JPS60147527A - Suction device for internal combustion engine - Google Patents

Suction device for internal combustion engine

Info

Publication number
JPS60147527A
JPS60147527A JP59003062A JP306284A JPS60147527A JP S60147527 A JPS60147527 A JP S60147527A JP 59003062 A JP59003062 A JP 59003062A JP 306284 A JP306284 A JP 306284A JP S60147527 A JPS60147527 A JP S60147527A
Authority
JP
Japan
Prior art keywords
intake
speed
engine
suction
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59003062A
Other languages
Japanese (ja)
Other versions
JPH0239611B2 (en
Inventor
Shigeru Suzuki
茂 鈴木
Motoki Tanaka
田中 求来
Yasuo Kitami
北見 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59003062A priority Critical patent/JPS60147527A/en
Publication of JPS60147527A publication Critical patent/JPS60147527A/en
Publication of JPH0239611B2 publication Critical patent/JPH0239611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve the engine in its output performance both during a low and a high speed runnings with a compact structure, by arranging the same such that all suction chambers may automatically change their effective volumes from a small to a high level, upon the engine operation changed from a low speed suction passage to a high speed suction passage. CONSTITUTION:While an engine is operated in a low speed, an actuator 15 remain inoperative closing switch valves 9, 10 to interrupt the inlet side of high speed suction passage 5 and also the communication between suction chambers 7, 8. Thus, an air or a fuel-air mixture is withdrawn into the suction chamber 7 through a suction air controlling device 12 and sucked into the combustion chamber 2, passing through a low speed suction passage 6, a branch port 5a, the downstream side of high speed suction passage 5 and a suction port 3. In this way, the engine can provide a desired output performance in its low speed. During the high speed operation of engine, the high speed suction passage 5 is opened to establish communication between suction chambers 7, 8. The air or the fuel-air mixture is thus caused to expand immediately up to the suction chamber 8, and withdrawn into the combustion chamber 2 through the high speed suction passage 5 and the suction port 3.

Description

【発明の詳細な説明】 本発明は、内燃機関の吸気ポート長さが異なる低速吸気
路及び高速吸気路を並列に接続し、機関の低速及び高速
運転状態に応じて上記両眼気路を選択的に作動させ、常
に吸気慣性効果により機関の充填効率を高めて高出力を
発揮するようにした内燃機関の吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention connects a low-speed intake passage and a high-speed intake passage of an internal combustion engine with different intake port lengths in parallel, and selects the two eye airways according to the low-speed and high-speed operating conditions of the engine. The present invention relates to an intake system for an internal combustion engine that is operated in a controlled manner and constantly increases the filling efficiency of the engine due to the intake inertia effect to achieve high output.

従来、かかる吸気装置として、低速及び高速吸気路の入
口を共通1個の吸気室に開口させると共に、高速吸気路
に、機関の低速運転時に閉弁し高速運転時に開弁する開
閉弁を設けたものが知られている。このような吸気装置
は、機関の吸気量を1個の吸気量制御装置により制御し
得る利点を有するが、長さが異なる低速及び高速吸気路
を共通1個の吸気室に開口させる関係から、吸気室が必
然的に大きく形成されることになる。
Conventionally, as such an intake device, the entrances of the low-speed and high-speed intake passages are opened to a common intake chamber, and the high-speed intake passage is provided with an on-off valve that closes when the engine is running at low speed and opens when the engine is running at high speed. something is known. Such an intake system has the advantage that the intake air amount of the engine can be controlled by one intake air amount control device, but because the low-speed and high-speed intake paths of different lengths are opened into a common intake chamber, The intake chamber will inevitably be formed large.

ところで本発明者等は、吸気室の容積の大小が機関の運
転性能に次のような影響を与えることを種々の試験研究
により究明した。
By the way, the present inventors have found through various test studies that the size of the volume of the intake chamber has the following influence on the operating performance of the engine.

(1)吸気室の容積が成る大きさを超えると、低速吸気
路の作動時に機関のアイドリンクが不安定になったり、
アイドリンクから急加速操作したときの機関の応答性が
低下したりする。
(1) If the volume of the intake chamber exceeds this value, the idle link of the engine may become unstable when the low-speed intake passage is activated.
Engine responsiveness may decrease when sudden acceleration is performed from idle link.

