JPH0527230B2 - - Google Patents

Info

Publication number
JPH0527230B2
JPH0527230B2 JP58124316A JP12431683A JPH0527230B2 JP H0527230 B2 JPH0527230 B2 JP H0527230B2 JP 58124316 A JP58124316 A JP 58124316A JP 12431683 A JP12431683 A JP 12431683A JP H0527230 B2 JPH0527230 B2 JP H0527230B2
Authority
JP
Japan
Prior art keywords
fuel
current collector
side electrode
fuel cell
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58124316A
Other languages
Japanese (ja)
Other versions
JPS6014769A (en
Inventor
Kazunao Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58124316A priority Critical patent/JPS6014769A/en
Publication of JPS6014769A publication Critical patent/JPS6014769A/en
Publication of JPH0527230B2 publication Critical patent/JPH0527230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、燃料電池に関するものであり、と
りわけ、溶融炭酸塩を電解質とする燃料電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and particularly to a fuel cell using molten carbonate as an electrolyte.

従来、この種の燃料電池は第1図に示した部材
を積層して構成していた。図において燃料側電極
の集電板1は第2図に示したごとく、ガス流路と
して多数の貫通孔6を備えたもので、一般には溶
融塩に対する耐食性を考慮して、ニツケル金属が
用いられ、1〜2mmの厚みをもつている。燃料側
電極2はニツケル金属粉を主成分とする焼結体か
らなる多孔質の電極である。
Conventionally, this type of fuel cell has been constructed by laminating the members shown in FIG. As shown in Figure 2, the current collector plate 1 of the fuel side electrode is equipped with a large number of through holes 6 as gas flow paths, and is generally made of nickel metal in consideration of its corrosion resistance against molten salt. , has a thickness of 1 to 2 mm. The fuel side electrode 2 is a porous electrode made of a sintered body containing nickel metal powder as a main component.

電解質層3はLiAlO2を主成分とする多孔質構
造体にLi2CO3などの炭酸塩を混入させたものか
らなつている。酸化剤側電極4は燃料側電極2と
同様に多孔質構造となつている。この酸化剤側電
極4はNi焼結体を用いる場合とNiO焼結体を用
いる場合があるが、しずれにしろ電池の動作状態
ではNiOにわずかのLiイオンが加わつたNiO
(Li+)となつている。酸化剤側電極4の集電板5
は燃料側電極の集電板1と同様の構造をもつステ
ンレス製のものである。
The electrolyte layer 3 is made of a porous structure mainly composed of LiAlO 2 mixed with a carbonate such as Li 2 CO 3 . The oxidant side electrode 4 has a porous structure similar to the fuel side electrode 2. This oxidizer-side electrode 4 may be made of Ni sintered body or NiO sintered body, but in any case, under the operating condition of the battery, NiO2 with a small amount of Li ions added to NiO
(Li + ). Current collector plate 5 of oxidizer side electrode 4
is made of stainless steel and has the same structure as the current collector plate 1 of the fuel side electrode.

集電板1および5の貫通孔6は、1mm程度の間
を空けて形成されており、この1mm程度の部分の
ガス透過性は0になる。なお、貫通孔6の形状は
円である必要はないが、一般には直径1〜3mmの
円孔になつている。
The through holes 6 of the current collector plates 1 and 5 are formed with a gap of approximately 1 mm, and the gas permeability of this approximately 1 mm portion is zero. Although the shape of the through hole 6 is not necessarily circular, it is generally a circular hole with a diameter of 1 to 3 mm.

また、集電板1および5の外側には、それぞれ
ガス流路板8および9が当接し、ガス流路板8お
よび9の外側には、それぞれセパレータ10およ
び11が配置されている。ここで、燃料電池は、
複数の燃料電池が直列に積層されて機能するもの
であり、セパレータ10,11は隣接する燃料電
池との間で、ガスを分離する役割と、接続導体と
しての役割とを果たす。
Further, gas flow passage plates 8 and 9 are in contact with the outer sides of the current collector plates 1 and 5, respectively, and separators 10 and 11 are arranged on the outer sides of the gas flow passage plates 8 and 9, respectively. Here, the fuel cell is
A plurality of fuel cells are stacked in series to function, and the separators 10 and 11 play the role of separating gas between adjacent fuel cells and the role of a connecting conductor.

