JPH0239611B2 - - Google Patents

Info

Publication number
JPH0239611B2
JPH0239611B2 JP59003062A JP306284A JPH0239611B2 JP H0239611 B2 JPH0239611 B2 JP H0239611B2 JP 59003062 A JP59003062 A JP 59003062A JP 306284 A JP306284 A JP 306284A JP H0239611 B2 JPH0239611 B2 JP H0239611B2
Authority
JP
Japan
Prior art keywords
intake
speed
engine
chamber
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59003062A
Other languages
Japanese (ja)
Other versions
JPS60147527A (en
Inventor
Shigeru Suzuki
Motoki Tanaka
Yasuo Kitami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59003062A priority Critical patent/JPS60147527A/en
Publication of JPS60147527A publication Critical patent/JPS60147527A/en
Publication of JPH0239611B2 publication Critical patent/JPH0239611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 A 発明の目的 (1) 産業上の利用分野 本発明は、内燃機関の吸気ポート長さが異なる
低速吸気路及び高速吸気路を並列に接続し、機関
の低速及び高速運転状態に応じて上記両吸気路を
選択的に作動させ、常に吸気慣性効果により機関
の充填効率を高めて高出力を発揮するようにした
内燃機関の吸気装置に関する。
Detailed Description of the Invention A. Purpose of the Invention (1) Industrial Field of Application The present invention connects in parallel a low-speed intake passage and a high-speed intake passage with different intake port lengths of an internal combustion engine, and The present invention relates to an intake system for an internal combustion engine that selectively operates both of the intake passages according to the operating state, and constantly increases the filling efficiency of the engine due to the intake inertia effect to achieve high output.

(2) 従来の技術 従来、かかる吸気装置として、低速及び高速吸
気路の入口を共通の吸気室に開口させると共に、
高速吸気路に、機関の高速運転時にだけ開く吸気
路切換用開閉弁を設けたものが知られている。
(2) Prior Art Conventionally, such an intake device has the entrances of the low-speed and high-speed intake passages opening into a common intake chamber, and
It is known that the high-speed intake passage is provided with an intake passage switching valve that opens only when the engine is operating at high speed.

(3) 発明が解決しようとする課題 上記従来のような吸気装置は、機関の吸気量を
1個の吸気量制御装置により制御し得る利点を有
するが、長さが異なる低速及び高速吸気路を共通
1個の吸気室に開口させる関係から、吸気室が必
然的に大きく形成されることになる。
(3) Problems to be Solved by the Invention The conventional intake system described above has the advantage of being able to control the intake air amount of the engine with a single intake air amount control device, but it is difficult to control the intake air amount of the engine with a single intake air amount control device. Since the air intake chambers are opened to one common air intake chamber, the air intake chamber is inevitably formed to be large.

ところで本発明者等は、吸気室の容積が大小が
機関の運転性能に次のような影響を与えることを
種々の試験研究により究明した。
By the way, the inventors of the present invention have found through various tests and studies that the volume of the intake chamber has the following influence on the operating performance of the engine.

吸気室の容積が或る大きさを超えると、低速
吸気路の作動時に機関のアイドリングが不安定
になつたり、アイドリングから急加速操作した
ときの機関の応答性が低下したりする。
If the volume of the intake chamber exceeds a certain value, engine idling becomes unstable when the low-speed intake passage is activated, and engine responsiveness decreases when sudden acceleration is performed from idling.

多気筒内燃機関において1個の吸気室を各気
筒に共通に使用する場合には、吸気室の容積が
小さすぎると、各気筒の吸気脈動が干渉し合つ
て充填効率が低下し、所期の高出力性能が発揮
されなくなる。
When one intake chamber is commonly used for each cylinder in a multi-cylinder internal combustion engine, if the volume of the intake chamber is too small, the intake pulsations of each cylinder will interfere with each other, reducing the charging efficiency and reducing the expected efficiency. High output performance will no longer be achieved.

多気筒内燃機関において共鳴過給を行う場合
には、共鳴点(機関回転数)は吸気室の容積に
よつて決定される。
When performing resonance supercharging in a multi-cylinder internal combustion engine, the resonance point (engine speed) is determined by the volume of the intake chamber.

このような結果から、機関の運転性能を常に良
好にするためには、吸気室の容積を機関の高速及
び低速運転域に応じて大小に調節し得ることが望
まれる。
Based on these results, in order to always improve the operating performance of the engine, it is desirable to be able to adjust the volume of the intake chamber to be large or small depending on the high-speed and low-speed operating ranges of the engine.

