JPS60146512A - Automatic gain control method - Google Patents

Automatic gain control method

Info

Publication number
JPS60146512A
JPS60146512A JP237384A JP237384A JPS60146512A JP S60146512 A JPS60146512 A JP S60146512A JP 237384 A JP237384 A JP 237384A JP 237384 A JP237384 A JP 237384A JP S60146512 A JPS60146512 A JP S60146512A
Authority
JP
Japan
Prior art keywords
signal
multiplied
control signal
automatic gain
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP237384A
Other languages
Japanese (ja)
Other versions
JPH0250648B2 (en
Inventor
Hiroyasu Murata
博康 村田
Takashi Kako
加来 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP237384A priority Critical patent/JPS60146512A/en
Publication of JPS60146512A publication Critical patent/JPS60146512A/en
Publication of JPH0250648B2 publication Critical patent/JPH0250648B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals

Abstract

PURPOSE:To obtain an automatic gain control method with less distortion of the amplitude of an input signal even with a wide dynamic range by changing a feedback coefficient based on a control signal. CONSTITUTION:An output signal X' is applied with absolute value processing by an absolute value circuit 2 and a difference with a reference signal Ref is obtained by an adder 3. The difference and the feedback coefficient delta are multiplied by a multiplier 4, its result is added with an output of an integration device 6 at an adder 5, the timewise mean value is obtained and multiplied and added with prescribed coefficients K, L so as to obtain a control signal alpha. An input signal X is multiplied with the control signal alpha at a multiplier 1 and the output X' is obtained. The control signal alpha is fed also to a multiplier 9, where the signal is multiplied with a coefficient beta so as to obtain said feedback coefficient delta. As a result, the entire loop gain is not changed so much to the input change and almost uniformed, then the distortion of amplitude is less even with a wide dynamic range.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回線等を経由して伝えられた信号の入力レベ
ルを均一にするための自動利得制御法に関し、特に入力
レベルに対するループゲインを均一化して、振幅方向の
劣化を最小限としうる自動利得制御法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an automatic gain control method for making the input level of a signal transmitted via a line etc. uniform, and in particular, it relates to an automatic gain control method for making the input level of a signal transmitted via a line etc. This invention relates to an automatic gain control method that can minimize deterioration in the amplitude direction.

〔技術の背景〕[Technology background]

一般に回線を通して伝えられる信号には、歪が生じてお
り、入力レベルが変化していることから、自動利得制御
回路を通して入力レベルを均一にする様にしており、変
復調器(モデム)等において広く利用されている。
Generally, signals transmitted through lines are distorted and the input level changes, so an automatic gain control circuit is used to equalize the input level, and is widely used in modems, etc. has been done.

〔従来技術と問題点〕[Conventional technology and problems]

この様な従来の自動利得制御法は第1図の説明図に示す
様に入力信号Xに制御電圧αを乗算器1で乗算し、所定
のダイナミックレンジではレベルが均一な出力信号X′
を得る様にしている。この制御電圧αは、フィードバッ
クループにより次の様に作成される。出力信号X′を絶
対値回路2で絶対値にし、これを負の信号AX’として
基準電圧Refから加算器3で引算し、更に乗算器4で
フィードバック係数δを掛け、フィードバック量とする
。このフィードバック量は積分器6の積分値(タップ値
)Tと加算器5で加算され、平均化されて、更に乗算器
7で所定の係数Kが乗算された後、所定値りが加算器8
で加算されて制御電圧αが作成される。
In the conventional automatic gain control method, as shown in the explanatory diagram of FIG. 1, the input signal X is multiplied by the control voltage α in a multiplier 1, and the output signal
I try to get the following. This control voltage α is created by a feedback loop as follows. The output signal X' is made into an absolute value by an absolute value circuit 2, and this is subtracted as a negative signal AX' from the reference voltage Ref by an adder 3, and further multiplied by a feedback coefficient δ by a multiplier 4 to obtain a feedback amount. This feedback amount is added to the integral value (tap value) T of the integrator 6 in the adder 5, averaged, and then multiplied by a predetermined coefficient K in the multiplier 7.
are added to create the control voltage α.

