JPH0347415B2 - - Google Patents

Info

Publication number
JPH0347415B2
JPH0347415B2 JP3306184A JP3306184A JPH0347415B2 JP H0347415 B2 JPH0347415 B2 JP H0347415B2 JP 3306184 A JP3306184 A JP 3306184A JP 3306184 A JP3306184 A JP 3306184A JP H0347415 B2 JPH0347415 B2 JP H0347415B2
Authority
JP
Japan
Prior art keywords
intake
speed
low
passages
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3306184A
Other languages
Japanese (ja)
Other versions
JPS60175730A (en
Inventor
Shigeru Suzuki
Motoki Tanaka
Yasuo Kitami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59033061A priority Critical patent/JPS60175730A/en
Publication of JPS60175730A publication Critical patent/JPS60175730A/en
Publication of JPH0347415B2 publication Critical patent/JPH0347415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10111Substantially V-, C- or U-shaped ducts in direction of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10131Ducts situated in more than one plane; Ducts of one plane crossing ducts of another plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/116Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 本発明は、多気筒内燃機関の吸気装置、特にク
ランク軸の軸線方向に配列した複数のシリンダを
有する1対のシリンダ列をV字状に配設してなる
V型多気筒内燃機関において、各シリンダの複数
の吸気ポートに複数本の低速吸気路と、これら低
速吸気路よりも短かい複数本の高速吸気路とを並
列に接続し、機関の低速及び高速運転状態に応じ
て上記両吸気路を選択的に作動させ、常に吸気慣
性効果により機関の充填効率を高めて高出力を発
揮するようにした吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a multi-cylinder internal combustion engine, and particularly to an intake system for a multi-cylinder internal combustion engine. In a multi-cylinder internal combustion engine, multiple low-speed intake passages and multiple high-speed intake passages that are shorter than these low-speed intake passages are connected in parallel to multiple intake ports of each cylinder, and the low-speed and high-speed operating states of the engine are connected in parallel. The present invention relates to an intake system that selectively operates both of the intake passages according to the conditions, thereby constantly increasing the filling efficiency of the engine due to the intake inertia effect and producing high output.

従来、内燃機関の吸気装置として、低速及び高
速吸気路の入口を共通1個の吸気室に開口させる
と共に、高速吸気路に、機関の低速運転域で閉弁
し高速運転域で開弁する開閉弁を設けたものが知
られている。このような吸気装置は、機関の吸気
量を1個の吸気量制御装置により制御し得る利点
を有するが、長さが異なる低速及び高速吸気路を
共通1個の吸気室に開口させる関係から、吸気室
が必然的に大きく形成されることになる。
Conventionally, as an intake system for an internal combustion engine, the entrances of the low-speed and high-speed intake passages are opened to a common intake chamber, and the high-speed intake passage has an open/close valve that closes in the low-speed operating range of the engine and opens in the high-speed operating range. Types with a valve are known. Such an intake system has the advantage that the intake air amount of the engine can be controlled by one intake air amount control device, but because the low-speed and high-speed intake paths of different lengths are opened into a common intake chamber, The intake chamber will inevitably be formed large.

ところで本発明者等は、吸気室の容積の大小が
機関の運転性能に次のような影響を与えることを
種々の試験研究により究明した。
By the way, the present inventors have found through various test studies that the size of the volume of the intake chamber has the following influence on the operating performance of the engine.

(1) 吸気室の容積が或る大きさを超えると、低速
吸気路の作動時に機関のアイドリングが不安定
になつたり、アイドリングから急加速操作した
ときに機関の応答性が低下したりする。
(1) If the volume of the intake chamber exceeds a certain size, engine idling may become unstable when the low-speed intake passage is activated, or engine responsiveness may decrease when sudden acceleration is performed from idling.

(2) 多気筒内燃機関において1個の吸気室を各気
筒に共通に使用する場合には、吸気室の容積が
小さすぎると、各気筒の吸気脈動が干渉し合つ
て充填効率が低下し、所期の高出力性能が発揮
されなくなる。
(2) When one intake chamber is commonly used for each cylinder in a multi-cylinder internal combustion engine, if the volume of the intake chamber is too small, the intake pulsations of each cylinder will interfere with each other, reducing the filling efficiency. The desired high output performance will no longer be achieved.

(3) 多気筒内燃機関において共鳴過給を行う場合
には、共鳴点(機関回転数)は吸気室の容積に
よつて決定される。
(3) When performing resonance supercharging in a multi-cylinder internal combustion engine, the resonance point (engine speed) is determined by the volume of the intake chamber.

このような結果から、機関の運転性能を常に良
好にするためには、吸気室の容積を機関の高速及
び低速運転域に応じて大小に調節し得ることが望
まれる。
Based on these results, in order to always improve the operating performance of the engine, it is desirable to be able to adjust the volume of the intake chamber to be large or small depending on the high-speed and low-speed operating ranges of the engine.