本発明は、このような要求を満足させることが
できる前記吸気装置を提供することを目的として
いる。
An object of the present invention is to provide the intake device that can satisfy such requirements.

B 発明の構成 (1) 課題を解決するための手段 そして上記目的を達成するために本発明によれ
ば、多気筒内燃機関の吸気ポートに長さが異なる
低速吸気路及び高速吸気路を並列に接続すると共
に、その両吸気路の入口を、吸気量制御装置に連
なる吸気室に開口し、その吸気室と高速吸気路間
に吸気路切換用開閉弁を設けてなる、多気筒内燃
機関の吸気装置において、前記吸気室は、前記低
速吸気路と吸気量制御装置間を連通させる第1吸
気分室と、この第1吸気分室に容積調節用開閉弁
を介して接続される第2吸気分室とより構成さ
れ、前記吸気路切換用開閉弁及び容積調節用開閉
弁は、機関の低速運転時には共に閉弁状態に保持
され、また機関の高速運転時には共に開弁状態に
保持されるよう作動器に連結される。
B. Structure of the Invention (1) Means for Solving the Problems According to the present invention, in order to achieve the above object, a low-speed intake passage and a high-speed intake passage of different lengths are arranged in parallel at the intake port of a multi-cylinder internal combustion engine. An intake system for a multi-cylinder internal combustion engine, in which the inlets of both intake passages are opened to an intake chamber connected to an intake air amount control device, and an intake passage switching valve is provided between the intake chamber and the high-speed intake passage. In the device, the intake chamber includes a first intake chamber that communicates between the low-speed intake path and the intake air amount control device, and a second intake chamber that is connected to the first intake chamber via a volume adjustment on-off valve. The intake passage switching on-off valve and the volume adjustment on-off valve are connected to an actuator so that they are both held in a closed state when the engine is operating at low speed, and are both held in an open state when the engine is operating at high speed. be done.

(2) 作用 上記構成によれば、機関の高速運転時には両開
閉弁が開弁状態に保持されることにより、高速吸
気路を有効に作動させることができると共に、第
1及び第2吸気分室を相互に連通させて前記吸気
室の有効容積を比較的大きくすることができ、一
方、機関の低速運転時には両開閉弁が閉弁状態に
保持されることにより、低速吸気路を有効に作動
させることができると共に、第1及び第2吸気分
室間を遮断して前記吸気室の有効容積を比較的小
さくすることができる。
(2) Effect According to the above configuration, both on-off valves are kept open during high-speed operation of the engine, so that the high-speed intake passage can be effectively operated, and the first and second intake chambers can be opened. By communicating with each other, the effective volume of the intake chamber can be made relatively large, and on the other hand, when the engine is operating at low speed, both on-off valves are kept closed, thereby effectively operating the low-speed intake passage. At the same time, it is possible to cut off the first and second intake chambers and make the effective volume of the intake chamber relatively small.

したがつて高速吸気路の作動時には、各気筒間
の吸気脈動の干渉を避けつつ、機関の所期の高速
出力性能が得られ、一方、低速吸気路の作動時に
は、機関の所期の低速出力性能が得られると共に
アイドリングを安定させ、且つアイドリングから
の加速性を向上させることができる。
Therefore, when the high-speed intake passage is operating, the desired high-speed output performance of the engine can be obtained while avoiding the interference of intake pulsation between each cylinder, while when the low-speed intake passage is operating, the desired low-speed output performance of the engine is obtained. It is possible to obtain high performance, stabilize idling, and improve acceleration from idling.

(3) 実施例 以下、図面により本発明の一実施例について説
明すると、多気筒内燃機関のシリンダヘツド1に
は複数の燃焼室2と、その各燃焼室2に開口する
吸気ポート3とが設けられ、各吸気ポート3は吸
気弁4により開閉される。
(3) Embodiment An embodiment of the present invention will be described below with reference to the drawings. A cylinder head 1 of a multi-cylinder internal combustion engine is provided with a plurality of combustion chambers 2 and an intake port 3 opening into each combustion chamber 2. Each intake port 3 is opened and closed by an intake valve 4.