即ち、制御電圧αは次式で示され、 α=(δ(Ref−AX’)+T)K+L (1)フィ
ードバンク量はフィードバンク係数δで調整された後平
均化され、平均化された電圧を所定の係数に、Lの乗算
及び加算によって得られる。
That is, the control voltage α is expressed by the following formula, α=(δ(Ref-AX')+T)K+L (1) The feedbank amount is adjusted by the feedbank coefficient δ and then averaged, and the averaged voltage is obtained by multiplying and adding L to a predetermined coefficient.

この自動利得制御動作によれば、積分値(タップ値)T
と制御電圧αとの関係は第2図の如くなり、タップ値が
大となる程制御電圧αも大となって、逆に入力電圧X′
と制御電圧αとの関係は、入力電圧X′を負としてフィ
ードバンクしているので、逆の関係となり(即ち入力電
圧が大の程制御電圧αが小となる)、良好な自動利得動
作を行い、入力電圧が変化しても均一なレベルの出力電
圧が得られる。この時自動利得制御(A G C)のル
ープゲインは、タップ値との関係では第3図の如く、第
2図の曲線の傾き(微分値)で与えられるので、タップ
値Tが大の程小さくなる。このタップ値Tの違いは入力
レベルの違いであることから、AGCのループゲインは
入力レベルによって異なることになる。このループゲイ
ンが大であると、入力信号の振幅方向の歪が生じるため
、従来の自動利得制御法では、AGCのダイナミックレ
ンジが広いと、入力レベルに対するループゲインの違い
が大きくなって振幅方向の劣化が許容できなくなるとい
う問題点があり、ダイナミックレンジを広(とれない。
According to this automatic gain control operation, the integral value (tap value) T
The relationship between and the control voltage α is as shown in Figure 2, and as the tap value increases, the control voltage α also increases, and conversely, the input voltage
Since the input voltage X' is fed as a negative feedbank, the relationship between the control voltage α and the input voltage Even if the input voltage changes, an output voltage of a uniform level can be obtained. At this time, the loop gain of automatic gain control (AGC) is given by the slope (differential value) of the curve in Figure 2, as shown in Figure 3, in relation to the tap value, so the larger the tap value T is, the more becomes smaller. Since this difference in tap value T is due to a difference in input level, the AGC loop gain differs depending on the input level. If this loop gain is large, distortion will occur in the amplitude direction of the input signal. Therefore, in the conventional automatic gain control method, when the dynamic range of AGC is wide, the difference in the loop gain with respect to the input level becomes large, resulting in distortion in the amplitude direction of the input signal. The problem is that the degradation becomes unacceptable, making it impossible to widen the dynamic range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、広いダイナミックレンジをとっても、
入力信号の振幅方向の歪の少ない自動利得制御法を提供
するにある。
The purpose of the present invention is to achieve a wide dynamic range,
An object of the present invention is to provide an automatic gain control method that reduces distortion in the amplitude direction of an input signal.

〔発明の構成〕[Structure of the invention]

上述の目的の達成のため、本発明は、入力信号に制御信
号を乗算して入力信号の変化によらず所定のダイナミッ
クレンジで均一な出力信号を得る自動利得制御法におい
て、該出力信号を絶対値化し、基準信号と該絶対値化さ
れた出力信号との差をフィードバンク係数で乗算してフ
ィードバック量を得るステップと、該フィードバンク量
を時間的に平均化した平均値を得て該制御信号を決定す
るステップと、該制御信号に基いて該フィードバック係
数を変更するステップとを有することを特徴としている
To achieve the above object, the present invention provides an automatic gain control method in which an input signal is multiplied by a control signal to obtain a uniform output signal in a predetermined dynamic range regardless of changes in the input signal. a step of obtaining a feedback amount by multiplying the difference between the reference signal and the absolute value output signal by a feedbank coefficient; and obtaining an average value obtained by averaging the feedbank amount over time to control the control. The method is characterized by comprising a step of determining a signal, and a step of changing the feedback coefficient based on the control signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第4図は、本発明の詳細な説明図であり、本発明方法を
モデル的に示しである。図中、第1図と同一のものは同
一の記号で示してあり、9は乗算器であり、制御電圧α
と所定の係数βとを乗算してフィードバック係数δを出
力するものである。
FIG. 4 is a detailed explanatory diagram of the present invention, and shows the method of the present invention in a model manner. In the figure, the same parts as in Figure 1 are indicated by the same symbols, 9 is a multiplier, and the control voltage α
and a predetermined coefficient β to output a feedback coefficient δ.