本発明は、このような要求をV型多気筒内燃機
関において満足させると共に、各低速及び高速吸
気路を相互に干渉させることなくそれぞれ所定の
長さに容易に形成することができ、しかも両シリ
ンダ列間の有効利用により機関全体のコンパクト
化を図ることができる前記吸気装置を提供するこ
とを目的とする。
The present invention satisfies such requirements in a V-type multi-cylinder internal combustion engine, and can easily form each of the low-speed and high-speed intake passages to predetermined lengths without interfering with each other, and furthermore, the It is an object of the present invention to provide the above-mentioned intake device, which can make the entire engine more compact by effectively utilizing space between rows.

この目的の達成のために、本発明は、各シリン
ダ列の複数の吸気ポートに複数本の低速吸気路と
これら低速吸気路よりも短い複数本の高速吸気路
とを並列に接続し、両シリンダ列間の谷の外側に
配設されて吸気量制御装置に連なる第1吸気室に
前記各低速吸気路の入口を開口させ、また両シリ
ンダ列間の谷間に配設されると共に連通路を介し
て前記第1吸気室と連通する第2吸気室に前記各
高速吸気路の入口を開口させ、前記連通路及び前
記各高速吸気路に、機関の低速運転域で閉弁し高
速運転域で開弁する主開閉弁及び副開閉弁をそれ
ぞれ介装してなるものである。
To achieve this objective, the present invention connects a plurality of low-speed intake passages in parallel to a plurality of intake ports of each cylinder row and a plurality of high-speed intake passages that are shorter than these low-speed intake passages. The inlet of each of the low-speed intake passages is opened in a first intake chamber arranged outside the valley between the rows and connected to the intake air amount control device, and the inlet of each low-speed intake passage is opened in the first intake chamber arranged outside the valley between the cylinder rows and connected to the intake air amount control device. to open the inlets of each of the high-speed intake passages to a second intake chamber that communicates with the first intake chamber, and the communication passage and each of the high-speed intake passages are provided with valves that are closed in a low-speed operating range of the engine and opened in a high-speed operating range. A main on-off valve and a auxiliary on-off valve are interposed respectively.

以下、図面により本発明の一実施例について説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図に示す内燃機関はV型6気筒機関であ
り、したがつて左右V字状に開いて配置された2
つのシリンダ列C1,C2にはシリンダ1がそれぞ
れ3本宛クランク軸(図示せず)の軸線方向(第
1図の表裏方向)に配列して設けられている。
The internal combustion engine shown in Fig. 1 is a V-type six-cylinder engine, so two
Three cylinders 1 are arranged in each of the two cylinder rows C 1 and C 2 in the axial direction (front and back direction in FIG. 1) of a crankshaft (not shown).

両シリンダ列C1,C2の構造は略対称的である
ので、右側シリンダ列C2の構造についてのみ説
明すると、シリンダ1を形成されたシリンダブロ
ツク2の上面にはガスケツト4を介してシリンダ
ヘツド3が重合して結着される。シリンダ1には
ピストン5が摺合され、このピストン5に対面す
るシリンダヘツド3の底面には燃焼室6が凹設さ
れる。
Since the structures of both cylinder rows C 1 and C 2 are approximately symmetrical, only the structure of the right cylinder row C 2 will be explained. The upper surface of the cylinder block 2 in which the cylinder 1 is formed is connected to the cylinder head via the gasket 4. 3 is polymerized and bound together. A piston 5 is slidably fitted into the cylinder 1, and a combustion chamber 6 is recessed in the bottom surface of the cylinder head 3 facing the piston 5.

燃焼室6の天井面7は、3本のシリンダ1の配
列方向に延びる稜線Lから左右両側に向つて下る
2つの斜面7a,7bよりなつており(第1A図
参照)、両シリンダ列C1,C2間の谷V側に位置す
る斜面7bには1対の吸気弁口8,8が、また反
対側の斜面7bには同じく1対の排気弁口9,9
がそれぞれ稜線Lに沿つて並んで開口する。これ
ら吸気弁口8,8及び排気弁口9,9は動弁機構
10より駆動される各1対の吸気弁11,11及
び排気弁12,12によつてそれぞれ開閉され
る。これら4本の弁11,11;12,12に囲
まれる1本の点火栓13はシリンダヘツド3に螺
着され、その電極は燃焼室6の天井面7の中心部
に臨まされる。
The ceiling surface 7 of the combustion chamber 6 is made up of two slopes 7a and 7b that descend toward both left and right sides from a ridge line L extending in the direction in which the three cylinders 1 are arranged (see FIG. 1A), and both cylinder rows C 1 A pair of intake valve ports 8, 8 are provided on the slope 7b located on the valley V side between , C 2 , and a pair of exhaust valve ports 9, 9 are provided on the slope 7b on the opposite side.
are lined up along the ridge line L and opened. These intake valve ports 8, 8 and exhaust valve ports 9, 9 are opened and closed by a pair of intake valves 11, 11 and an exhaust valve 12, 12, respectively, which are driven by a valve mechanism 10. One spark plug 13 surrounded by these four valves 11, 11; 12, 12 is screwed onto the cylinder head 3, and its electrode faces the center of the ceiling surface 7 of the combustion chamber 6.