各吸気ポート3はシリンダヘツド1の一側面に
外端を開口させており、これに高速吸気路5が連
続的に接続される。高速吸気路5の途中には分岐
口5aが設けられており、これに低速吸気路6が
接続される。
Each intake port 3 has an open outer end on one side of the cylinder head 1, to which a high-speed intake passage 5 is continuously connected. A branch port 5a is provided in the middle of the high-speed intake passage 5, and a low-speed intake passage 6 is connected to this branch port 5a.

前記低速吸気路6及び高速吸気路5の各入口
は、吸気量制御装置12に連なる吸気室Cに開口
している。この吸気室Cは、低速吸気路6と吸気
量制御装置12間を連通させる第1吸気分室7
と、この第1吸気分室7に容積調節用開閉弁10
を介して接続される第2吸気分室8とより構成さ
れており、その第2吸気分室8と高速吸気路5間
は、該高速吸気路5の入口に設けた吸気路切換用
開閉弁9を介して接続される。
Each inlet of the low-speed intake passage 6 and the high-speed intake passage 5 opens into an intake chamber C connected to the intake air amount control device 12. This intake chamber C is a first intake chamber 7 that communicates between the low-speed intake passage 6 and the intake air amount control device 12.
And, a volume adjustment opening/closing valve 10 is installed in this first intake chamber 7.
The second intake chamber 8 is connected to the high-speed intake passage 5 through an intake passage switching valve 9 provided at the entrance of the high-speed intake passage 5. Connected via.

而して、高速吸気路5の断面積は低速吸気路6
のそれより大きく設定される。また吸気ポート3
及び高速吸気路5の合計長さは、吸気慣性効果に
より高速運転時での充填効率を最大に高め得る第
1の長さL1に設定され、また吸気ポート3、分
岐口5aより下流の高速吸気路5及び低速吸気路
6の合計長さは、吸気慣性効果により低速運転時
での充填効率を最大に高め得る第2の長さL2
設定され、したがつて第2の長さL2は第1の長
さL1よりも大きくなつている。
Therefore, the cross-sectional area of the high-speed intake passage 5 is the same as that of the low-speed intake passage 6.
is set larger than that of . Also, intake port 3
The total length of the high-speed intake passage 5 is set to the first length L 1 that can maximize the filling efficiency during high-speed operation due to the intake inertia effect, and the high-speed intake passage 5 downstream of the intake port 3 and the branch port 5a The total length of the intake passage 5 and the low-speed intake passage 6 is set to a second length L 2 that can maximize the charging efficiency during low-speed operation due to the intake inertia effect, and therefore the second length L 2 is larger than the first length L1 .

前記吸気量制御装置12は第1吸気分室7の入
口に装着されると共に、吸入空気量または混合気
量を調節する一次及び二次絞弁111,112を備
えている。
The intake air amount control device 12 is installed at the inlet of the first intake chamber 7, and includes primary and secondary throttle valves 11 1 and 11 2 that adjust the amount of intake air or the amount of air mixture.

前記両開閉弁9,10は互いに連動するよう1
本の弁軸13に担持されており、この弁軸13の
一端に固設された作動レバー14には作動器15
が連結される。この作動器15は、通常は両開閉
弁9,10を共に閉弁状態に保持しているが、機
関が所定の高速運転状態になつたときこれに応動
して両開閉弁9,10を共に開弁状態に切換保持
し得るように構成されている。
Both on-off valves 9 and 10 are arranged so that they interlock with each other.
The actuator 15 is carried on a real valve stem 13, and an actuator 15 is attached to an actuating lever 14 fixed to one end of the valve stem 13.
are concatenated. This actuator 15 normally keeps both the on-off valves 9 and 10 closed, but when the engine enters a predetermined high-speed operating state, the actuator 15 closes both the on-off valves 9 and 10. The valve is configured to be switched and maintained in the open state.

次にこの実施例の作用を説明すると、機関の低
速運転時には、作動器15は不作動状態にあつて
前記両開閉弁9,10を共に閉弁状態に保持し
て、高速吸気路5の入口側を遮断すると共に第1
及び第2吸気分室7,8間の連通を遮断してい
る。したがつて、機関の吸入行程に伴い吸気量制
御装置12を通して第1吸気分室7に吸入された
空気または混合気は低速吸気路6を通り、更に分
岐口5aから高速吸気路5の下流側を経て吸気ポ
ート3を通り、燃焼室2に吸入される。
Next, the operation of this embodiment will be explained. When the engine is operating at a low speed, the actuator 15 is in an inactive state and holds both the on-off valves 9 and 10 in a closed state, and the inlet of the high-speed intake passage 5 is While blocking the side, the first
And communication between the second intake chambers 7 and 8 is cut off. Therefore, the air or air-fuel mixture sucked into the first intake chamber 7 through the intake air amount control device 12 during the intake stroke of the engine passes through the low-speed intake passage 6, and further passes through the downstream side of the high-speed intake passage 5 from the branch port 5a. The air then passes through the intake port 3 and is sucked into the combustion chamber 2.

