JPS60147649A - Electromagnetic flaw detector for piping - Google Patents

Electromagnetic flaw detector for piping

Info

Publication number
JPS60147649A
JPS60147649A JP59003459A JP345984A JPS60147649A JP S60147649 A JPS60147649 A JP S60147649A JP 59003459 A JP59003459 A JP 59003459A JP 345984 A JP345984 A JP 345984A JP S60147649 A JPS60147649 A JP S60147649A
Authority
JP
Japan
Prior art keywords
piping
pipe
sensing coils
coils
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59003459A
Other languages
Japanese (ja)
Inventor
Masayuki Watabiki
綿引 誠之
Yasuji Sakuma
佐久間 保二
Shinji Sonoda
園田 真治
Soji Sasaki
佐々木 荘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59003459A priority Critical patent/JPS60147649A/en
Publication of JPS60147649A publication Critical patent/JPS60147649A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure surely and precisely a flaw and thinning without contacting by setting an electromagnet and one or plural electromagnetic wave radiating and sensing coils or independent sensing coils to a running body without contacting with inside and outside walls of a piping. CONSTITUTION:A permanent, superconductive, or normally conductive electromagnet 3 is set to a running car 5, which is run on the inside and the outside, for example, the inside of a piping 1 by a traction rod 2, in the axial direction of the piping 1 or the direction orthogonal to this direction to generate a DC magnetic field. One or plural electromagnetic wave radiating and sensing coils 7 or independent sensing coils 7 are set to the surface of the running car 5 which faces the part where a magnetic flux 8 is flowed in the pipe, and electromagnetic waves are radiated from radiating coils 7, and reflected electromagnetic waves are detected by sensing coils 7. Thus, all flaws and thinning in the part where the running car can run are measured without water neither plants.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、配管の内外より配管の傷及び腐蝕等を測定す
る素子に係り、管内外を走行する走行体との組合せによ
りその目的を素子の管壁への非接触の状態で確実に計測
を可能とした素子に係る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an element for measuring damage, corrosion, etc. of piping from the inside and outside of the pipe, and the purpose of this invention is to improve the purpose of the element by combining it with a traveling body that runs inside and outside the pipe. The present invention relates to an element that enables reliable measurement without contacting the pipe wall.

〔発明の背景〕[Background of the invention]

従来の技術としては、超音波探傷方法をベースに、超音
波発受信素子を管内通過可能な走行体に装着し、計測の
際は走行体と管壁の間には水を充填するいわゆる水浸超
音波探傷法がその目的を達していた。一方配管の探傷を
非接触で行うと言う方法は、管の内部又は外部に電磁石
を装着し、別途発生せしめる管面の渦電流と磁場との作
用によυ管に軸方向の歪波を作りこの歪波が主に半径方
向の傷に反射しリターンする反射波をキャッチし傷の有
無を調査する方法が確立されつつある、これ等の方法の
中、前者の水浸超音波探傷法を使用する方法では水を使
用せねばならず特定の配管例えば原子力のコンデンサー
チューブ等のもの以外は適用性が極めて薄く、また後者
の磁場と渦電流の作用による軸方向の歪波の利用方法は
、配管軸に直角な方向の傷すなわち半径方向の傷のみし
か探知出来ない欠点がある。
Conventional technology is based on the ultrasonic flaw detection method, in which an ultrasonic transmitter/receiver element is attached to a moving body that can pass through the pipe, and during measurement, water is filled between the moving body and the pipe wall using a so-called water immersion method. Ultrasonic flaw detection had achieved its purpose. On the other hand, a non-contact method for testing piping involves installing an electromagnet inside or outside the pipe, and creating axial strain waves in the υ pipe through the interaction of a separately generated eddy current on the pipe surface and a magnetic field. Methods are being established to detect the presence or absence of flaws by catching the reflected waves, in which this distorted wave is mainly reflected from flaws in the radial direction. Among these methods, the former water immersion ultrasonic flaw detection method is used. This method requires the use of water and is extremely difficult to apply except for specific piping, such as condenser tubes in nuclear power plants.The latter method, which uses axial distortion waves due to the action of magnetic fields and eddy currents, is extremely difficult to apply to piping. It has the disadvantage that it can only detect flaws in the direction perpendicular to the axis, that is, in the radial direction.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点をなくシ、水又はカプラン
トを用いず、かつ配管のあらゆる方向の傷又は腐蝕の状
況を素子を非接触に保ったまま走行体(又は素子)を走
行させつつその対応する部分の計測を確実に精密に可能
とする探傷素子を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, to avoid using water or couplant, and to prevent damage or corrosion in all directions of the piping by running the traveling body (or element) while keeping the element out of contact with the piping. It is an object of the present invention to provide a flaw detection element that enables reliable and precise measurement of the corresponding portion.