各1対の吸気弁口8,8及び排気弁口9,9
は、それぞれ共通の吸気ポート14及び排気ポー
ト15に連なり、吸気ポート14の入口は、谷V
に隣接するシリンダヘツド3の一側部上面に開口
し、排気ポート15の出口はシリンダヘツド3の
他側面に開口する。
One pair each of intake valve ports 8, 8 and exhaust valve ports 9, 9
are connected to the common intake port 14 and exhaust port 15, respectively, and the entrance of the intake port 14 is connected to the valley V
The exhaust port 15 opens at the upper surface of one side of the cylinder head 3 adjacent to the cylinder head 3, and the outlet of the exhaust port 15 opens at the other side of the cylinder head 3.

第2図において、左側シリンダ列C1の3本の
吸気ポート14を上方より順に第1、第2、第3
吸気ポート141,142,143と呼び、右側シ
リンダ列C2の3本の吸気ポート14を上方より
順に第4、第5、第6吸気ポート144,145
146と呼ぶことにする。これら吸気ポートに空
気若しくは混合気を分配供給するための吸気マニ
ホールドMが両シリンダ列C1,C2間の谷Vに沿
つて配設される。
In Fig. 2, the three intake ports 14 of the left cylinder row C1 are arranged in order from above: first, second, and third.
They are called intake ports 14 1 , 14 2 , 14 3 , and the three intake ports 14 of the right cylinder row C 2 are called fourth, fifth, sixth intake ports 14 4 , 14 5 , in order from above.
Let's call it 14 6 . An intake manifold M for distributing and supplying air or air-fuel mixture to these intake ports is arranged along a valley V between both cylinder rows C 1 and C 2 .

吸気マニホールドMは、第2図ないし第10図
に示すように、第1〜第6吸気ポート141〜1
6の入口にそれぞれ接続される第1〜第6低速
吸気路161〜166と、これら低速吸気路161
〜166と並列に第1〜第6吸気ポート141〜1
6の入口にそれぞれ接続される第1〜第6高速
吸気路171〜176と、第1〜第6低速吸気路1
1〜166の入口a1〜a6が開口する共通1個の第
1吸気室181と、第1〜第6高速吸気路171
176の入口が開口する共通1個の第2吸気室1
2と、両吸気室181,182間を並列して連通
する第1及び第2連通路191,192と、第1及
び第2連通路191,192にそれぞれ介装された
第1及び第2主開閉弁201,202と、第1〜第
6高速吸気路171〜176にそれぞれ介装された
第1〜第6副開閉弁211〜216とを備えてい
る。
The intake manifold M has first to sixth intake ports 14 1 to 1, as shown in FIGS. 2 to 10.
The first to sixth low-speed intake passages 16 1 to 16 6 connected to the inlets of No. 4 6 , respectively, and these low-speed intake passages 16 1
~16 6 in parallel with the first to sixth intake ports 14 1 to 1
1 to 6 high-speed intake passages 17 1 to 17 6 connected to the inlets of No. 4 6 , respectively, and the first to sixth low-speed intake passages 1
A common first intake chamber 18 1 in which the inlets a 1 to a 6 of 6 1 to 16 6 open, and the first to sixth high-speed intake passages 17 1 to
17 1 common second intake chamber 1 with 6 inlets open
8 2 and first and second communication passages 19 1 and 19 2 that communicate in parallel between both the intake chambers 18 1 and 18 2 , and the first and second communication passages 19 1 and 19 2 , respectively. the first and second main on-off valves 20 1 and 20 2 and the first to sixth auxiliary on-off valves 21 1 to 21 6 interposed in the first to sixth high-speed intake passages 17 1 to 17 6 , respectively. We are prepared.

而して、各高速吸気路171〜176の断面積は
対応する低速吸気路161〜166のそれより大き
く設定される。また互いに連通する各吸気ポート
141〜146及び低速吸気路161〜166の合計
長さは、吸気慣性効果により低速運転域での充填
効率を最大に高め得る第1の長さL1に設定され、
互いに連通する吸気ポート141〜146及び高速
吸気路171〜176の合計長さは、吸気慣性効果
により高速運転域での充填効率を最大に高め得る
第2の長さL2に設定される。したがつて、この
第2の長さL2は前記第1の長さL1よりも充分短
く設定される。
Thus, the cross-sectional area of each of the high-speed intake passages 17 1 to 17 6 is set larger than that of the corresponding low-speed intake passage 16 1 to 16 6 . Further, the total length of each of the intake ports 14 1 to 14 6 and the low-speed intake passages 16 1 to 16 6 that communicate with each other is a first length L 1 that can maximize the charging efficiency in the low-speed operating range due to the intake inertia effect. is set to
The total length of the intake ports 14 1 to 14 6 and the high-speed intake passages 17 1 to 17 6 that communicate with each other is set to a second length L 2 that can maximize the charging efficiency in the high-speed operation range due to the intake inertia effect. be done. Therefore, this second length L2 is set to be sufficiently shorter than the first length L1 .

