JPS60146125A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPS60146125A
JPS60146125A JP197284A JP197284A JPS60146125A JP S60146125 A JPS60146125 A JP S60146125A JP 197284 A JP197284 A JP 197284A JP 197284 A JP197284 A JP 197284A JP S60146125 A JPS60146125 A JP S60146125A
Authority
JP
Japan
Prior art keywords
temperature
measured
gamma
positrons
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP197284A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
桜井 博司
Eiichi Nishimura
栄一 西村
Kazumichi Suzuki
鈴木 一道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP197284A priority Critical patent/JPS60146125A/en
Publication of JPS60146125A publication Critical patent/JPS60146125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/30Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on X-radiation, gamma radiation or particle radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure temperature regardless of the emmissivity and shape of a material to be measured and to make it possible to perform temperature measurement having high position resolution, by injecting positrons into a body, whose temperature is to be measured, and measuring the temperature based on the annihilation gamma-ray intensity of the positrons. CONSTITUTION:Positrons are emitted from a positron source 11 or converged by a convergent lens 12 and inputted to a body 1, whose temperature is to be measured. The positrons hit electrons in the body, whose temperature is to be measured, and they are annihilated as pairs. At this time, two gamma rays are issued in the reverse directions to each other. The pulse signal of the gamma rays, which are inputted to a gamma-ray detector 2, is converted into a digital signal through a preamplifier 4, a linear amplifier 5 and an A/D converter 6. Thereafter the signal is captured as a gamma-ray spectrum by a multichannel waveheight analyzer 7. The gamma-ray spectrum obtained by the analyzer 7 is further analyzed by a measuring and controlling computer 8 and the intesity of the gamma rays is obtained. The intensity is converted into a temperature based on a calibrating curve, which is obtained beforehand, and the result is outputted as temperature information. Therefore the temperature can be measured regardless of the emmissivity and shape of the material to be measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、非接触表面温度611]定装置に係わり。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a non-contact surface temperature 611] determination device.

特に、被測温物体の放射率あるいは被測温物体の周囲の
環境に影脅されずに測温でさる非接触表面温度測定装置
に関する。
In particular, the present invention relates to a non-contact surface temperature measuring device that measures temperature without being affected by the emissivity of the temperature-measuring object or the surrounding environment of the temperature-measuring object.

〔発明の背景〕[Background of the invention]

非接触で測温可能な温度計としては、赤外線温度計が知
られており、工業用炉(連に、焼鈍炉等)において静止
菫たは走行状態で加熱される鋼板、その他の物体の表面
温度測定、また工業用炉のみで無く、多くの分野でプロ
セス温度制御Vこ赤外線温度計が使用式れている。
Infrared thermometers are known as thermometers that can measure temperature without contact, and they can be used to measure the surface of steel plates and other objects that are heated in industrial furnaces (e.g., annealing furnaces) while stationary or running. Infrared thermometers are used for temperature measurement and process temperature control in many fields, not just industrial furnaces.

赤外線温度計は、赤外線温度計の検出素子に入射する物
体から放射される放射エネルギーを測定することにより
、被測温物体の表面温度を得るという原理に基いている
。い、ま、放射エネルギーをE、被測温物体の表面温度
をT、放射率を6とすると1次式で表わされる近似関係
が成立する。
An infrared thermometer is based on the principle of obtaining the surface temperature of an object to be measured by measuring the radiant energy emitted from the object that is incident on the detection element of the infrared thermometer. Well, if the radiant energy is E, the surface temperature of the object to be measured is T, and the emissivity is 6, an approximate relationship expressed by a linear equation holds true.