尚、係数βは制御電圧αをそのままフィードバック係数
δとすると大きすぎるので、小さくするためのものであ
る。
Incidentally, the coefficient β is made small because it would be too large if the control voltage α was directly used as the feedback coefficient δ.

本発明においては、従来の制御法においては固定値であ
ったフィードバック係数δを制御電圧αの関数として可
変としている。
In the present invention, the feedback coefficient δ, which is a fixed value in conventional control methods, is made variable as a function of the control voltage α.

即ち、第2図のタップ値T対制御電圧αとの関数と第3
図のタップ値T対ループゲインGとの関係は反対の特性
を示すことから、フィードバンク量を制御するフィード
バック係数自体を第2図の特性で変化させれば、ループ
ゲインGは均一となる。
That is, the function of tap value T versus control voltage α in FIG.
Since the relationship between the tap value T and the loop gain G shown in the figure shows opposite characteristics, if the feedback coefficient itself that controls the feedbank amount is changed according to the characteristics shown in FIG. 2, the loop gain G becomes uniform.

このため、本発明では、フィードバンク量を制御電圧α
に応じて変化させるため、フィードバック係数δを制御
電圧αに応じて変化させている。
Therefore, in the present invention, the feedbank amount is controlled by the control voltage α
In order to change the feedback coefficient δ according to the control voltage α, the feedback coefficient δ is changed according to the control voltage α.

これにより、新たなループゲインGは、第3図特性が第
2図の特性で補正された如くなり、第5図に示す如く、
タップ値Tに対しループゲインGはほぼ均一となる。こ
れにより広いダイナミンクレンジをとっても振幅方向の
歪が少なくなる。
As a result, the new loop gain G becomes as if the characteristics in FIG. 3 were corrected by the characteristics in FIG. 2, and as shown in FIG.
The loop gain G becomes substantially uniform with respect to the tap value T. This reduces distortion in the amplitude direction even with a wide dynamic range.

第6図は本発明の方法を実現するための一実施例構成図
であり、図中、11はアナログ・デジタル変換回路(以
下ADコンバータと称す)であり、アナログ入力信号を
デジタルの入力信号Xに変換するもの、工2はシグナル
プロセッサ(以下SPUと称す)であり、入力信号Xか
ら前述の自動利得制御を演算によって行うもの、13は
メモリであり、5PUI 1のワークメモリとして働く
もの、14はレジスタであり、5PUI 1で演算によ
って得られた出力信号X′を格納し他の自動等化器等へ
与えるためのバッファの役目を果たすものである。
FIG. 6 is a configuration diagram of an embodiment for realizing the method of the present invention. In the figure, 11 is an analog-to-digital conversion circuit (hereinafter referred to as an AD converter), which converts an analog input signal into a digital input signal 2 is a signal processor (hereinafter referred to as SPU) that performs the above-mentioned automatic gain control by calculation from the input signal is a register which serves as a buffer for storing the output signal X' obtained by the calculation in 5PUI 1 and supplying it to other automatic equalizers, etc.

次に、第6図実施例構成の動作にいついて説明する。。Next, the operation of the embodiment shown in FIG. 6 will be explained. .

アナログ入力信号はADコンバータで所定周期でデジタ
ル値に変換され、5PUI 2へ入力される。5PUI
 2はこれを所定の周期で読取り、前回の周期で演算し
た制御電圧α(t−1)をメモリ13から読出し、次式
より出力信号X’ (t)を得る。
The analog input signal is converted into a digital value at a predetermined period by an AD converter, and is input to the 5PUI 2. 5PUI
2 reads this at a predetermined cycle, reads out the control voltage α(t-1) calculated in the previous cycle from the memory 13, and obtains the output signal X' (t) from the following equation.

X’ (t)=X (t) ・α(t−1) (2)こ
の出力信号X’ (t)はレジスタ14に出力され、他
の回路の利用に供される。この出力信号x’ (t)は
次に5PU12によって絶対値化され、AX’となる。
X' (t)=X (t) · α (t-1) (2) This output signal X' (t) is output to the register 14 and made available to other circuits. This output signal x' (t) is then converted into an absolute value by the 5PU12 and becomes AX'.

更にメモリ13に格納され基準電圧Refとの間で引算
が行なわれる。更に前回の演算によって得た制御電圧α
(t−1)よりβを乗算し、フィードバンク係数δ(1
)を次式より得る。
Further, the voltage is stored in the memory 13 and subtraction is performed between it and the reference voltage Ref. Furthermore, the control voltage α obtained from the previous calculation
(t-1) is multiplied by β, and the feed bank coefficient δ(1
) is obtained from the following formula.