(2)多気筒内燃機関において1個の吸気室を各気筒に
共通に使用する場合には、吸気室の容積が小さすぎると
、各気筒の吸気脈動が干渉し合って充填効率が低下し、
所期の高出力性能が発揮されなくなる。
(2) When one intake chamber is commonly used for each cylinder in a multi-cylinder internal combustion engine, if the volume of the intake chamber is too small, the intake pulsations of each cylinder will interfere with each other and the charging efficiency will decrease.
The desired high output performance will no longer be achieved.

(3)多気筒内燃機関において共鳴過給を行う場合には
、共鳴点(機関回転数)は吸気室の容積によって決定さ
れる。
(3) When performing resonance supercharging in a multi-cylinder internal combustion engine, the resonance point (engine speed) is determined by the volume of the intake chamber.

このような結果から、機関の運転性能を常に良好にする
ためには、吸気室の容積を機関の高速及び低速運転域に
応じて大小に調節し得ることが望本発明は、このような
要求を満足させることができる前記吸気装置を提供する
ことを目的とし、その特徴は、内燃機関の吸気ポートに
長さが異る低速吸気路及び高速吸気路を並列に接続し、
前記低速吸気路の入口には吸気量制御装置に連なる第1
吸気室を接続し、また前記高速吸気路の入口には第1開
閉弁を介して第2吸気室を接続し、前記第1及び第2吸
気室間を、前記第1開閉弁に連動した第2開閉弁を介し
て互いに接続したことにある。
Based on these results, in order to always improve the operating performance of the engine, it is desirable to be able to adjust the volume of the intake chamber depending on the high-speed and low-speed operating ranges of the engine. The purpose of the present invention is to provide the above-mentioned intake device that can satisfy the above requirements, and its characteristics are that a low-speed intake passage and a high-speed intake passage of different lengths are connected in parallel to the intake port of an internal combustion engine,
At the entrance of the low-speed intake passage, there is a first valve connected to the intake air amount control device.
A second intake chamber is connected to the inlet of the high-speed intake passage via a first on-off valve, and a second on-off valve is connected to the first on-off valve to connect the first and second intake chambers. They are connected to each other via two on-off valves.

以下、図面により本発明の一実施例について説明すると
、内燃機関のシリンダヘッド1には燃焼室2と、該呈2
に開口する吸気ポート3とが設けられ、この吸気ポート
3は吸気弁4により開閉される。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. A cylinder head 1 of an internal combustion engine includes a combustion chamber 2 and a combustion chamber 2.
An intake port 3 that opens to is provided, and this intake port 3 is opened and closed by an intake valve 4.

吸気ポート3はシリンダヘッド1の一側面に外端を開口
させており、これに高速吸気路5が連続的に接続される
。高速吸気路5の途中には分岐口5aが設けられており
、これに低速吸気路6が接続される。
The intake port 3 has an outer end opened on one side of the cylinder head 1, and a high-speed intake passage 5 is continuously connected to this. A branch port 5a is provided in the middle of the high-speed intake passage 5, and a low-speed intake passage 6 is connected to this branch port 5a.

低速吸気路6の入口には第1吸気室7が常時連通するよ
うに接続される。また高速吸気路5の入口には第1開閉
弁9を介して第2吸気室8が接続される。さらに第1及
び第2吸気室7,8間は第2開閉弁10を介して互いに
接続される。
A first intake chamber 7 is connected to the entrance of the low-speed intake passage 6 so as to be in continuous communication with the first intake chamber 7 . Further, a second intake chamber 8 is connected to the entrance of the high-speed intake passage 5 via a first on-off valve 9 . Further, the first and second intake chambers 7 and 8 are connected to each other via a second on-off valve 10.

而して、高速吸気路5の断面積は低速吸気路6のそれよ
り大きく設定される。また吸気ポート3及び高速吸気路
5の合計長さは、吸気慣性効果により高速運転時での充
填効率を最大に高め得る第]の長さり、に設定され、ま
た吸気ポート3、分岐口5aより下流の高速吸気路5及
び低速吸気路6の合計長さは、吸気慣性効果により低速
運転時での充填効率を最大に高め得る第2の長さL2に
設定され、したがって第2の長さL2は第1の長さり、
よりも大きくなっている。
Thus, the cross-sectional area of the high-speed intake passage 5 is set larger than that of the low-speed intake passage 6. In addition, the total length of the intake port 3 and the high-speed intake passage 5 is set to a length that can maximize the charging efficiency during high-speed operation due to the intake inertia effect, and the total length of the intake port 3 and the branch port 5a is The total length of the downstream high-speed intake passage 5 and low-speed intake passage 6 is set to the second length L2 that can maximize the charging efficiency during low-speed operation due to the intake inertia effect, and therefore the second length L2 is the first length,
It is larger than.