E−ε−K −T” ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・ (1)ここで、 K
id定数、nは放射定数と測定波長との関数で表わされ
る値であシ、上式から明らかなようVC1被測温物体の
表面温度を赤外線温度計を用いて決定するためには、被
測温物体の放射率εが既知であるか、あるいは温度測定
時における放射率εを知ることが必須条件となる。壕だ
、赤外線温度計の検出素子には、被測温物体からの放射
エイ、ルキーたけで無く、被測温物体fc取りまく環境
からの放射エイ、ルキーも入射する。したがって。
E−ε−K −T” ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・ (1) Here, K
The id constant, n, is a value expressed as a function of the radiation constant and the measurement wavelength. It is essential that the emissivity ε of the hot object is known or that the emissivity ε at the time of temperature measurement is known. The detection element of an infrared thermometer not only receives radiation from the temperature-measuring object, but also radiation from the environment surrounding the temperature-measuring object fc. therefore.

被測温物体の周囲に加熱ヒータが設けられているような
場合には、被測温物体の温度評価上に誤差が含まれるこ
とが充分に考えられる。
If a heater is provided around the object to be measured, it is highly likely that an error will be included in the temperature evaluation of the object to be measured.

かかる問題に対して、赤外線温度計と表面粗さ測定器(
粗贋計)を併用し、放射率と表面温度を同時に測定する
方法が提案されており、その他にも赤外線温度計を用い
た表面温度測定法に関する提案がいくつかなされている
が、いずれの方法も。
Infrared thermometers and surface roughness measuring instruments (
A method has been proposed in which emissivity and surface temperature are measured simultaneously using an infrared thermometer (infrared thermometer), but none of the methods too.

被測温物体の放射率を測定することが必要であるという
問題点があシ、さらに、これらの方法では、被測温物体
の表面状態が酸化や不純物の伺着等によシ時々刻々変化
し、それに伴なって放射率も変化する場合には、連続的
に表面温度を測定できないという欠点がめる。また、赤
外線温度計は前述の如く、被測温物体からの放躬工不ル
キーを測定する原理に基いているために、ある程度以上
(約1■φ以上)の測定面積を必要とし、被測温物体の
寸法が極めて小さい場合や、被測温物体の任意の位置の
温度測定を行なう場合には適用が困難であるという問題
点がある。
There is a problem in that it is necessary to measure the emissivity of the temperature-measuring object, and furthermore, these methods have the problem that the surface condition of the temperature-measuring object changes from time to time due to oxidation, impurities, etc. However, if the emissivity changes accordingly, there is a drawback that the surface temperature cannot be measured continuously. In addition, as mentioned above, infrared thermometers are based on the principle of measuring the radioactivity from the object to be measured, so they require a measurement area larger than a certain amount (approximately 1 mm or more), There is a problem in that it is difficult to apply when the size of the hot object is extremely small or when measuring the temperature at an arbitrary position of the object to be measured.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、物体の表面温度測定法において、被測
温物体の放射率、形状および被測温物体をと9まく環境
に無関係に測温でき、しかも、高い位置分解能を有する
温度測定装置を提供することにある。
An object of the present invention is to provide a temperature measuring device that can measure the temperature of an object in a method for measuring the surface temperature of an object, regardless of the emissivity, shape, and environment of the object to be measured, and that has high positional resolution. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

被測温物体に陽電子を打ち込み、陽電子が被測温物体中
の陰電子と対消滅する際に発生するγ線の強度が、被測
温物体の温度に依存することを利用して物体の表面温度
を測定するという考え方に基つくものである。
By injecting positrons into the object whose temperature is to be measured, the intensity of the gamma rays generated when the positrons annihilate with the negative electrons in the object is dependent on the temperature of the object. It is based on the idea of measuring temperature.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を第1図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

本実施例は、陽電子源11.r線検出器2.γ線検出器
用冷却装置(クライオスタット)3.前置増幅器4.主
増幅器5.アナログ・デジタル変換器6.マルチ・チャ
ンネル波高分析器7、計測・制御用計算機8.試料駆動
装置10.駆動装置制御系9.集束レンズ12お工び高
電圧電源13よシ構成されている。
In this embodiment, the positron source 11. r-ray detector 2. γ-ray detector cooling device (cryostat) 3. Preamplifier 4. Main amplifier5. Analog-to-digital converter6. Multi-channel wave height analyzer 7, measurement/control computer 8. Sample drive device 10. Drive control system9. It consists of a focusing lens 12 and a high voltage power supply 13.