δ (t)=β・α(t−1) (3)このδ(1)を
前述の引算結果に乗算し、フィードバンク量を得る。5
PU12はこれを前回までの積分値T(t−1)と加え
、更に加えたものを新たな積分値T (t)としてメモ
リ13に格納する。5PUI 2はこの加えられた値に
係数Kを乗算し、更にこれに係数りを加算し、制御電圧
α(1)を得、メモリ13に格納し、次の入力信号X(
t+1)の制御(第2式)のための準備をする。これを
所定周期で繰返すことにより各アナログ信号に対する自
動利得動作が行なわれる。
δ(t)=β·α(t-1) (3) Multiply this δ(1) by the above-mentioned subtraction result to obtain the feed bank amount. 5
The PU 12 adds this to the previous integral value T(t-1) and stores the added value in the memory 13 as a new integral value T(t). 5PUI 2 multiplies this added value by the coefficient K, further adds the coefficient to this, obtains the control voltage α(1), stores it in the memory 13, and outputs the next input signal X(
t+1)) (second equation). By repeating this at a predetermined period, automatic gain operation is performed for each analog signal.

上述のデジタルAGC回路の他にアナログ回路を用いて
も同様に達成出来、又、5PUI 2の代りに個別の乗
算器等を組合せてデジタルAGC回路を構成することも
できる。
The same effect can be achieved by using an analog circuit in addition to the digital AGC circuit described above, and a digital AGC circuit can also be constructed by combining individual multipliers in place of the 5 PUI 2.

以上本発明を一実施例により説明したが、本発明は本発
明の主旨に従い種々の変形が可能であり、本発明からこ
れらを排除するものではない。
Although the present invention has been described above using one embodiment, the present invention can be modified in various ways according to the gist of the present invention, and these are not excluded from the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、入力信号に制御信
号を乗算して入力信号の変化によらず所定のダイナミッ
クレンジで均一な出力信号を得る自動利得制御法におい
て、該出力信号を絶対値化し、基準信号と該絶対値化さ
れた出力信号との差をフィードバンク係数で乗算してフ
ィードバック量を得るステップと、該フィードバンク量
を時間的に平均化した平均値を得て該制御信号を決定す
るステップと、該制御信号に基いて該フィードバンク係
数を変更するステップとを有することを特徴としている
ので、フィードバック量を制御信号の大きさに応じて変
化しており、これによってAGCのループゲインを均一
にできるという効果を奏し、従って広いダイナミックレ
ンジに渡って振幅方向の歪が少なくなり、信号の忠実度
が向上するとともに、ダイナミックレンジを広くとれる
As explained above, according to the present invention, in an automatic gain control method that multiplies an input signal by a control signal to obtain a uniform output signal in a predetermined dynamic range regardless of changes in the input signal, the output signal is a step of obtaining a feedback amount by multiplying the difference between the reference signal and the absolute value output signal by a feedbank coefficient; and obtaining an average value obtained by averaging the feedbank amount over time to control the control. Since the method is characterized by comprising a step of determining the signal and a step of changing the feed bank coefficient based on the control signal, the amount of feedback is changed according to the magnitude of the control signal, and thereby the AGC This has the effect of making the loop gain uniform, thus reducing distortion in the amplitude direction over a wide dynamic range, improving signal fidelity and widening the dynamic range.

また、その達成も容易且つ簡単であるという効果も奏し
、係る優れた機能を安価に提供できるという実用上優れ
た効果も奏する。
Furthermore, it is easy and simple to achieve this, and it also has a practical effect that such excellent functions can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自動利得制御法の説明図、第2図は従来
の方法によるタップ値対制御電圧特性図、第3図は従来
の方法によるループゲイン特性図、第4図は本発明の詳
細な説明図、第5図は本発明によるループゲイン特性図
、第6図は本発明を実現するための一実施例構成図であ
る。 図中、1− 乗算器、2−絶対値回路、3−・−加算器
、4・−フィードバンク係数乗算器、6−積分器、9−
・フィードバンク係数決定用乗算器。 特許出願人 富士通株式会社 代理人弁理士 山 谷 晧 榮 才1図 6 12目 才3図 才 4 図 才5z 律60
Fig. 1 is an explanatory diagram of the conventional automatic gain control method, Fig. 2 is a tap value vs. control voltage characteristic diagram according to the conventional method, Fig. 3 is a loop gain characteristic diagram according to the conventional method, and Fig. 4 is a diagram showing the characteristics of the control voltage according to the conventional method. A detailed explanatory diagram, FIG. 5 is a loop gain characteristic diagram according to the present invention, and FIG. 6 is a configuration diagram of an embodiment for realizing the present invention. In the figure, 1- multiplier, 2- absolute value circuit, 3-- adder, 4-- feed bank coefficient multiplier, 6- integrator, 9-
- Multiplier for determining feed bank coefficient. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Akira Yamatani Eisai 1 6 12 eyes 3 Zusai 4 Zusai 5z Ritsu 60