第1吸気室7の入口には、吸入空気量または混合気量を
調節する1次及び2次絞弁11..11□を備えた吸気
量制御装置12が装着される。
At the inlet of the first intake chamber 7, primary and secondary throttle valves 11. .. An intake air amount control device 12 having a diameter of 11□ is installed.

前記第1及び第2開閉弁9,10は互いに連動するよう
1本の弁軸13に担持され、この弁軸13の一端に固設
された作動レバー14には作動器15が連結される。こ
の作動器15は、通常は両開閉弁9,10を閉弁位置に
保持しているが、機関が所定の高速運転状態になったと
きこれに応動して両開閉弁9,10を同時に開弁し得る
ようになっている。
The first and second on-off valves 9 and 10 are supported on a single valve shaft 13 so as to be interlocked with each other, and an actuator 15 is connected to an operating lever 14 fixed to one end of the valve shaft 13. This actuator 15 normally holds both the on-off valves 9 and 10 in the closed position, but when the engine enters a predetermined high-speed operating state, the actuator 15 simultaneously opens both on-off valves 9 and 10. It is now possible to speak.

次にこの実施例の作用を説明すると、機関の低速運転時
には、作動器15は不作動状態にあって紀1及び第2開
閉弁9,10を閉弁し、高速吸気路5の入口側を遮断す
ると共に第1及び第2吸気室7,8間の連通を遮断して
いる。したがって、機関の吸入行程に伴い吸気量制御装
置12を通して第1吸気室7に吸入された空気または混
合気は低速吸気路6を通り、更に分岐口5aから高速吸
気路5の下流側を経て吸気ポート3を通り、燃焼室2に
吸入される。
Next, the operation of this embodiment will be explained. When the engine is operating at low speed, the actuator 15 is in an inactive state and closes the first and second on-off valves 9 and 10, opening the inlet side of the high-speed intake passage 5. At the same time, communication between the first and second intake chambers 7 and 8 is also interrupted. Therefore, the air or mixture sucked into the first intake chamber 7 through the intake air amount control device 12 during the intake stroke of the engine passes through the low-speed intake passage 6, and then passes through the downstream side of the high-speed intake passage 5 from the branch port 5a and is then taken into the intake air. It passes through port 3 and is sucked into combustion chamber 2.

而して、前述のように低速吸気路6、分岐口5aより下
流の高速吸気路5及び吸気ポート3の合計長さは、機関
の低速運転時における吸気慣性効果により充填効率を最
大に高め得る比較的長い第1の長さり、に設定されてい
るので、機関の低速出力性能を満足させることができる
Therefore, as described above, the total length of the low-speed intake passage 6, the high-speed intake passage 5 downstream of the branch port 5a, and the intake port 3 can maximize the charging efficiency due to the intake inertia effect during low-speed operation of the engine. Since the first length is set to be relatively long, the low speed output performance of the engine can be satisfied.

機関が所定の高速運転状態に入ると、作動器15が作動
して第1及び第2開閉弁9,10を開弁し、高速吸気路
5を導通させると共に第1及び第2吸気室7,8間を連
通させる。すると、機関の吸入行程時、吸気量制御装置
12より第1吸気室7に吸入された空気または混合気は
、直ちに第2吸気室8まで広がり、そして低速吸気路6
よりも断面積が大きくて吸気抵抗が小さい高速吸気路5
を通り、吸気ポート3を経て燃焼室2に吸入される。
When the engine enters a predetermined high-speed operating state, the actuator 15 operates to open the first and second on-off valves 9 and 10, thereby making the high-speed intake passage 5 conductive and opening the first and second intake chambers 7, Connect between 8. Then, during the intake stroke of the engine, the air or mixture sucked into the first intake chamber 7 by the intake air amount control device 12 immediately spreads to the second intake chamber 8, and then flows through the low-speed intake path 6.
High-speed intake passage 5 with a larger cross-sectional area and lower intake resistance than
The air is drawn into the combustion chamber 2 via the intake port 3.