陽電子源11は、被測温物体1へ陽電子を入射するため
に、陽電子を放出するものである。陽電子源11として
は、陽電子崩壊することにより陽電子を放出する核種を
用いるのが便利である。陽電子崩壊する核種には、22
N B 、 Sec O、118c □ 、 ll?N
 i等があるが、本発明においては、半減期が約2.6
年と比較的長く、また、陽電子崩壊の割合が約91%と
大きい”Naを陽電子源11と使用している。
The positron source 11 emits positrons in order to inject the positrons into the object 1 to be temperature measured. As the positron source 11, it is convenient to use a nuclide that emits positrons by positron decay. Nuclides that undergo positron decay include 22
NB, Sec O, 118c □, ll? N
i, etc., but in the present invention, the half-life is about 2.6
Na is used as the positron source 11, which has a relatively long time of 20 years, and has a high positron decay rate of about 91%.

本実施例においては、被測温物体1へ入射する電子の数
を多くする目的で集束レンズ12を使用している。集束
レンズ12部分では、高電圧電源13によシ高い電場が
形成され、陽電子源11から放出された陽′電子を被測
温物体1の微少部位へ入射することも可能である。なお
、陽電子源11の強度、あるいは、陽′電子源11と被
測温物体1との距離によっては、集束レンズ12を用い
ること無く、陽電子源11のみで済ませることが可能で
りることは、言うまでも無い。
In this embodiment, a focusing lens 12 is used for the purpose of increasing the number of electrons incident on the object 1 to be temperature measured. In the focusing lens 12 portion, a high electric field is formed by the high voltage power supply 13, and it is also possible to cause the positrons emitted from the positron source 11 to enter a minute portion of the object to be temperature measured 1. Note that depending on the strength of the positron source 11 or the distance between the positron source 11 and the object to be measured 1, it is possible to use only the positron source 11 without using the focusing lens 12. Needless to say.

第1図において、2〜7は通常用いられるγ線検出系で
ある。陽電子源11から放出され、めるいは集束レンズ
12によシ集束されて被測温物体1に入射した陽電子は
、被測温物体中の電子と衝突して対消滅し、この時、0
.511MeVのエネルギーを有する2本のreが互い
に反対方向に飛び出す。γ線検出器2に入射したγ線の
パルス信号は、前置増幅器4および線形増幅器5によっ
て増幅され、アナログ・デジタル変換器6によりデジタ
ル信号に変換された後、マルチ・チャンネル波高分析器
7によυγ線スペクトルとして捕えられる。
In FIG. 1, numerals 2 to 7 are commonly used gamma ray detection systems. Positrons emitted from the positron source 11, focused by the focusing lens 12, and incident on the temperature-measuring object 1 collide with electrons in the temperature-measuring object and are annihilated.
.. Two res with an energy of 511 MeV fly out in opposite directions. The γ-ray pulse signal incident on the γ-ray detector 2 is amplified by a preamplifier 4 and a linear amplifier 5, converted to a digital signal by an analog-to-digital converter 6, and then sent to a multi-channel pulse height analyzer 7. It can be captured as a υγ-ray spectrum.

マルチ・チャンネル波高分析器7によシ得られたγ線ス
ペクトルは計測・制御用計算機8で解析され、γ線強度
がめられ、さらに、後述する本発明の原理に従ってあら
かじめめられている較正曲線を基に温度に変換されて温
度情報として出力される。
The gamma ray spectrum obtained by the multi-channel pulse height analyzer 7 is analyzed by the measurement and control computer 8, the gamma ray intensity is determined, and a calibration curve determined in advance according to the principles of the present invention to be described later is calculated. It is converted to temperature based on the temperature and output as temperature information.