而して、前述のように低速吸気路6、分岐口5
aより下流の高速吸気路5及び吸気ポート3の合
計長さは、機関の低速運転時における吸気慣性効
果により充填効率を最大に高め得る比較的長い前
記第2の長さL2に設定されているので、機関の
低速出力性能を満足させることができる。
Therefore, as mentioned above, the low speed intake path 6 and the branch port 5
The total length of the high-speed intake passage 5 and the intake port 3 downstream of a is set to the relatively long second length L2 that can maximize the charging efficiency due to the intake inertia effect during low-speed operation of the engine. Therefore, the low speed output performance of the engine can be satisfied.

機関が所定の高速運転状態に入ると、作動器1
5が作動して前記両開閉弁9,10を開弁状態に
切換保持して、高速吸気路5を導通させると共に
第1及び第2吸気分室7,8間を連通させる。す
ると、機関の吸入行程時、吸気量制御装置12よ
り第1吸気分室7に吸入された空気または混合気
は、直ちに第2吸気分室8まで広がり、そして低
速吸気路6よりも断面積が大きくて吸気抵抗が小
さい高速吸気路5を通り、吸気ポート3を経て燃
焼室2に吸入される。
When the engine enters a predetermined high-speed operating state, actuator 1
5 operates to switch and maintain both the on-off valves 9 and 10 in an open state, thereby making the high-speed intake passage 5 conductive and communicating between the first and second intake chambers 7 and 8. Then, during the intake stroke of the engine, the air or mixture sucked into the first intake chamber 7 by the intake air amount control device 12 immediately spreads to the second intake chamber 8, which has a larger cross-sectional area than the low-speed intake passage 6. The air passes through the high-speed intake passage 5 with low intake resistance, and is drawn into the combustion chamber 2 via the intake port 3.

而して、前述のように高速吸気路5は、吸気ポ
ート3に連続的に接続され、しかも高速吸気路5
及び吸気ポート3の合計長さは機関の所定の高速
運転時における吸気慣性効果により充填効率を最
大に高め得る比較的短い前記第1の長さL1に設
定されているので、吸気慣性効果が効果的に発揮
されて機関の高出力性能を満足させることができ
る。
Therefore, as described above, the high-speed intake passage 5 is continuously connected to the intake port 3, and the high-speed intake passage 5 is connected continuously to the intake port 3.
Since the total length of the intake port 3 is set to the relatively short first length L1 that can maximize the charging efficiency due to the intake inertia effect during a predetermined high-speed operation of the engine, the intake inertia effect is reduced. It can be effectively exerted and satisfy the high output performance of the engine.

また、上記のように、低速運転時には容積調節
用開閉弁10の閉弁により第2吸気分室8を休止
させて第1吸気分室7のみを低速吸気路6に連通
し、一方、高速運転時には吸気路切換用開閉弁1
0の開弁により両吸気分室7,8を高速吸気路5
に連通するので、両吸気分室7,8よりなる吸気
室Cの有効容積を低速運転時には比較的小さく、
高速運転時には比較的大きく自動的に切換制御す
ることができる。したがつて、低速運転時にはア
イドリングを安定させると共にアイドリングから
の加速性を向上させることができ、そして高速運
転時には、他の気筒の吸気脈動に干渉されること
なく高速吸気路5が所期の吸気慣性効果を発揮
し、機関出力を向上させることができる。
In addition, as described above, during low-speed operation, the second intake chamber 8 is stopped by closing the volume adjustment on-off valve 10, and only the first intake chamber 7 is communicated with the low-speed intake passage 6, while during high-speed operation, the intake Road switching on/off valve 1
By opening the valve 0, both intake chambers 7 and 8 are connected to the high-speed intake passage 5.
Since the effective volume of the intake chamber C consisting of both intake chambers 7 and 8 is relatively small during low speed operation,
During high-speed operation, relatively large switching can be controlled automatically. Therefore, during low-speed operation, idling can be stabilized and acceleration from idling can be improved, and during high-speed operation, the high-speed intake passage 5 can provide the desired intake air without being interfered with by the intake pulsation of other cylinders. It exerts an inertial effect and can improve engine output.