〔発明の概要〕[Summary of the invention]

本発明は、原理的に確立されている直流磁場内へ電磁波
を放射せしめ、これが管面に誘起させる渦電流と上記磁
場との作用によるローレンツhを被測定体の内部に歪弾
性波を発生させ、これが管の厚み方向に伝播して傷又は
腐蝕面に到り、そこでの反射によシ再び被測定体の表面
に達し、磁場との作用に基づく誘導電流によシ放射され
る電磁波を感応コイルによってキャッチし後に接続され
る信号処理装置により正確な計測を行うと言う原理を応
用し、管内外に管の軸方向又はこれに直角方向に永久磁
石又は超電導若しくは常電導の電磁石を走行体(素子が
走行体であることはあり得る)に装着し上記の直流磁界
を構成し、この直流磁石の管壁と相対する面又は、管内
に磁束の流れている部分と相対している走行体の面に1
ヶ若しくは複数個の電磁波放射コイル兼感応コイル又は
別個の感応コイルを装着しこの放射コイルから例えば数
MHzの電磁波を放射し、反射電磁波を感応コイルで検
出する様にしたものであるうこの際磁極表面に対する管
面では垂直磁束が入射するので、管内の歪波は横波、平
行磁束部の歪波は従波となり十分な区別が可能となる。
The present invention radiates electromagnetic waves into a DC magnetic field, which has been established in principle, and generates strain elastic waves inside the object to be measured through Lorentzian h due to the interaction of the eddy currents induced in the tube surface and the magnetic field. This propagates in the thickness direction of the tube, reaches a scratched or corroded surface, and is reflected there, reaching the surface of the object to be measured again, and sensing the electromagnetic waves emitted by the induced current caused by the interaction with the magnetic field. Applying the principle that accurate measurements are made by a signal processing device that is caught by a coil and connected later, permanent magnets or superconducting or normal-conducting electromagnets are installed inside and outside the tube in the axial direction of the tube or in a direction perpendicular to this. (It is possible that the element is a running body) to form the above DC magnetic field, and the surface of the DC magnet facing the tube wall, or the side of the traveling body facing the part where the magnetic flux flows in the tube. 1 on the face
It is equipped with one or more electromagnetic wave radiating coils and sensing coils or separate sensing coils, emitting electromagnetic waves of, for example, several MHz from the radiating coils, and detecting reflected electromagnetic waves with the sensing coils. Since perpendicular magnetic flux is incident on the tube surface relative to the surface, the distorted waves in the tube become transverse waves, and the distorted waves in the parallel magnetic flux section become follower waves, which can be sufficiently distinguished.

一方十分に長い管の探傷を可能ならしめる為、かつ管壁
と素子間の密着させる計測法で生ずる問題点を解決する
為、管の壁面と素子間に相応するギャップを設け、かつ
このギャップがほぼ一定となる様位置決めに走行体に車
輪又はキャスター等を装着し特別な場合には素子の回転
又は偏心を別に設けたアクチュエーターにより行い計測
の精度をアップする構成としたものである。
On the other hand, in order to enable flaw detection on sufficiently long tubes, and to solve the problems that arise with the measurement method in which the tube wall and the element are brought into close contact, a corresponding gap is created between the tube wall and the element, and this gap is The configuration is such that wheels or casters are attached to the traveling body to maintain a nearly constant position, and in special cases, the rotation or eccentricity of the element is performed using a separate actuator to improve measurement accuracy.