なお、被測温物体lは、X方向お工びY方向に微動が可
能な試料駆動装置10上に置かれている。
Note that the temperature-measuring object 1 is placed on a sample driving device 10 that can be moved slightly in the X direction and the Y direction.

試料駆動装置10は、駆動装置制御系9を介して計測・
制御用計算機8と接続されておシ、計算機8からの指令
によシ、被測温物体1の表面の任意の位置の測温が可能
となる機能を有している。
The sample drive device 10 performs measurement and measurement via the drive device control system 9.
It is connected to the control computer 8 and has the function of making it possible to measure the temperature at any position on the surface of the temperature-measuring object 1 in response to instructions from the computer 8.

次に1本発明による温度測定法の原理について以下に述
べる。
Next, the principle of the temperature measurement method according to the present invention will be described below.

陽電子は電子(陰電子)と同じ静止質量を持ち。Positrons have the same rest mass as electrons (negative electrons).

電子の電荷(負を荀)と絶対値が等しく符号が反対の電
荷を有する粒子である。陽電子が物質中に入射すると、
約IQ−12秒程度の短かい時間で熱工不ルキー程度ま
で減速され、正に荷電している物質中の原子核とのクー
ロン相互作用により反撥され、原子核から比較的遠いと
ころを移動するうちに電子と対消滅し、この時、電子の
静止質量に相当するエネルギー(0,51tMev )
を有する2本のγ線がそれぞれ反対方向(180°方向
)K放出される。
A particle that has a charge that is equal in absolute value and opposite in sign to the charge of an electron (negative is Xun). When a positron enters a substance,
In a short time of about IQ - 12 seconds, it is decelerated to the level of a thermonuclear force, is repelled by Coulomb interaction with the positively charged atomic nucleus, and as it moves relatively far from the atomic nucleus. It annihilates with an electron, and at this time, the energy equivalent to the rest mass of the electron (0.51tMev)
Two γ-rays having K are emitted in opposite directions (180° direction).

第2図は、陽電子消滅実験の原理を示す図でめシ、陽電
子源11から放出された陽電子が試料14中に入射し、
試料中の電子と対消滅することによシはぼ反対方向に放
出された2本のγ線は。
FIG. 2 is a diagram showing the principle of the positron annihilation experiment, in which positrons emitted from the positron source 11 enter the sample 14,
Two gamma rays are emitted in almost opposite directions by annihilation with electrons in the sample.

それぞれ第1スリツト15および第2スリツト16の間
隙を通過して、おのおののスリットの後部に設けられた
γ線検出器2に入射する。いま。
The light passes through the gap between the first slit 15 and the second slit 16, respectively, and enters the gamma ray detector 2 provided at the rear of each slit. now.

第1スリツト15を固定し、第2スリツト16を試料1
4のまわりに回転し1回転角θの関数として同時計測数
N(θ)を測定すれば、第3図に示すような曲線(γ−
γ角相関強度曲線)が得られる。
The first slit 15 is fixed, and the second slit 16 is inserted into the sample 1.
4 and measure the number of simultaneous measurements N(θ) as a function of the rotation angle θ, a curve (γ-
γ-angle correlation intensity curve) is obtained.

ところで、このγ−γ角相関強度曲線においては5例え
ば、第4図に示すように、θ=0°での同時計測数N(
0)が試料温度に依存するという実験事実(f3.”f
、AoMckee etal、phys、iev、Le
tt。
By the way, in this γ-γ angle correlation strength curve, for example, as shown in FIG. 4, the number of simultaneous measurements N(
0) depends on the sample temperature (f3.”f
, AoMckee etal, phys, iev, Le
tt.

28.358(1972))が見出されている。28.358 (1972)) was found.