また、第1及び第2連通路191,192は各高
速吸気路171〜176よりも太く且つ短く形成さ
れる。
Further, the first and second communication passages 19 1 and 19 2 are formed to be thicker and shorter than each of the high-speed intake passages 17 1 to 17 6 .

吸気マニホールドMは、その加工・組立・整備
等を容易にするために、両シリンダC1,C2間の
谷Vに配設されて複数本のボルト22,22…に
より両シリンダ列C1,C2のシリンダヘツド3に
結着される第1ブロツクB1と、谷Vの第3及び
第6吸気ポート143,146側外側に配設されて
複数本のボルト23,23…により第1ブロツク
B1に結着される第2ブロツクB2と、谷Vにおい
て第1ブロツクB1の下面に弁支持板24を挟ん
で複数本のボルト25,25…により結着される
第3ブロツクB3とに分割される。
In order to facilitate processing, assembly, maintenance, etc., the intake manifold M is disposed in the valley V between both cylinders C 1 and C 2 and is connected to both cylinder rows C 1 , C 2 by a plurality of bolts 22 , 22 . The first block B1 is connected to the cylinder head 3 of C2 , and the first block B1 is connected to the third and sixth intake ports 143 , 146 of the valley V by a plurality of bolts 23, 23... 1 block
A second block B2 is connected to B1 , and a third block B3 is connected to the lower surface of the first block B1 in the valley V by a plurality of bolts 25, 25, with the valve support plate 24 in between. It is divided into

そして、前記第1〜第3高速吸気路171〜1
3及び第4〜第6高速吸気路174〜176は、
第9図に明示するように、それぞれ逆U字状をな
して互いに交差するように第1ブロツクB1、弁
支持板24及び第3ブロツクB3に亘つて形成さ
れ、また前記第1〜第6低速吸気路161〜166
は各高速吸気路171〜176の上方を通るように
第1及び第2ブロツクB1,B2に亘つて形成され、
また第1吸気室181は第2ブロツクB2に形成さ
れ、また前記第2吸気室182は谷Vの略全長に
亘るよう細長く第3ブロツクB3に形成され、ま
た前記第1及び第2連通路191,192は第1ブ
ロツクB1に形成され、また前記第1、第2主開
閉弁201,202及び第1〜第6副開閉弁211
〜216は弁支持体24に軸支される。かくして、
全低速吸気路161〜166、全高速吸気路171
〜176及び第2吸気室182は両シリンダ列C1
C2間の谷Vの中に配設され、第1吸気室181
みが谷Vの外側に配設される。上記のように、第
2吸気室182を谷Vの略全長に至る長さに形成
すると、該室182を第1〜第6吸気ポート141
〜146に連通する第1〜第6高速吸気路171
176の長さをそれぞれ精確に等長することがで
きる。
and the first to third high-speed intake passages 17 1 to 1
7 3 and the fourth to sixth high speed intake passages 17 4 to 17 6 are
As clearly shown in FIG. 9, the first block B 1 , the valve support plate 24 and the third block B 3 are formed in an inverted U shape and intersect with each other, and the first to third blocks 6 Low speed intake passage 16 1 ~ 16 6
is formed across the first and second blocks B 1 and B 2 so as to pass above each of the high-speed intake passages 17 1 to 17 6 ,
Further, the first intake chamber 18 1 is formed in the second block B 2 , and the second intake chamber 18 2 is elongated and formed in the third block B 3 so as to extend substantially over the entire length of the valley V. The two communication passages 19 1 , 19 2 are formed in the first block B 1 , and the first and second main on-off valves 20 1 , 20 2 and the first to sixth auxiliary on-off valves 21 1
21 6 is pivotally supported on the valve support 24 . Thus,
All low-speed intake passages 16 1 to 16 6 , all high-speed intake passages 17 1
~17 6 and the second intake chamber 18 2 are both cylinder rows C 1 ,
It is arranged in the valley V between C2 , and only the first intake chamber 181 is arranged outside the valley V. As described above, when the second intake chamber 18 2 is formed to have a length that extends approximately to the entire length of the valley V, the second intake chamber 18 2 is connected to the first to sixth intake ports 14 1 .
The first to sixth high-speed intake passages 17 1 communicating with ~14 6
17 The lengths of 6 can be made to be exactly the same length.

第1〜第6低速吸気路161〜166は、第1吸
気室181を取巻くように配列されると共に互い
に境界壁を共有するように結合され、これら低速
吸気路161〜166を略等長にすべく、対応する
吸気ポート141〜146までの距離に応じて各低
速吸気路161〜166の入口a1〜a6の第1吸気室
181への開口位置が選定される。
The first to sixth low-speed intake passages 16 1 to 16 6 are arranged so as to surround the first intake chamber 18 1 and are coupled to each other so as to share a boundary wall . In order to make the lengths approximately equal, the opening positions of the inlets a 1 to a 6 of each of the low-speed intake passages 16 1 to 16 6 to the first intake chamber 18 1 are adjusted according to the distances to the corresponding intake ports 14 1 to 14 6 . Selected.