〔発明の実施例〕[Embodiments of the invention]

第1図に於て1は配管である。この場合管の内側用の素
子を例として選定している。本図は素子にけん引走行型
でけん引ロッド2により管の軸方向に移動する方式であ
る。この際走行は5によってなされる。基本構成である
磁石は3でありこの場合4の励磁コイルにより励磁され
直流磁束は8の如くギャップ12を通じて素子と管を通
るパスが構成される。上記励磁コイルは6のケーブルか
ら電流を供給される。次の構成である放射及び感応コイ
ルは7に示す如く磁極の表面又は管内の磁束が管の軸と
平行となっている場所に対応する走行体(素子)の表面
に1ケ又は複数個に管の半径方向の電磁波が発射又は入
射する様に巻かれている5この信号処理部分は走行体の
内部で行われるか或いは管径が十分小さいものについて
は管の外部へ6を通して信号が伝達され外部で処理がな
される。
In FIG. 1, 1 is a pipe. In this case, an element for the inside of a tube has been selected as an example. This figure shows a type in which the element is towed and travels, and is moved in the axial direction of the pipe by a towing rod 2. At this time, the running is done by 5. The basic structure consists of 3 magnets, in which case they are excited by the excitation coil 4, and the DC magnetic flux forms a path through the element and the tube through the gap 12 as shown in 8. The excitation coil is supplied with current from the 6 cables. As shown in 7, the radiation and sensing coils having the following configuration are arranged in one or more tubes on the surface of the magnetic pole or on the surface of the traveling body (element) corresponding to the place where the magnetic flux in the tube is parallel to the axis of the tube. 5 This signal processing part is carried out inside the traveling body, or if the pipe diameter is sufficiently small, the signal is transmitted through 6 to the outside of the pipe. Processing is done in

今直流磁界が4により発生している時放射及び感応コイ
ル7よシ数MHzの電磁波13を発射するこれが1の内
側に到着するとローレンツカが発生し歪波14は音速に
て反対側の壁に到達しここシャルが生じ再び7に到達す
る。この場合は管の肉厚が変化した場合を最も簡単な為
に示すが13の出発から16の到着までの時間を得れば
厚みの2倍の情報が得られるわけである。本素子では腐
蝕のみでなく信号の処理の仕方によってクラック、ピン
λ\−ル等も検出可能である。即ち本素子を管内外をギ
ャップを以って走行させることによシ配管の探傷が可能
である。
Now, when a DC magnetic field is generated by 4, the radiation and sensing coil 7 emits an electromagnetic wave 13 of several MHz. When this reaches the inside of 1, Lorentzka is generated, and the distorted wave 14 hits the opposite wall at the speed of sound. When it reaches this point, a charu occurs and it reaches 7 again. In this case, the case where the wall thickness of the tube changes is shown to be the simplest, but if we obtain the time from the departure of tube 13 to the arrival of tube 16, we can obtain twice as much information about the thickness. With this element, it is possible to detect not only corrosion but also cracks, pins, etc., depending on the way the signal is processed. That is, by running this element inside and outside the pipe with a gap, it is possible to detect flaws in piping.

第2図には本請求範囲にあるものであるがその一例を示
す。即ち配管は総て真円ではなく楕円その他の形状が考
えられ、第1図の構造例では円周方向で磁束の著しい不
均等が生ずることが考えられるそこで計測する個所は常
に一定の基礎的物理条件を保つ為いいかえればギャップ
即ち磁束を一定に保つ為の手段が有効となる。この目的
で素子又は走行体にアクチュエーター11を装着しキャ
スター9等をガイドにしてOの回りを回転させ得る構造
、或いは素子自体が円筒形ではなく円筒形を軸方向に切
断した型のもの構成る軸を中心に回転させ所定の目的を
得るものが当然前えられこれ等は総て本案に包含される
。又第4図の如く走行部が複数個に分割されこれに7が
またがっているもの等も本案に含まれる。
FIG. 2 shows an example of a device within the scope of the present claims. In other words, the piping is not a perfect circle but may have an elliptical or other shape, and in the structural example shown in Figure 1, it is possible that the magnetic flux is significantly uneven in the circumferential direction. In other words, it is effective to maintain the gap, that is, a means to keep the magnetic flux constant. For this purpose, an actuator 11 is attached to the element or a traveling body, and the structure is such that it can be rotated around O using casters 9 etc. as a guide, or the element itself is not cylindrical but has a cylindrical shape cut in the axial direction. Of course, there are devices that rotate around an axis to achieve a predetermined purpose, and all of these are included in the present invention. Further, as shown in FIG. 4, the running section is divided into a plurality of sections, and a section 7 straddles the sections.