次に、この種の溶融炭酸塩形燃料電池の動作に
ついて説明する。燃料電池の周知のごとくH2
どの燃料ガスと空気などの酸化剤ガスとの電気化
学的な反応によつて直接電気として取り出すもの
である。この種の電気化学反応を有効に行わせる
ために、一般には多孔質の電極2,4が用いられ
る。
Next, the operation of this type of molten carbonate fuel cell will be explained. As is well known in the art, fuel cells generate electricity directly through an electrochemical reaction between a fuel gas such as H 2 and an oxidant gas such as air. In order to effectively carry out this type of electrochemical reaction, porous electrodes 2 and 4 are generally used.

燃料側電極2および酸化剤電極4における反応
は、次のとおりである。
The reactions at the fuel side electrode 2 and the oxidizer electrode 4 are as follows.

(燃料側) H2+CO2- 3→H2O+CO2+2e (1) (酸化剤側) CO2+1/2O2+2e→CO2- 3 (2) つまり、燃料側電極2において燃料、H2が電解
質層3中のCO2- 3と反応して水とCO2と電子を生
成し、酸化剤側電極4においてはCO2と酸化剤O2
および外部負荷を通つて流れてきた電子が反応し
てCO2- 3を生成し、電解質層3中へ溶解すること
によつて電池反応が進行する。
(Fuel side) H 2 +CO 2- 3 →H 2 O+CO 2 +2e (1) (Oxidizer side) CO 2 +1/2O 2 +2e→CO 2- 3 (2) In other words, at the fuel side electrode 2, fuel, H 2 reacts with CO 2- 3 in the electrolyte layer 3 to generate water, CO 2 and electrons, and at the oxidant side electrode 4, CO 2 and oxidant O 2
Electrons flowing through the external load react to generate CO 2-3 , which is dissolved into the electrolyte layer 3, thereby progressing the battery reaction.

これを第1図を用いて説明する。まず、燃料ガ
スがガス流路板8から集電板1の貫通孔6を通つ
て燃料側電極2へ運ばれる。この燃料側電極2の
微細孔の中で、上記(1)式の反応が進行する。一
方、酸化剤側においても、集電板5の貫通孔6よ
り供給された酸化剤ガスは(2)式に従つて反応す
る。そして、2つの集電板1,5を通して集電作
用が行われる。
This will be explained using FIG. First, fuel gas is transported from the gas flow path plate 8 to the fuel side electrode 2 through the through hole 6 of the current collector plate 1 . In the fine pores of the fuel-side electrode 2, the reaction of formula (1) above proceeds. On the other hand, on the oxidizing agent side as well, the oxidizing gas supplied from the through hole 6 of the current collector plate 5 reacts according to equation (2). A current collecting action is performed through the two current collecting plates 1 and 5.

従来の燃料電池は以上のように構成され、貫通
孔6相互の間隔が1mm程度もあり、この部分での
ガス透過性は0になるので、集電板1,5より電
極2,4へガスを供給する際、反応ガスを均一に
供給するのが困難であつた。また、集電板1,5
には貫通孔6が形成されているため、その機械的
強度を保つのが困難であり、1〜2mm程度のかな
り厚い板を用いる必要があるなどの欠点があつ
た。
A conventional fuel cell is constructed as described above, and the distance between the through holes 6 is about 1 mm, and the gas permeability in this part is 0, so gas is not passed from the current collector plates 1 and 5 to the electrodes 2 and 4. When supplying the reaction gas, it was difficult to supply the reaction gas uniformly. In addition, current collector plates 1 and 5
Since the through hole 6 is formed in the plate, it is difficult to maintain its mechanical strength, and there are drawbacks such as the need to use a fairly thick plate of about 1 to 2 mm.

この発明は、以上のような従来のものの欠点を
除去するためになされたもので、集電板として繊
維状の金属マツトを用いることにより、機械的強
度に富み、燃料ガスも均一に供給しうる集電板を
備えた燃料電池を提供することを目的とする。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by using a fibrous metal mat as a current collector plate, it has high mechanical strength and can supply fuel gas uniformly. An object of the present invention is to provide a fuel cell equipped with a current collector plate.

さらに、この発明は、ニツケル、ステンレスス
チールまたはニツケルにクロム、コバルトなどを
加えた繊維状の金属マツトでなる集電板を備えた
燃料電池を提供することを目的とする。
A further object of the present invention is to provide a fuel cell equipped with a current collector plate made of nickel, stainless steel, or a fibrous metal mat made of nickel with chromium, cobalt, etc. added thereto.