第1吸気室181は、上記のようにこれらを取
り巻く6本の低速吸気路161〜166の互いに連
なる波形内周壁26と、その内周壁26の一端に
連設された閉塞壁27とにより画成される。この
ようにすると第1吸気室181を形成するための
箱体を特別に設ける必要がなく、構造が簡単であ
る。
The first intake chamber 18 1 has a corrugated inner circumferential wall 26 connected to each other of the six low-speed intake passages 16 1 to 16 6 surrounding these, and a blocking wall 27 connected to one end of the inner circumferential wall 26 as described above. defined by. In this way, there is no need to provide a special box for forming the first intake chamber 18 1 , and the structure is simple.

第1吸気室181の他端はその入口28として
開放され、この入口28には、吸入空気量または
混合気量を調節するための吸気量制御装置29が
装着される。
The other end of the first intake chamber 181 is opened as an inlet 28, and an intake air amount control device 29 for adjusting the amount of intake air or the amount of air mixture is attached to the inlet 28.

弁支持体24には、図示しないクランク軸と平
行に延びる左右1対の弁軸301,302が回転自
在に支承され、左側の弁軸301に第1主開閉弁
201及び第4〜第6副開閉弁214〜216が取
付けられ、右側の弁軸302に第2主開閉弁202
及び第1〜第3副開閉弁211〜213が取付けら
れる。
The valve support body 24 rotatably supports a pair of left and right valve shafts 30 1 and 30 2 that extend parallel to a crankshaft (not shown), and the left valve shaft 30 1 has a first main opening/closing valve 20 1 and a fourth ~Sixth auxiliary on-off valves 21 4 to 21 6 are installed, and a second main on-off valve 20 2 is attached to the right valve shaft 30 2
And first to third sub-opening/closing valves 21 1 to 21 3 are attached.

第1図に示すように、両弁軸301,302はそ
れぞれ外端に作動レバー311,312を備えてお
り、これら作動レバー311,312は連動リンク
32を介して相互に連結されると共に作動器33
に連結される。この作動器33は、通常は全開閉
弁を閉弁位置に保持しており、機関が所定の高回
転状態になるとこれに応動して全開閉弁を開弁す
るようになつている。
As shown in FIG. 1, both valve shafts 30 1 and 30 2 are provided with operating levers 31 1 and 31 2 at their outer ends, respectively, and these operating levers 31 1 and 31 2 are connected to each other via an interlocking link 32. coupled and actuator 33
connected to. This actuator 33 normally holds the full open/close valve in a closed position, and opens the full open/close valve in response to the engine reaching a predetermined high rotational speed state.

作動器33の形式としては、負圧式、電磁式
等、種々のものが採用できるが、負圧式の場合は
機関のブースト負圧により全開閉弁を閉弁し、ば
ね力で開弁するように構成することが望ましい。
Various types of actuator 33 can be adopted, such as a negative pressure type and an electromagnetic type, but in the case of a negative pressure type, the full-open/close valve is closed by the boost negative pressure of the engine and opened by spring force. It is desirable to configure

尚、図中34は吸気制御装置29のエアクリー
ナ、351〜356は各吸気ポート141〜146
臨むように吸気マニホールドMに装着された燃料
噴射ノズルであり、これらノズルは、前記吸気量
制御装置29を気化器とした場合には勿論不要と
なる。
In the figure, 34 is an air cleaner of the intake control device 29, and 35 1 to 35 6 are fuel injection nozzles mounted on the intake manifold M so as to face each of the intake ports 14 1 to 14 6 . Of course, this is not necessary if the quantity control device 29 is a vaporizer.

次にこの実施例の作用を説明すると、機関の低
速運転時には、作動器33は不作動状態にあつて
主、副すべての開閉弁201,202;211〜2
6を閉弁し、高速吸気路171〜176を遮断す
ると共に第1及び第2吸気室181,182間を不
通にしている。
Next, the operation of this embodiment will be explained. When the engine is operating at low speed, the actuator 33 is in an inactive state and all of the main and sub-opening valves 20 1 , 20 2 ; 21 1 to 2
1 6 is closed, the high-speed intake passages 17 1 to 17 6 are cut off, and communication between the first and second intake chambers 18 1 and 18 2 is interrupted.

したがつて、機関の吸入行程に伴い吸気量制御
装置29で計量されて第1吸気室181に吸入さ
れた空気または混合気は該室181から第1〜第
6低速吸気路161〜166へ分配され、第1〜第
6吸気ポート141〜146を経て対応するシリン
ダ1内に吸入される。
Therefore, the air or mixture that is metered by the intake air amount control device 29 and sucked into the first intake chamber 18 1 during the intake stroke of the engine is transferred from the chamber 18 1 to the first to sixth low-speed intake passages 16 1 to 16 1 . 16 6 and is sucked into the corresponding cylinder 1 through the first to sixth intake ports 14 1 to 14 6 .