〔発明の効果〕〔Effect of the invention〕

本案によれば配管の内外を走行しつつ走行可能な部分総
ての傷、減肉を計測することが可能でありガス、電線管
等への大々的な応用が可能である。
According to the present invention, it is possible to measure flaws and wall thinning in all parts of piping while traveling inside and outside the piping, and it can be widely applied to gas pipes, electrical conduits, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構成と動作原理を示す一例の略図
であり第2図は請求範囲に示している2゜3の補足説明
?略図、第3図は計測理論を示す略図、第4図は応用例
の一例の略図を示す。 1・・・配管、2・・・けん引ロッド、3,3′・・・
磁極、及び走行体、4・・・励磁コイル、5・・・走行
車 、6・・・動力、信号ケーブル、7・・・放射、感
応コイル、8・・・磁束、9・・・キャスター(等)、
1o・・・素子の中心の軌跡、11・・・アクチュエー
ター、12・・・ギャップ、13・・・放射電磁波、1
4・・・前進音波、15・・・反射音波、16・・・リ
ターン電磁波、17・・・結合ロンド。 代理人 弁理士 高橋明夫
Fig. 1 is a schematic diagram of an example showing the basic configuration and operating principle of the present invention, and Fig. 2 is a supplementary explanation of 2゜3 shown in the claims. FIG. 3 is a schematic diagram showing the measurement theory, and FIG. 4 is a schematic diagram of an example of an application. 1... Piping, 2... Towing rod, 3, 3'...
Magnetic pole and running body, 4... Excitation coil, 5... Running vehicle, 6... Power, signal cable, 7... Radiation, sensing coil, 8... Magnetic flux, 9... Caster ( etc),
1o...Trajectory of the center of the element, 11...Actuator, 12...Gap, 13...Radiation electromagnetic wave, 1
4... forward sound wave, 15... reflected sound wave, 16... return electromagnetic wave, 17... coupling rondo. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、配管内外の自動走行体又はけん引又は押入型走行体
において、単体又は複数の走行体の一部に配管の軸方向
又はこれと直角方向に永久、又は超電導若しくは常電導
の電磁石を装着しその磁極面又は配管に磁力線が配管の
軸方向に流れている部分に対応した走行体部に1ヶ若し
くは複数個の電磁波放射コイル兼感応コイル又は別個の
感応コイルを装着したことを特徴とする配管用電磁探傷
素子。 2、素子の磁石部、放射コイル及び感応コイル部は配管
の内外径に対して非接触となる様走行及び計測に最適な
ギャップを有する特許請求の範囲第1項記載の配管用電
磁探傷素子。 3、本素子と管壁とのギャップが一定となりかつ十分に
走行出来る様に径方向に位置決め兼走行車輪又はキャス
ター等を有する構造若しくは素子の一部又は全体に位置
決め前回転車輪又はキャスター等が装着され素子部が外
部アクチュエーターによって箸−内外において回転若し
くは偏心の可能である特許請求の範囲第1項記載の配管
用電磁探傷素子。
[Scope of Claims] 1. In an automatic running body or a towing or pushing type running body inside or outside of a pipe, a part of a single or multiple running bodies has permanent, superconducting or normal conductivity in the axial direction of the pipe or in a direction perpendicular thereto. An electromagnet is attached, and one or more electromagnetic radiation coils and sensing coils or separate sensing coils are installed on the magnetic pole surface or on the traveling body part corresponding to the part of the piping where the lines of magnetic force flow in the axial direction of the piping. An electromagnetic flaw detection element for piping featuring the following. 2. The electromagnetic flaw detection element for piping according to claim 1, wherein the magnet part, the radiation coil, and the sensing coil part of the element have an optimal gap for traveling and measurement so that they do not come into contact with the inner and outer diameters of the pipe. 3. A structure that has positioning and running wheels or casters in the radial direction, or a part or the whole of the element is equipped with pre-positioning rotating wheels or casters so that the gap between the element and the pipe wall is constant and it can travel sufficiently. 2. The electromagnetic flaw detection element for piping according to claim 1, wherein the element part can be rotated or decentered between the inside and outside of the chopstick by an external actuator.
JP59003459A 1984-01-13 1984-01-13 Electromagnetic flaw detector for piping Pending JPS60147649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003459A JPS60147649A (en) 1984-01-13 1984-01-13 Electromagnetic flaw detector for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003459A JPS60147649A (en) 1984-01-13 1984-01-13 Electromagnetic flaw detector for piping