以下、この発明を実施例について説明する。ま
ず、線径10〜100μm、長さ1〜10mmの範囲にある
繊維状金属を用意する。この繊維状金属は丸棒か
ら削り出すなどの方法で得ることができる。次に
有機溶媒又は水溶液の中へ所定の量の繊維状金属
を入れ、均一に分散するよう充分撹拌する。この
ときの溶液にメチルセルロースやポリビニルアル
コールのような有機系バインダを添加すると、繊
維状金属が均一に分散し易い。ついでこの溶液を
静置するか、または紙、布などで漉くかして繊維
状金属のマツトを作る。出来上がつたものは紙の
ような形状をもつ。
Hereinafter, this invention will be explained with reference to examples. First, a fibrous metal having a wire diameter of 10 to 100 μm and a length of 1 to 10 mm is prepared. This fibrous metal can be obtained by cutting a round bar. Next, a predetermined amount of fibrous metal is placed in an organic solvent or aqueous solution and sufficiently stirred to ensure uniform dispersion. Adding an organic binder such as methyl cellulose or polyvinyl alcohol to the solution at this time facilitates uniform dispersion of the fibrous metal. This solution is then allowed to stand or is strained with paper or cloth to create a fibrous metal matte. The finished product has a paper-like shape.

以上の工程はいわゆる和紙などを作るときに用
いられる紙漉き技術の応用によつても容易に達成
できる。
The above steps can also be easily accomplished by applying paper-making techniques used to make so-called Japanese paper.

かくして得られた繊維状金属マツトを800〜
1100℃で加熱することにより、繊維状金属の小片
が互いに焼結され多孔質かつ機械的強度の強いマ
ツトが形成される。この焼結後の多孔性金属マツ
トを集電板として用いると、ガス供給の均一な燃
料電池が得られる。
The fibrous metal pine obtained in this way is
By heating at 1100°C, the fibrous metal pieces are sintered together to form a porous and mechanically strong mat. If this sintered porous metal mat is used as a current collector plate, a fuel cell with uniform gas supply can be obtained.

次に、いくつかの実施例をさらに詳細に説明す
る。
Next, some embodiments will be described in more detail.

実施例 1 まず、線径30〜50μm、長さ1〜5mmの繊維状
ニツケル20grを用意する。次に1%メキルセルロ
ース2を用意し、この中へニツケル繊維を入れ
たのち充分に撹拌する。ついで、この溶液を底面
積約400cm3の容器へ移し、静置する。こののち、
上澄み液を捨て沈殿物を乾燥する。充分乾燥した
後、約10Kg/cm2の圧力で加圧する。その後、400
℃で30分加熱することにより、メチルセルロース
を分解除去する。さらに水素雰囲気中で、1000
℃、15分加熱し、ニツケル繊維同志の焼結を図
る。
Example 1 First, 20 gr of nickel fibers with a wire diameter of 30 to 50 μm and a length of 1 to 5 mm are prepared. Next, prepare 1% methylcellulose 2, add the nickel fibers therein, and stir thoroughly. Next, this solution is transferred to a container with a bottom area of about 400 cm 3 and left to stand. After this,
Discard the supernatant and dry the precipitate. After thoroughly drying, pressurize at a pressure of approximately 10 kg/cm 2 . Then 400
Methylcellulose is decomposed and removed by heating at ℃ for 30 minutes. Furthermore, in a hydrogen atmosphere, 1000
℃ for 15 minutes to sinter the nickel fibers.

得られた繊維状ニツケルマツトは膜厚約0.4mm
であつた。第3図はその断面拡大図を示し、繊維
状ニツケルマツト7は繊維状ニツケル7aの焼結
体で構成されていることがわかる。
The thickness of the obtained fibrous nickel pine is approximately 0.4 mm.
It was hot. FIG. 3 shows an enlarged cross-sectional view of the same, and it can be seen that the fibrous nickel mat 7 is composed of a sintered body of fibrous nickel 7a.

ここで得られた繊維状ニツケル7aの多孔質膜
でなる金属マツトを燃料側電極の集電板1に用い
て燃料電池を組み立てると、燃料ガスの電極への
均一な拡散を図ることができる。
When a fuel cell is assembled using the metal mat made of the porous membrane of fibrous nickel 7a obtained here as the current collector plate 1 of the fuel side electrode, uniform diffusion of fuel gas to the electrode can be achieved.