而して、前述のように、互いに連通する各吸気
ポート141〜146及び低速吸気路161〜166
の合計長さは、機関の低速運転時における吸気慣
性効果により充填効率を最大に高め得る比較的長
い第1の長さL1に設定されているので、機関の
低速出力性能を満足させることができる。
Thus, as described above, each of the intake ports 14 1 to 14 6 and the low-speed intake passages 16 1 to 16 6 communicate with each other.
The total length of L is set to a relatively long first length L1 that can maximize the charging efficiency due to the intake inertia effect during low-speed engine operation, so that it is possible to satisfy the low-speed output performance of the engine. can.

機関が所定の高速運転状態に入ると、作動器3
3が作動して主、副全開閉弁201,202;21
〜216を開弁し、第1、第2吸気室181,1
2間を連通させると共に第1〜第6高速吸気路
171〜176をそれぞれ導通させる。すると、機
関の吸入行程時、吸気量制御装置29より第1吸
気室181に吸入された空気または混合気は、直
ちに第1、第2連通路191,192を通つて第2
吸気室182まで広がり、そして各低速吸気路1
1〜166よりも吸気抵抗が遥かに小さい第1〜
第6高速吸気路171〜176に分配され、第1〜
第6吸気ポート141〜146を経て対応するシリ
ンダ1に吸入される。
When the engine enters a predetermined high-speed operating state, actuator 3
3 is activated and the main and auxiliary full open/close valves 20 1 , 20 2 ; 21
1 to 21 6 are opened, and the first and second intake chambers 18 1 , 1
8 2 and the first to sixth high-speed intake passages 17 1 to 17 6 respectively. Then, during the intake stroke of the engine, the air or mixture sucked into the first intake chamber 18 1 from the intake air amount control device 29 immediately passes through the first and second communication passages 19 1 and 19 2 to the second intake chamber 18 1 .
The intake chamber expands to 18 2 , and each low-speed intake passage 1
6 1 ~ 16 The first ~ which has much lower intake resistance than 6
distributed to the sixth high-speed intake passages 17 1 to 17 6 ;
The air is sucked into the corresponding cylinder 1 through the sixth intake ports 14 1 to 14 6 .

而して、前述のように、互いに連通する各第1
〜第6吸気ポート141〜146及び第1〜第6高
速吸気路171〜176の合計長さは機関の所定の
高速運転時における吸気慣性効果により充填効率
を最大に高め得る比較的短い第2の長さL2に設
定されているので、機関の高出力性能を満足させ
ることができる。
Therefore, as mentioned above, each of the first
~ The total length of the sixth intake ports 14 1 to 14 6 and the first to sixth high speed intake passages 17 1 to 17 6 is a relatively long length that can maximize the charging efficiency due to the intake inertia effect during predetermined high speed operation of the engine. Since the second length L2 is set to be short, it is possible to satisfy the high output performance of the engine.

しかも、低速運転時には第1、第2主開閉弁2
1,202の閉弁により第2吸気室182を休止
させて第1吸気室181のみを第1〜第6低速吸
気路161〜166に連通し、高速運転時には両主
開閉弁201,202の開弁により両吸気室181
182を第1〜第6高速吸気路171〜176に連
通されるので、全吸気室181,182の有効容積
は、低速運転時には小さく、高速運転時には大き
く自動的に制御される。したがつて、低速運転域
ではアイドリングを安定させると共にアイドリン
グからの加速性を向上させることができ、そして
高速運転域では、各高速吸気路が他の高速吸気路
の吸気脈動に干渉されることなく所期の吸気慣性
効果を発揮し得るので、機関の出力を確実に向上
させることができる。
Moreover, during low speed operation, the first and second main on-off valves 2
By closing the valves 0 1 and 20 2 , the second intake chamber 18 2 is stopped and only the first intake chamber 18 1 is communicated with the first to sixth low-speed intake passages 16 1 to 16 6 , and both main openings and closings are performed during high-speed operation. By opening the valves 20 1 and 20 2 , both intake chambers 18 1 ,
18 2 are communicated with the first to sixth high-speed intake passages 17 1 to 17 6 , the effective volume of all the intake chambers 18 1 and 18 2 is automatically controlled to be small during low-speed operation and large during high-speed operation. . Therefore, in the low-speed driving range, it is possible to stabilize idling and improve acceleration from idling, and in the high-speed driving range, each high-speed intake passage is not interfered with by the intake pulsation of other high-speed intake passages. Since the desired intake inertia effect can be exerted, the output of the engine can be reliably improved.