Publications (1)

Publication Number Publication Date
JPS60147649A true JPS60147649A (en) 1985-08-03

Family

ID=11557904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003459A Pending JPS60147649A (en) 1984-01-13 1984-01-13 Electromagnetic flaw detector for piping

Country Status (1)

Country Link
JP (1) JPS60147649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20112451A1 (en) * 2011-12-30 2013-07-01 Eni Spa APPARATUS AND METHOD TO MONITOR THE STRUCTURAL INTEGRITY OF A CONDUCT BY SUPERCONDUCTOR MAGNET

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20112451A1 (en) * 2011-12-30 2013-07-01 Eni Spa APPARATUS AND METHOD TO MONITOR THE STRUCTURAL INTEGRITY OF A CONDUCT BY SUPERCONDUCTOR MAGNET
WO2013098729A1 (en) * 2011-12-30 2013-07-04 Eni S.P.A. Apparatus and method for monitoring the structural integrity of a pipeline by means of a superconducting magnet
US9535037B2 (en) 2011-12-30 2017-01-03 Eni S.P.A. Apparatus and method for monitoring the structural integrity of a pipeline by means of a superconducting magnet
NO344647B1 (en) * 2011-12-30 2020-02-17 Eni Spa Apparatus and method for monitoring structural integrity of a pipeline using a superconducting magnet

Similar Documents

Publication Publication Date Title
AU2005238857B2 (en) ID-OD discrimination sensor concept for a magnetic flux leakage inspection tool
US5461313A (en) Method of detecting cracks by measuring eddy current decay rate
US8079266B2 (en) Device for testing material and measuring thickness on a test object having at least electrically conducting and ferromagnetic material parts
JP3669706B2 (en) Nondestructive evaluation of pipes and tubes using magnetostrictive sensors
US20010017541A1 (en) Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes
JP2845446B2 (en) Eddy current probe
CA2941509C (en) Pipeline inspection tool
US20040189289A1 (en) Method for testing prestressed concrete pipes
US4104922A (en) Electromagnetic transducer
WO2023245969A1 (en) Eddy current sensor carried on pipeline cleaner, and pipeline defect detection method
JPH0715455B2 (en) Rotating eddy current roll head
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
RU2102738C1 (en) Flaw detector-tool for intrapipe examination of pipe-lines
US3496457A (en) Signal normalization apparatus for pipeline logging
JPH0599903A (en) Rotary crossed-wound eddy-current coil head for inspecting pipe
US6320375B1 (en) Method for detection of rare earth metal oxide inclusions in titanium and other non-magnetic or metal alloy castings
JPS60147649A (en) Electromagnetic flaw detector for piping
KR20190000715U (en) Inspection apparatus for heat exchanger tube
GB2471386A (en) Pipeline inspection tool with double spiral EMAT sensor array
JPS637895Y2 (en)
RU2790942C1 (en) Pipeline monitoring device using electromagnetic acoustic technology
JPS6324152A (en) Probe for eddy current flaw detection
RU2102737C1 (en) Gear for intrapipe magnetic flaw detection of wall of steel pipe-lines
JP2556584Y2 (en) Remote field eddy current sensor
JP2009175027A (en) Magnetizing device, and pipe inspection device