実施例 2 線径30〜50μm、長さ1〜5mmの繊維状ニツケ
ル20grとニツケル1grを用意する。これを1%ポ
リビニルアルコール水溶液50mlに入れ充分撹拌し
たのち、マイラーフイルムなどの基板上に引き延
ばす。充分乾燥した後、得られたフイルムを基板
フイルムからはがし、約10Kg/cm2の圧力で加圧す
る。ついで、400℃で30分加熱することにより、
ポリビニルアルコールを分解除去する。このの
ち、水素雰囲気下で900℃、100分加熱し、焼結す
る。
Example 2 Prepare 20 gr of nickel and 1 gr of nickel with a wire diameter of 30 to 50 μm and a length of 1 to 5 mm. This was poured into 50 ml of a 1% polyvinyl alcohol aqueous solution, thoroughly stirred, and then spread on a substrate such as Mylar film. After sufficiently drying, the obtained film is peeled off from the substrate film and pressurized at a pressure of about 10 kg/cm 2 . Then, by heating at 400℃ for 30 minutes,
Decomposes and removes polyvinyl alcohol. After this, it is heated at 900°C for 100 minutes in a hydrogen atmosphere to sinter it.

ここで得られた繊維状ニツケルマツト17の断
面拡大図を第4図に示す。繊維状ニツケルマツト
17は繊維状ニツケル7aとニツケル粉末7bで
構成されている。図からわかるようにニツケル粉
末7bは繊維状ニツケル7a同士を結びける役割
をはたしている。これを燃料側の集電板に用いる
のは実施例1と同様である。
An enlarged cross-sectional view of the fibrous nickel pine 17 obtained here is shown in FIG. The fibrous nickel mat 17 is composed of fibrous nickel 7a and nickel powder 7b. As can be seen from the figure, the nickel powder 7b serves to bind the fibrous nickel 7a together. It is the same as in Example 1 that this is used for the current collector plate on the fuel side.

なお、金属マツトの金属成分は、ニツケル80〜
100%、クロム0〜20%、コバルト0〜20%の成
分の範囲のもので好適な結果を得ることができ
た。
In addition, the metal component of the metal mat is Nickel 80~
Suitable results were obtained with a composition ranging from 100% to 100%, 0 to 20% chromium, and 0 to 20% cobalt.

また、上記の実施例では、繊維状ニツケルマツ
トを燃料側の集電板に用いる場合について説明し
たが、ステンレスマツト等の他の金属マツトも同
様の方法で得られる。特にステンレスマツトは耐
食性にすぐれているため、酸化剤側電極の集電板
に用いた場合、上記実施例と同様の効果を奏す
る。この場合のステンレス材料としては、ステン
レス310,316,321のいずれかが好適である。
Furthermore, in the above embodiments, a case has been described in which fibrous nickel mat is used as the current collector plate on the fuel side, but other metal mats such as stainless steel mat can also be obtained by the same method. In particular, since stainless steel mat has excellent corrosion resistance, when used as the current collector plate of the oxidizing agent side electrode, it produces the same effects as in the above embodiment. As the stainless steel material in this case, any one of stainless steel 310, 316, and 321 is suitable.