また、第1及び第2吸気室181,182の合計
容積を、機関の所望の高速運転域で共鳴過給を行
うべく設定すれば、充填効率が更に高まり、機関
出力の一層の向上を図ることができる。
Furthermore, if the total volume of the first and second intake chambers 18 1 and 18 2 is set to perform resonance supercharging in the desired high-speed operating range of the engine, the charging efficiency will further increase and the engine output will be further improved. can be achieved.

尚、上記実施例では2個の主開閉弁201,2
2を使用したが、両吸気室181,182間の連
通路を更に太く形成すれば主開閉弁を1個とする
こともできる。
In the above embodiment, two main on-off valves 20 1 , 2
0 2 is used, but if the communication path between the two intake chambers 18 1 and 18 2 is made thicker, the number of main opening/closing valves can be reduced to one.

以上のように本発明によれば、1対のシリンダ
列をV字状に配設してなるV型多気筒内燃機関に
おいて、各シリンダ列の複数の吸気ポートに複数
本の低速吸気路1と、これら低速吸気路よりも短
い複数本の高速吸気路とを並列に接続し、吸気量
制御装置に連なる第1吸気室に前記各低速吸気路
の入口を開口させ、また連通路を介して前記第1
吸気室と連通する第2吸気室に前記高速吸気路の
入口を開口させ、前記連通路及び前記各高速吸気
路に、機関の低速運転域で閉弁し高速運転域で開
弁する主開閉弁及び副開閉弁をそれぞれ介装した
ので、各低速吸気路から高速吸気路への作動の切
換時に全吸気室の有効容積が小から大に自動的に
切換えられ、その結果、各低速吸気路の作動時に
は機関の所期の低速出力性能を得ると共にアイド
リングを安定させ、且つアイドリングからの加速
性を向上させることができ、また各高速吸気路の
作動時には、他の高速吸気路の吸気脈動の干渉を
避けつつ、機関の所期の高速出力性能を得ること
ができる。
As described above, according to the present invention, in a V-type multi-cylinder internal combustion engine in which a pair of cylinder rows are arranged in a V-shape, a plurality of low-speed intake passages 1 are connected to a plurality of intake ports of each cylinder row. , a plurality of high-speed intake passages shorter than these low-speed intake passages are connected in parallel, and the inlets of each of the low-speed intake passages are opened in a first intake chamber connected to the intake air amount control device, and the 1st
The entrance of the high-speed intake passage is opened in a second intake chamber that communicates with the intake chamber, and a main opening/closing valve is provided in the communication passage and each of the high-speed intake passages, which closes in a low-speed operating range of the engine and opens in a high-speed operating range. and auxiliary opening/closing valves, the effective volume of the total intake chamber is automatically switched from small to large when the operation is switched from each low-speed intake path to the high-speed intake path, and as a result, the effective volume of each low-speed intake path is During operation, it is possible to obtain the desired low-speed output performance of the engine, stabilize idling, and improve acceleration from idling. Also, when each high-speed intake path is activated, interference with intake pulsation of other high-speed intake paths is achieved. The desired high-speed output performance of the engine can be obtained while avoiding this.

また、各低速吸気路に連なる第1吸気室を両シ
リンダ列間の谷の外側に、また各高速吸気路に連
なる第2吸気室を前記谷間にそれぞれ配設したの
で、両吸気室間の距離の差等により各低速及び高
速吸気路を相互に干渉させることなくそれぞれ所
望長さに容易に形成することができ、しかも上記
構成から前記谷間には第2吸気室のほか、低速及
び高速吸気路が配設されることになり、したがつ
て機関の全高があまり高くならず、そのコンパク
ト化に寄与することができる。
In addition, the first intake chamber connected to each low-speed intake path is placed outside the valley between both cylinder rows, and the second intake chamber connected to each high-speed intake path is placed in the valley, so that the distance between both intake chambers is Due to the difference between the low-speed and high-speed intake passages, it is possible to easily form each of the low-speed and high-speed intake passages to desired lengths without interfering with each other. Moreover, due to the above structure, in addition to the second intake chamber, the low-speed and high-speed intake passages can be formed in the valley. Therefore, the overall height of the engine does not become very high, which contributes to making it more compact.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図
はV型多気筒内燃機関全体の要部縦断正面図、第
1A図は第1図の機関のシリンダヘツドの底面
図、第2図は第1図の要部の平面図、第3図は第
1図の吸気マニホールドの側面図、第4図、第5
図及び第6図は第2図の−線、−線及び
−線断面図、第7図、第8図、第9図及び第
10図は第3図の−線、−線、−線
及び−線断面図である。 C1,C2…左、右側シリンダ列、M…吸気マニ
ホールド、V…谷、1…シリンダ、141〜146
…吸気ポート、161〜166…低速吸気路、17
〜176…高速吸気路、181,182…第1、第
2吸気室、191,192…連通路、201,202
…主開閉弁、211〜216…副吸気弁、33…作
動器。
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal sectional front view of the main parts of the entire V-type multi-cylinder internal combustion engine, FIG. 1A is a bottom view of the cylinder head of the engine shown in FIG. 1, and FIG. is a plan view of the main part of Figure 1, Figure 3 is a side view of the intake manifold in Figure 1, Figures 4 and 5 are
Figures 6 and 6 are sectional views taken along lines -, -, and - in Figure 2, and Figures 7, 8, 9, and 10 are sectional views taken along lines -, -, -, and - line sectional view. C 1 , C 2 ...Left and right cylinder rows, M...Intake manifold, V...Valley, 1...Cylinder, 14 1 to 14 6
...Intake port, 16 1 to 16 6 ...Low speed intake path, 17
1 to 17 6 ... High speed intake passage, 18 1 , 18 2 ... First and second intake chambers, 19 1 , 19 2 ... Communication passage, 20 1 , 20 2
...Main opening/closing valve, 21 1 to 21 6 ... Sub-intake valve, 33... Actuator.