また、第1及び第2吸気分室7,8の合計容積
を、機関の所望の高速運転域で共鳴過給を行うべ
く設定すれば、充填効率が更に高まり、機関出力
の一層の向上を図ることができる。
Furthermore, if the total volume of the first and second intake chambers 7 and 8 is set to perform resonance supercharging in the desired high-speed operating range of the engine, the filling efficiency can be further increased and the engine output can be further improved. Can be done.

C 発明の効果 以上のように本発明によれば、多気筒内燃機関
の吸気ポートに長さが異なる低速吸気路及び高速
吸気路を並列に接続すると共に、その両吸気路の
入口を、吸気量制御装置に連なる吸気室に開口
し、その吸気室と高速吸気路間に吸気路切換用開
閉弁を設けてなる、多気筒内燃機関の吸気装置に
おいて、前記吸気室は、前記低速吸気路と吸気量
制御装置間を連通させる第1吸気分室と、この第
1吸気分室に容積調節用開閉弁を介して接続され
る第2吸気分室とより構成され、前記吸気路切換
用開閉弁及び容積調節用開閉弁は、機関の低速運
転時には共に閉弁状態に保持され、また機関の高
速運転時には共に開弁状態に保持されるので、機
関の高速運転時には両開閉弁が開弁状態に保持さ
れることにより、高速吸気路を有効に作動させる
ことができると共に、第1及び第2吸気分室を相
互に連通させて前記吸気室の有効容積を比較的大
きくすることができ、一方、機関の低速運転時に
は両開閉弁が閉弁状態に保持されることにより、
低速吸気路を有効に作動させることができると共
に、第1及び第2吸気分室間を遮断して前記吸気
室の有効容積を比較的小さくすることができ、そ
れらの結果、高速吸気路の作動時には、各気筒間
の吸気脈動の干渉を避けつつ、機関の所期の高速
出力性能を得ることができ、また低速吸気路の作
動時には、機関の所期の低速出力性能を得ると共
にアイドリングを安定させ、且つアイドリングか
らの加速性を向上させることができる。しかも、
このような制御は、従来の吸気室を上記第1及び
第2吸気分室に分け且つその両吸気分室間を容積
調節用開閉弁によつて接続するだけの簡単な構成
を以て達成することができるから、吸気装置の構
造簡素化、延いてはコストダウンに寄与すること
ができるものである。
C. Effects of the Invention As described above, according to the present invention, a low-speed intake passage and a high-speed intake passage of different lengths are connected in parallel to the intake port of a multi-cylinder internal combustion engine, and the inlets of both intake passages are An intake system for a multi-cylinder internal combustion engine, which opens into an intake chamber connected to a control device and includes an intake passage switching on-off valve between the intake chamber and the high-speed intake passage, wherein the intake chamber is connected to the low-speed intake passage and the intake passage. It is composed of a first intake chamber that communicates between the quantity control devices, and a second intake chamber that is connected to the first intake chamber via a volume adjustment on-off valve, and includes the intake path switching on-off valve and the volume adjustment valve. Both on-off valves are kept closed when the engine is running at low speeds, and both are kept open when the engine is running at high speeds, so both on-off valves are kept open when the engine is running at high speeds. Therefore, the high-speed intake passage can be effectively operated, and the first and second intake chambers can be communicated with each other to make the effective volume of the intake chamber relatively large.On the other hand, when the engine is operating at low speed, By keeping both on-off valves closed,
The low-speed intake passage can be effectively operated, and the effective volume of the intake chamber can be made relatively small by blocking the first and second intake chambers, so that when the high-speed intake passage is operated, the effective volume of the intake chamber can be made relatively small. , it is possible to obtain the desired high-speed output performance of the engine while avoiding the interference of intake pulsation between each cylinder, and when the low-speed intake passage is activated, it is possible to obtain the desired low-speed output performance of the engine and stabilize idling. , and the acceleration from idling can be improved. Moreover,
Such control can be achieved with a simple configuration in which the conventional intake chamber is divided into the first and second intake chambers, and the two intake chambers are connected by a volume adjustment on-off valve. This can contribute to simplifying the structure of the intake device and, by extension, reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明装置の一実施例を示す縦断側面図
である。 C……吸気室、1……シリンダヘツド、2……
燃焼室、3……吸気ポート、5……高速吸気路、
6……低速吸気路、7,8……第1、第2吸気分
室、9……吸気路切換用開閉弁、10……容積調
節用開閉弁、12……吸気量制御装置。
The drawing is a longitudinal sectional side view showing one embodiment of the device of the present invention. C...Intake chamber, 1...Cylinder head, 2...
Combustion chamber, 3...Intake port, 5...High speed intake path,
6...Low-speed intake path, 7, 8...First and second intake compartments, 9...Intake path switching on-off valve, 10...Volume adjustment on-off valve, 12...Intake amount control device.