以上のように、この発明によれば、集電板を繊
維状金属の焼結体でなる金属マツトで構成するこ
とにより、反応ガスを均一に供給し、電池の薄型
化等を図ることができるという効果がある。
As described above, according to the present invention, by constructing the current collector plate with a metal mat made of a sintered body of fibrous metal, it is possible to uniformly supply the reactive gas and to make the battery thinner. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶融炭酸塩形燃料電池の分解側
面図、第2図はその集電板の斜視図、第3図はこ
の発明の一実施例の要部拡大断面図、第4図は同
じく他の実施例の要部拡大断面図である。 1……燃料側電極の集電板、2……燃料側電
極、3……電解質層、5……酸化剤側電極の集電
板、6……貫通孔、7,17……繊維状ニツケル
マツト、7a……繊維状ニツケル、7b……ニツ
ケル粉末。なお、各図中、同一符号は同一又は相
当部分を示す。
Fig. 1 is an exploded side view of a conventional molten carbonate fuel cell, Fig. 2 is a perspective view of its current collector plate, Fig. 3 is an enlarged sectional view of essential parts of an embodiment of the present invention, and Fig. 4 is FIG. 7 is an enlarged cross-sectional view of a main part of another embodiment. DESCRIPTION OF SYMBOLS 1... Current collector plate of fuel side electrode, 2... Fuel side electrode, 3... Electrolyte layer, 5... Current collector plate of oxidizer side electrode, 6... Through hole, 7, 17... Fibrous nickel pine , 7a... fibrous nickel, 7b... nickel powder. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 溶融炭酸塩を電解質とする電解質層と、この
電解質層を挟んで配置された燃料側電極および酸
化剤側電極と、 これらの電極にそれぞれ当接し、多数の貫通孔
を有する1対の集電板と、 これらの集電板にそれぞれ当接する1対のガス
流路板と、 これらのガス流路板の外側にそれぞれ配置され
たセパレータと、 を備え、燃料および酸化剤が前記ガス流路板から
前記貫通孔を通つてそれぞれ前記燃料側電極およ
び前記酸化剤側電極に供給される燃料電池におい
て、 前記集電板が、繊維状金属を焼結して形成され
た多孔性の金属マツトであることを特徴とする燃
料電池。 2 繊維状金属が線径10〜100μm、長さ1〜10mm
の範囲のものである特許請求の範囲第1項記載の
燃料電池。 3 繊維状金属の成分がニツケル80〜100%、ク
ロム0〜20%、コバルト0〜20%の範囲のもので
ある特許請求の範囲第1項記載の燃料電池。 4 ニツケル粉末を加えて金属マツトを形成した
特許請求の範囲第3項記載の燃料電池。 5 繊維状金属がステンレススチールである特許
請求の範囲第1項記載の燃料電池。
[Scope of Claims] 1. An electrolyte layer containing molten carbonate as an electrolyte, a fuel-side electrode and an oxidizer-side electrode arranged with this electrolyte layer in between, and a number of through holes in contact with these electrodes, respectively. a pair of current collector plates, a pair of gas passage plates respectively abutting these current collector plates, and a separator disposed on the outside of each of these gas passage plates, the fuel and oxidizer is supplied to the fuel-side electrode and the oxidizer-side electrode from the gas flow path plate through the through-hole, respectively, wherein the current collector plate has porous holes formed by sintering a fibrous metal. A fuel cell characterized by being made of solid metal pine. 2 The fibrous metal has a wire diameter of 10 to 100 μm and a length of 1 to 10 mm.
The fuel cell according to claim 1, which falls within the scope of. 3. The fuel cell according to claim 1, wherein the fibrous metal contains 80 to 100% nickel, 0 to 20% chromium, and 0 to 20% cobalt. 4. The fuel cell according to claim 3, wherein nickel powder is added to form a metal mat. 5. The fuel cell according to claim 1, wherein the fibrous metal is stainless steel.
JP58124316A 1983-07-06 1983-07-06 Fuel cell Granted JPS6014769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124316A JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124316A JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6014769A JPS6014769A (en) 1985-01-25
JPH0527230B2 true JPH0527230B2 (en) 1993-04-20

Family

ID=14882308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124316A Granted JPS6014769A (en) 1983-07-06 1983-07-06 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6014769A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102171A (en) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd Molten carbonate fuel cell
WO1998052241A1 (en) * 1997-05-13 1998-11-19 Loughborough University Innovations Limited Current distributors of sintered metals and fuel cells using them
SE522666C2 (en) * 2000-07-07 2004-02-24 Volvo Ab Gas distribution element for fuel cells, fuel cell and method for producing a gas distribution element
JP2003031240A (en) * 2001-07-12 2003-01-31 Kemitsukusu:Kk Small-sized solid polymer fuel cell and separator for fuel cell

Also Published As

Publication number Publication date
JPS6014769A (en) 1985-01-25

Similar Documents

Publication Publication Date Title
US6242122B1 (en) Fuel cell electrode-electrolyte unit
US20020068213A1 (en) Multiple layer electrode for improved performance
US7867668B2 (en) Electrolyte layer for fuel cell, fuel cell, and method of manufacturing electrolyte layer for fuel cell
JP5353160B2 (en) Method for producing solid oxide fuel cell
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
US3553029A (en) Electrode with carbon layer and fuel cell therewith
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
JP3446254B2 (en) Fuel cell and method of manufacturing the same
US9929452B2 (en) Energy conversion cell having an electrochemical conversion unit
JPH0527230B2 (en)
JP4512911B2 (en) Solid oxide fuel cell
JP2649470B2 (en) Fuel cell
JP2003151564A (en) Electrode for solid high polymer fuel cell
JP2002367633A (en) Cell indirect connection method for solid oxide fuel cell
JPS6124158A (en) Electrode of fused carbonate type fuel cell
DE19815796C2 (en) Fuel cell stack with a bipolar plate having a porous wall
JP3982356B2 (en) Current collector plate of polymer electrolyte fuel cell
JPH0258740B2 (en)
JP4296667B2 (en) Catalyst electrode, method for producing the catalyst electrode, and fuel cell
CN112640172B (en) Fuel cell
CN112166516B (en) fuel cell system
US4461812A (en) Lightweight storage battery
JP3873387B2 (en) Method for producing polymer electrolyte membrane-reaction part assembly
JP4427929B2 (en) Solid oxide fuel cell with sealless structure
WO2020049889A1 (en) Chromium adsorbent and fuel cell