而して、前述のように高速吸気路5ば、吸気ポート3に
連続的に接続され、しかも高速吸気路5及び吸気ボート
30合計長さは機関の所定の高速運転時における吸気慣
性効果により充填効率を最大に高め得る比較的短い第1
の長さLlに設定されているので、吸気慣性効果が効果
的に発揮されて機関の高出力性能を満足させることがで
きる。
As mentioned above, the high-speed intake passage 5 is continuously connected to the intake port 3, and the total length of the high-speed intake passage 5 and the intake boat 30 is limited by the intake inertia effect during predetermined high-speed operation of the engine. A relatively short first step that can maximize efficiency.
Since the length Ll is set, the intake inertia effect is effectively exhibited and the high output performance of the engine can be satisfied.

また、上記のように、低速運転時には第2開閉弁10の
閉弁により第2吸気室8を休止させて第1吸気室7のみ
を低速吸気路6に連通し、高速運転時には第2開閉弁1
0の開弁により両眼気室7゜8を高速吸気路5に連通す
るので、全吸気室7゜8の有効容積は、低速運転時には
小さく、高速運転時には大きく自動的に制御される。し
たがって低速運転時にはアイドリンクを安定させると共
にアイドリンクからの加速性を向上させることができ、
そして高速運転時には、多気筒内燃機関の場合、他の気
筒の吸気脈動に干渉されることなく高速吸気路5が所期
の吸気慣性効果を発揮し、機関出力を向上させることが
できる。
In addition, as described above, during low-speed operation, the second intake chamber 8 is stopped by closing the second on-off valve 10, and only the first intake chamber 7 is communicated with the low-speed intake passage 6, and during high-speed operation, the second on-off valve 1
Since both eye air chambers 7.8 are communicated with the high-speed intake passage 5 by opening the valve at 0, the effective volume of the total intake chamber 7.8 is automatically controlled to be small during low-speed operation and large during high-speed operation. Therefore, when driving at low speeds, it is possible to stabilize the idle link and improve acceleration from the idle link.
During high-speed operation, in the case of a multi-cylinder internal combustion engine, the high-speed intake passage 5 exerts the desired intake inertia effect without being interfered with by the intake pulsation of other cylinders, and the engine output can be improved.

また、第1及び第2吸気室7,8の合計容積を、機関の
所望の高速運転域で共鳴過給を行うべく設定すれば、充
填効率が更に高まり、機関出力の一層の向上を図ること
ができる。
Furthermore, if the total volume of the first and second intake chambers 7 and 8 is set to perform resonance supercharging in the desired high-speed operating range of the engine, the charging efficiency can be further increased and the engine output can be further improved. I can do it.

以上のように本発明によれば、内燃機関の吸気ポートに
長さが異る低速吸気路及び高速吸気路を並列に接続し、
前記低速吸気路の入口には吸気量制御装置に連なる第1
吸気室を接続し、また前記高速吸気路の入口には第1開
閉弁を介して第2吸気室を接続し、前記第1及び第2吸
気室間を、前記第1開閉弁に連動した第2開閉弁を介し
ぞ互いに接続したので、低速吸気路から高速吸気路への
作動の切換時に全吸気室の有効容積が小から大に自動的
に切換えられ、その結果、低速吸気路の作動時には機関
の所期の低速出力性能を得ると共にアイドリンクを安定
させ、且つアイドリンクからの加速性を向上させること
ができ、また高速吸気路の作動時には、多気筒機関の場
合でも各気筒間の吸気脈動の干渉を避けつつ、機関の所
期の高速出力性能を得ることができる。しかも、その構
成は簡素で廉価に提供することができる。
As described above, according to the present invention, a low-speed intake passage and a high-speed intake passage of different lengths are connected in parallel to the intake port of an internal combustion engine,
At the entrance of the low-speed intake passage, there is a first valve connected to the intake air amount control device.
A second intake chamber is connected to the inlet of the high-speed intake passage via a first on-off valve, and a second on-off valve is connected to the first on-off valve to connect the first and second intake chambers. Since they are connected to each other through the two on-off valves, the effective volume of the total intake chamber is automatically switched from small to large when switching from low-speed intake passage to high-speed intake passage, and as a result, when the low-speed intake passage is activated, It is possible to obtain the desired low-speed output performance of the engine, stabilize the idle link, and improve acceleration from the idle link, and when the high-speed intake passage is activated, the intake air between each cylinder can be improved even in the case of a multi-cylinder engine. The desired high-speed output performance of the engine can be obtained while avoiding pulsation interference. Furthermore, the configuration is simple and can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の一実施例を示す縦断側面図である。 1・・・シリンダヘッド、2・・・燃焼室、3・・・吸
気ポート、4・・・吸気弁、5・・・高速吸気路、5a
・・・分岐口、6・・・低速吸気路、7,8・・・第1
.第2吸気室、9.10・・・第1.第2開閉弁、12
・・・吸気量制御装置、15・・・作動器 特許出願人 本田技研工業株式会社 誓cfドi?」1’
The drawing is a longitudinal sectional side view showing one embodiment of the device of the present invention. DESCRIPTION OF SYMBOLS 1... Cylinder head, 2... Combustion chamber, 3... Intake port, 4... Intake valve, 5... High speed intake path, 5a
... Branch port, 6 ... Low speed intake path, 7, 8 ... 1st
.. 2nd intake chamber, 9.10...1st. Second on-off valve, 12
... Intake air flow control device, 15... Actuator patent applicant Honda Motor Co., Ltd. CF de i? "1'