Claims (1)

【特許請求の範囲】[Claims] 1 多気筒内燃機関の吸気ポート3に長さが異な
る低速吸気路6及び高速吸気路5を並列に接続す
ると共に、その両吸気路5,6の入口を、吸気量
制御装置12に連なる吸気室Cに開口し、その吸
気室Cと高速吸気路5間に吸気路切換用開閉弁9
を設けてなる、多気筒内燃機関の吸気装置におい
て、前記吸気室Cは、前記低速吸気路6と吸気量
制御装置12間を連通させる第1吸気分室7と、
この第1吸気分室7に容積調節用開閉弁10を介
して接続される第2吸気分室8とより構成され、
前記吸気路切換用開閉弁9及び容積調節用開閉弁
10は、機関の低速運転時には共に閉弁状態に保
持され、また機関の高速運転時には共に開弁状態
に保持されるよう作動器15に連結されたことを
特徴とする、多気筒内燃機関の吸気装置。
1 A low-speed intake passage 6 and a high-speed intake passage 5 of different lengths are connected in parallel to the intake port 3 of a multi-cylinder internal combustion engine, and the inlets of both intake passages 5 and 6 are connected to an intake chamber connected to the intake air amount control device 12. An on-off valve 9 for switching the intake path is opened to C and between the intake chamber C and the high-speed intake path 5.
In the intake system for a multi-cylinder internal combustion engine, the intake chamber C includes a first intake chamber 7 that communicates between the low-speed intake passage 6 and the intake air amount control device 12;
It is composed of a second intake chamber 8 connected to the first intake chamber 7 via a volume adjustment on-off valve 10,
The intake passage switching on-off valve 9 and the volume adjustment on-off valve 10 are connected to an actuator 15 so that they are both held in a closed state when the engine is operating at low speed, and are both held in an open state when the engine is operating at high speed. An intake system for a multi-cylinder internal combustion engine, characterized by:
JP59003062A 1984-01-11 1984-01-11 Suction device for internal combustion engine Granted JPS60147527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003062A JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003062A JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS60147527A JPS60147527A (en) 1985-08-03
JPH0239611B2 true JPH0239611B2 (en) 1990-09-06

Family

ID=11546835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003062A Granted JPS60147527A (en) 1984-01-11 1984-01-11 Suction device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS60147527A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726541B2 (en) * 1985-08-07 1995-03-29 ヤマハ発動機株式会社 Engine intake system

Also Published As

Publication number Publication date
JPS60147527A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US4763612A (en) Intake system for internal combustion engine
US6148794A (en) Induction control system for multi-valve engine
US4766866A (en) Intake system for engine
US4341188A (en) Two-cycle internal combustion engine including means for varying cylinder port timing
US4766853A (en) Intake passage for multi-cylinder engine
US4300504A (en) Internal combustion engine
US4516540A (en) Two-cycle internal combustion engine including means for varying cylinder port timing
US4702203A (en) Intake means of internal combustion engine
EP0054964B1 (en) Multi-intake valve type internal combustion engine
JPH0262688B2 (en)
US4683855A (en) Multiple valve engine
JPH06105042B2 (en) Engine intake system
US5806484A (en) Induction control system for engine
JPS6125916A (en) Intake-air device in engine
US4660514A (en) Two-cycle internal combustion engine including means for varying cylinder port timing
JPH0319892B2 (en)
US4825821A (en) Carburetor pulse-back damping system for 2-cycle internal combustion engine
JPH0239611B2 (en)
JPS60233314A (en) Aspiration control device for internal-combustion engine
JPS614821A (en) Intake device for internal-combustion engine
JPS63280822A (en) Intake device for multi-cylinder engine
JPH0823292B2 (en) Engine intake system
KR900006871B1 (en) Intabe means of internal combustion engine
JPH041299Y2 (en)
JPH0347415B2 (en)