一方、陽電子消滅に伴なうγ線のエネルギー分布は、消
滅相手の電子の運動エネルギーが0でない(数e■)た
めに0.511MeVからずれて、第5図に示すように
約2 KeV程度の広が9を有するスペクトルとなる。
On the other hand, the energy distribution of γ rays accompanying positron annihilation deviates from 0.511 MeV because the kinetic energy of the annihilating electron is not 0 (several e), and is about 2 KeV as shown in Figure 5. The spectrum has a spread of 9.

第5図に示したγ線スペクトルにおいて、0.511M
eVでのγ線強度と全面積の比。
In the γ-ray spectrum shown in Figure 5, 0.511M
Ratio of gamma ray intensity to total area in eV.

すなわち、ピーク値/面積値とγ−γ角相関強度曲線の
θ−θ°での同時計測数N(0)との間に相関がるるこ
とが報告されておシ(堂山昌男、応用物理41,684
(1972))、同時計測数N(0)が前述の如く温度
に依存することを考慮すると、消滅γ線スペクトル計測
を用いて温度測定ff:何なうことが充分に可能である
ことがわかる。
In other words, it has been reported that there is a correlation between the peak value/area value and the number of simultaneous measurements N(0) at θ-θ° of the γ-γ angle correlation intensity curve (Masao Doyama, Applied Physics 41). ,684
(1972)), and considering that the number of simultaneous measurements N(0) depends on temperature as mentioned above, it is clear that it is fully possible to measure temperature using annihilation gamma ray spectrum measurement. .

本発明は、このγ線スペクトルの(ピーク値/面積値)
が、温度に依存する同時計測数N(0)と相関を持つこ
とを利用して、被測温物体の温度測定を行なうものであ
り、赤外線61す混法と物理的に全く異なった事象に基
つくものである。
The present invention focuses on (peak value/area value) of this γ-ray spectrum.
This method measures the temperature of the object to be measured by utilizing the fact that it has a correlation with the number of simultaneous measurements N(0) that depends on the temperature, and it is physically different from the infrared 61 mixed method. It is something that is based on.

γ線スペクトルを得るためのrff#検出器2としてば
Na(1)検出器あるいはGe (1,i)、 Ge 
(1111)検出器があるが、工不ルキー分解能を考慮
して、本発明ではゲルマニウム半導体検出器を使用して
いる。すなわち、ゲルマニウム半導体検出器の工不ルキ
ー分解能(半値幅)は FwnM= 2.355 V’四E、IIE、・・・・
・・・・・・・・ (2)によシ表わされる。ここでF
はファノ係数と呼ばれる値で、0.05〜0.1程度の
値を示し、E、は1つの電子・正孔対を生成するのに要
するエイ、ルギー(ゲルマニウムに対しては2.96e
V)、そしてE、はγ線工坏ルキーを表わし、l・に0
.1.E、=、2.96 eV、 E、=0.511M
eV (消滅γ線工不ルキーンとすればエネルギー分布
能は約1ke■となシ(野口正安著「γ線スペクトロメ
トリ」日刊工業新聞社、67頁)、消滅γ線のエネルギ
ースペクトルを測定するのに充分なエネルギー分解能を
有していることがわかる。
The rff# detector 2 for obtaining the γ-ray spectrum is a Na(1) detector or Ge(1,i), Ge
Although there is a (1111) detector, in consideration of engineering resolution, a germanium semiconductor detector is used in the present invention. In other words, the mechanical resolution (half width) of the germanium semiconductor detector is FwnM = 2.355 V'4E, IIE,...
...... It is expressed by (2). Here F
is a value called the Fano coefficient, which is approximately 0.05 to 0.1, and E is the value required to generate one electron-hole pair (2.96 e for germanium).
V), and E represent the gamma ray engineering key, and 0 to l.
.. 1. E,=,2.96 eV, E,=0.511M
eV (If the annihilation gamma ray is considered to be unkeen, the energy distribution ability is approximately 1 ke) (Masayasu Noguchi, "Gamma Ray Spectrometry", Nikkan Kogyo Shimbun, p. 67), and it is possible to measure the energy spectrum of the annihilation gamma ray. It can be seen that the energy resolution is sufficient.