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の吸気ボートに長さが異る低速吸気路及び高速
吸気路を並列に接続し、前記低速吸気路の入口には吸気
量制御装置に連なる第1吸気室を接続し、また前記高速
吸気路の入口には第1開閉弁を介して第2吸気室を接続
し、前記第1及び第2吸気室間を、前記第1開閉弁に連
動した第2開閉弁を介して互いに接続してなる。内燃機
関の吸気装置。
A low-speed intake passage and a high-speed intake passage of different lengths are connected in parallel to an intake boat of an internal combustion engine, and a first intake chamber connected to an intake air amount control device is connected to the entrance of the low-speed intake passage. A second intake chamber is connected to the entrance of the passage via a first on-off valve, and the first and second intake chambers are connected to each other via a second on-off valve that is interlocked with the first on-off valve. Become. Intake system for internal combustion engines.
JP59003062A 1984-01-11 1984-01-11 Suction device for internal combustion engine Granted JPS60147527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003062A JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003062A JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS60147527A true JPS60147527A (en) 1985-08-03
JPH0239611B2 JPH0239611B2 (en) 1990-09-06

Family

ID=11546835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003062A Granted JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS60147527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235022A (en) * 1985-08-07 1987-02-16 Yamaha Motor Co Ltd Intake device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235022A (en) * 1985-08-07 1987-02-16 Yamaha Motor Co Ltd Intake device for engine

Also Published As

Publication number Publication date
JPH0239611B2 (en) 1990-09-06

Similar Documents

Publication Publication Date Title
US4763612A (en) Intake system for internal combustion engine
US4766853A (en) Intake passage for multi-cylinder engine
US4244333A (en) Induction system for an internal combustion engine
EP0330302B1 (en) Engine with variable area intake passages
US4702203A (en) Intake means of internal combustion engine
US4617896A (en) Internal combustion engine having three intake valves per cylinder
US5638785A (en) Variable air intake manifold
US4726340A (en) Intake system for multi-cylinder engine
US4683855A (en) Multiple valve engine
US4292944A (en) Intake control system for internal combustion engine
JPS614823A (en) Intake devce for internal-combustion engine
JPS60147527A (en) Suction device for internal combustion engine
JPS60233314A (en) Aspiration control device for internal-combustion engine
JPH0861072A (en) Intake controller for engine
JPS614821A (en) Intake device for internal-combustion engine
JPS62101821A (en) Intake device for multiple cylinder engine
JP3318357B2 (en) Engine intake control device
JP2995200B2 (en) Engine air supply
JPH04292534A (en) Exhaust control device of internal combustion engine for vehicle
JPS597539Y2 (en) Double intake internal combustion engine
JPS62139960A (en) Intake device for multiple cylinder engine
JPS60175730A (en) Intake-air device in multicylinder internal combustion engine
JPS61201824A (en) Air intake device for multicylinder engine
JPS6217316A (en) Air intake device for four-cycle multicylinder engine
JPS60125723A (en) Intake apparatus for internal combustion engine