図、第ψ図は同じく他の実施例の
要部拡大断面図である。 l・・燃料側電極の集電板、コ・・燃料側電極、3・・
電解質層、S・・酸化剤側電極の集電板、6・・貫通孔
、7./7・・繊維状ニッケルマット、7a・・繊維状
ニッケル、7b・・ニッケル粉末。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人 大 岩 増 雄 yf)1図 幣2図
FIG. 1 is an exploded side view of a conventional molten carbonate fuel cell, FIG. FIG. 2 is an enlarged sectional view of a main part of another embodiment. L...Current plate of fuel side electrode, C...Fuel side electrode, 3...
Electrolyte layer, S... current collector plate of oxidizer side electrode, 6... through hole, 7. /7...Fibrous nickel matte, 7a...Fibrous nickel, 7b...Nickel powder. In each figure, the same reference numerals indicate the same or corresponding parts. Agent: Masuo Oiwa yf) 1 illustration, 2 illustrations

Claims (1)

【特許請求の範囲】 (1) 電解質層な挟む燃料側電極と酸化剤側電極にお
いて、繊維状金属の焼結体でなる多孔性の金属マットで
形成された前記集電板を備えてなることを特徴とする燃
料電池。 (λ)繊維状金属が線径1o−ioθμm、長さl〜/
θ闘の範囲のものである特許請求の範囲第1項に記載の
燃料電池。 (3)繊維状金属の成分がニッケル10−100%、ク
ロム0S−20%、コバルトθ〜20%の範囲のもので
ある特許請求の範囲第1項記載の燃料電池。 (4’) ニッケル粉末を加えて金属マットを形成した
特許請求の範囲第3項記載の燃料電池・。 (、lt) 繊維状金属がステンレススチールでなる特
許請求の範囲第1項記載の燃料電池。
[Scope of Claims] (1) The fuel-side electrode and the oxidizer-side electrode sandwiching the electrolyte layer are provided with the current collector plate formed of a porous metal mat made of a sintered body of fibrous metal. A fuel cell featuring: (λ) The fibrous metal has a wire diameter of 1o-ioθμm and a length of l~/
The fuel cell according to claim 1, which has a θ range. (3) The fuel cell according to claim 1, wherein the fibrous metal components are in the range of 10-100% nickel, 0S-20% chromium, and 20% cobalt θ. (4') The fuel cell according to claim 3, wherein nickel powder is added to form a metal mat. (,lt) The fuel cell according to claim 1, wherein the fibrous metal is stainless steel.
JP58124316A 1983-07-06 1983-07-06 Fuel cell Granted JPS6014769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124316A JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124316A JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6014769A true JPS6014769A (en) 1985-01-25
JPH0527230B2 JPH0527230B2 (en) 1993-04-20

Family

ID=14882308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124316A Granted JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6014769A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102171A (en) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd Molten carbonate fuel cell
WO1998052241A1 (en) * 1997-05-13 1998-11-19 Loughborough University Innovations Limited Current distributors of sintered metals and fuel cells using them
WO2002005374A1 (en) * 2000-07-07 2002-01-17 Ab Volvo Gas distributor for fuel cells
JP2003031240A (en) * 2001-07-12 2003-01-31 Kemitsukusu:Kk Small-sized solid polymer fuel cell and separator for fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102171A (en) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd Molten carbonate fuel cell
WO1998052241A1 (en) * 1997-05-13 1998-11-19 Loughborough University Innovations Limited Current distributors of sintered metals and fuel cells using them
WO2002005374A1 (en) * 2000-07-07 2002-01-17 Ab Volvo Gas distributor for fuel cells
JP2003031240A (en) * 2001-07-12 2003-01-31 Kemitsukusu:Kk Small-sized solid polymer fuel cell and separator for fuel cell

Also Published As

Publication number Publication date
JPH0527230B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
JP4962640B1 (en) Solid oxide fuel cell
DE60205090T2 (en) Process for the preparation of membrane-electrode assemblies using catalyst coated membranes and adhesives
US20030035989A1 (en) Use of sulfur-containing fuels for direct oxidation fuel cells
US7867668B2 (en) Electrolyte layer for fuel cell, fuel cell, and method of manufacturing electrolyte layer for fuel cell
JP5382251B2 (en) Solid oxide fuel cell and method for producing the same
JP2000513480A (en) Gas diffusion electrodes for polymer electrolyte membrane fuel cells
Bonnefont et al. Advanced catalytic layer architectures for polymer electrolyte membrane fuel cells
CN101000967A (en) Membrane electrode of protone exchange membrane fuel cell and preparation method thereof
NZ526278A (en) The use of sulfur-containing fuels for direct oxidation fuel cells
CN115233498B (en) Carbon fiber paper for fuel cell and preparation method thereof
JP3613654B2 (en) Electrode for fuel cell and method for producing power generation layer
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JPH10223233A (en) Electrode for fuel cell, and electrode electrolyte film joint body
JPS6014769A (en) Fuel cell
CN112640172B (en) Fuel cell
JPH08106915A (en) Electrode of solid polymer fuel cell and manufacture of fuel cell
JPS59127372A (en) Electrode for fuel cell
KR20110006885A (en) Solid oxide fuel cell
Choudhury Phosphoric acid fuel cell technology
CN112638518B (en) Chromium adsorbing material and fuel cell
TWI343669B (en) A method to manufacture the membrane electrode assembly in fuel cell
Yang et al. Synthesis, Characterization and Electrochemical Properties of a Novel Cobalt-Free Ba0. 5Sr0. 5Fe0. 8Mn0. 2O3-α Intermediate-Temperature Cathode Material
Yu Development of Electrolyte Support for Intermediate Temperature Molten Salt Fuel Cell
JPH0548581B2 (en)
JPS6059664A (en) Electrode for molten carbonate fuel cell