Claims (1)

【特許請求の範囲】[Claims] 入力信号に制御信号を乗算して入力信号の変化によらず
所定のダイナミックレンジで均一な出力信号を得る自動
利得制御法において、該出力信号を絶対値化し、基準信
号と該絶対値化された出力信号との差をフィードバンク
係数で乗算してフィードバック量を得るステップと、該
フィードバンク量を時間的に平均化した平均値を得て該
制御信号を決定するステップと、該制御信号に基いて該
フィードバック係数を変更するステップとを有すること
を特徴とする自動利得制御法。
In an automatic gain control method in which an input signal is multiplied by a control signal to obtain a uniform output signal in a predetermined dynamic range regardless of changes in the input signal, the output signal is converted to an absolute value, and the output signal is converted to an absolute value, and the output signal is converted to an absolute value and the reference signal is a step of multiplying the difference with the output signal by a feedbank coefficient to obtain a feedback amount; a step of determining the control signal by obtaining an average value obtained by averaging the feedbank amount over time; and a step of determining the control signal based on the control signal. and changing the feedback coefficient.
JP237384A 1984-01-10 1984-01-10 Automatic gain control method Granted JPS60146512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP237384A JPS60146512A (en) 1984-01-10 1984-01-10 Automatic gain control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP237384A JPS60146512A (en) 1984-01-10 1984-01-10 Automatic gain control method

Publications (2)

Publication Number Publication Date
JPS60146512A true JPS60146512A (en) 1985-08-02
JPH0250648B2 JPH0250648B2 (en) 1990-11-05

Family

ID=11527442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP237384A Granted JPS60146512A (en) 1984-01-10 1984-01-10 Automatic gain control method

Country Status (1)

Country Link
JP (1) JPS60146512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976128A (en) * 1989-07-06 1990-12-11 Hitachi, Ltd. Rolling mill and method of exchanging rolls of rolling mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976128A (en) * 1989-07-06 1990-12-11 Hitachi, Ltd. Rolling mill and method of exchanging rolls of rolling mill

Also Published As

Publication number Publication date
JPH0250648B2 (en) 1990-11-05

Similar Documents

Publication Publication Date Title
US5239378A (en) Gradation corrector with improved smoothing, signal-to-noise ratio and fast response time
KR930010616B1 (en) Clamp signal processing apparatus
US6362764B1 (en) Digital to analog conversion apparatus and method with cross-fading between new and old data
US5877716A (en) Word length convertor
US4482973A (en) Digital automatic gain control circuit
JPH0229030A (en) Signal processing circuit
JPS60146512A (en) Automatic gain control method
EP0455426B1 (en) Circuit having selectable transfer characteristics
JP4274408B2 (en) Automatic gain control device, receiving device, and gain control method
JPH0241950B2 (en)
JP2000324363A (en) Gradation correction device
JP4148077B2 (en) Class D signal amplifier circuit
JPH0537819A (en) Amplitude control circuit
US10763889B1 (en) Analog-to-digital converter with dynamic range enhancer
US5659313A (en) System and method for reducing noise during analog to digital conversion
JP2576517B2 (en) Noise reduction circuit
US4875044A (en) Digital limiting circuit
JP4661631B2 (en) Amplitude variable device and amplitude variable method
JP2596036B2 (en) Video signal processing device
JPH048068A (en) Digital picture processing circuit
JPS60201776A (en) Automatic equalizer
JPH01300706A (en) Waveform equalization circuit
JP3089477B2 (en) Quantizer and quantization method
US7450539B1 (en) Power regulation for a multi-carrier communication system
JP2629928B2 (en) Chroma signal noise reducer