Claims (1)

【特許請求の範囲】[Claims] 1 クランク軸の軸線方向に配列した複数のシリ
ンダをそれぞれ有する1対のシリンダ列をV字状
に配設してなるV型多気筒内燃機関において、各
シリンダ列の複数の吸気ポートに複数本の低速吸
気路とこれら低速吸気路よりも短い複数本の高速
吸気路とを並列に接続し、両シリンダ列間の谷の
外側に配設されて吸気量制御装置に連なる第1吸
気室に前記各低速吸気路の入口を開口させ、また
両シリンダ列間の谷間に配設されると共に連通路
を介して前記第1吸気室と連通する第2吸気室に
前記各高速吸気路の入口を開口させ、前記連通路
及び前記各高速吸気路に、機関の低速運転域で閉
弁し高速運転域で開弁する主開閉弁及び副開閉弁
をそれぞれ介装してなる、多気筒内燃機関の吸気
装置。
1. In a V-type multi-cylinder internal combustion engine in which a pair of cylinder rows each having a plurality of cylinders arranged in the axial direction of the crankshaft are arranged in a V-shape, a plurality of cylinders are connected to the plurality of intake ports of each cylinder row. A low-speed intake passage and a plurality of high-speed intake passages shorter than these low-speed intake passages are connected in parallel, and each of the above-mentioned Opening the entrance of the low-speed intake passage, and opening the entrance of each of the high-speed intake passages to a second intake chamber that is disposed in a valley between both cylinder rows and communicates with the first intake chamber via a communication passage. , an intake system for a multi-cylinder internal combustion engine, wherein a main on-off valve and a sub-on/off valve that close in a low-speed operating range of the engine and open in a high-speed operating range are interposed in the communication passage and each of the high-speed intake passages, respectively. .
JP59033061A 1984-02-23 1984-02-23 Intake-air device in multicylinder internal combustion engine Granted JPS60175730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033061A JPS60175730A (en) 1984-02-23 1984-02-23 Intake-air device in multicylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033061A JPS60175730A (en) 1984-02-23 1984-02-23 Intake-air device in multicylinder internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60111202A Division JPS618457A (en) 1985-05-23 1985-05-23 Internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60175730A JPS60175730A (en) 1985-09-09
JPH0347415B2 true JPH0347415B2 (en) 1991-07-19

Family

ID=12376221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033061A Granted JPS60175730A (en) 1984-02-23 1984-02-23 Intake-air device in multicylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS60175730A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278426A (en) * 1985-10-01 1987-04-10 Honda Motor Co Ltd Intake manifold device for v-type multiple cylinder engine
AT400741B (en) * 1989-01-20 1996-03-25 Avl Verbrennungskraft Messtech INTAKE SYSTEM FOR COMBUSTION ENGINES WITH SEVERAL CYLINDERS, ESPECIALLY V-ARRANGED

Also Published As

Publication number Publication date
JPS60175730A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US4809647A (en) Intake system for multi cylindered engine
US4766853A (en) Intake passage for multi-cylinder engine
US4702203A (en) Intake means of internal combustion engine
US4854271A (en) Intake manifold assembly for engines
CA1229534A (en) Intake system for internal combustion engine
JPH06105042B2 (en) Engine intake system
JPH0670371B2 (en) Multi-cylinder engine intake system
JPS5943923A (en) Suction system for multi-cylinder engine
US4553507A (en) Engine with additional shared flow control runner for two cylinders
US4381738A (en) Engine with additional shared flow control runner for two cylinders
JPH0347415B2 (en)
JPH04136420A (en) Intake device of engine
JPH0377379B2 (en)
JPH0322514Y2 (en)
JPH0235854B2 (en)
JPH0222231B2 (en)
JPH03271558A (en) Intake device of multiplecylinder v-engine
JPH0648111Y2 (en) Engine intake system
KR900006871B1 (en) Intabe means of internal combustion engine
JPH0338427B2 (en)
GB2184164A (en) Internal combustion engine with intake manifold
JPH072981Y2 (en) Engine intake system
JPH0528338Y2 (en)
JPH0330598Y2 (en)
JPH0649864Y2 (en) Intake device for V-type multi-cylinder internal combustion engine