本発明の温度測定法は、被測温物体の外部から陽電子を
打ち込み、被測温物体中の電子との対消滅γ線を計測す
るために、被測温物体の表面状態および被測温物体をと
シ葦〈環境の影響を全く受けない利点を有している。葦
だ、消滅γ線のエネルギーは電子の静止質量VC相当す
るエイ・ルキー(o、511Mev )であり、この値
は変化することが無いために、マルチ・チャンネル波高
分析器における工不ルキー弁別幅を0.511 MeV
を中心にして調整することによ)消滅γ線のみ?:選択
的に計測できるので温度測定に対するS/N比が良いと
いう利点金持つ。
The temperature measurement method of the present invention involves injecting positrons from the outside of the temperature-measuring object, and measuring the surface state of the temperature-measuring object and measuring the annihilation gamma rays with electrons in the temperature-measuring object. Reeds have the advantage of being completely unaffected by the environment. The energy of annihilation gamma rays is E. Lukey (o, 511 Mev), which is equivalent to the rest mass VC of an electron, and since this value does not change, the energy of the annihilation gamma ray is E. Luky (o, 511 Mev), which is equivalent to the rest mass of an electron. 0.511 MeV
) only annihilation gamma rays? : It has the advantage of having a good S/N ratio for temperature measurement because it can be measured selectively.

分解能に関しては、赤外線温度計がその原理のためにあ
る程度以上(1mnφ以上)の測温面積ケ必要とするの
に対し1本発明による測温法では。
In terms of resolution, an infrared thermometer requires a temperature measurement area of a certain size or more (1 mnφ or more) due to its principle, whereas the temperature measurement method according to the present invention requires a temperature measurement area of a certain size or more (1 mnφ or more).

陽電子源11から放出される陽電子を集束レンズ12に
より被測温物体1の微少部分へ入射することは可能であ
シ、赤外線温度計に比べれば最低でも約10倍の位置分
解能を得ることができる。
It is possible to make the positrons emitted from the positron source 11 enter a minute part of the temperature-measuring object 1 using the focusing lens 12, and it is possible to obtain a positional resolution that is at least about 10 times higher than that of an infrared thermometer. .

さらに1本発明は消滅γ線工不ルキー分布を測定する方
法であり、γ−γ角相関強度曲線を用いて試料温度を測
定する場合に比べれば、同時計測の必要が無く測定系が
簡易となり、丑だ、測定時間が短くなる等の長所を持っ
ている。
Furthermore, the present invention is a method for measuring the annihilation gamma-ray linear distribution, and compared to measuring the sample temperature using the gamma-gamma angle correlation intensity curve, there is no need for simultaneous measurements and the measurement system is simpler. It has the advantage of shortening the measurement time.

本発明を用いて、消滅γ線スペクトルから被測温物体の
温度を評価するためには、あらかじめ。
In order to evaluate the temperature of the temperature-measuring object from the annihilation gamma-ray spectrum using the present invention, in advance.

被測温物体と同一組成を有する試料について、γ線スペ
クトルを測定し、(ピーク値/向積)比と温度(熱電対
等によシ測定)との関係全米めておく必要があるが、そ
のおとVユ、関係弐奮基VCW1′算機によシγ線スペ
クトルから温度を自動的に出力することはoJ能である
It is necessary to measure the gamma ray spectrum of a sample that has the same composition as the temperature-measuring object, and to determine the relationship between the (peak value/multilayer) ratio and temperature (measured with a thermocouple, etc.). It is oJ's ability to automatically output the temperature from the gamma ray spectrum using the related computer VCW1' calculator.

以上記した如く1本実施例によれは、赤外純温度計の有
する短所、すなわち、放射率、迷光および低分解能を全
て克服できる効果があると共に、さらに温度測定に対す
るS/N比が良いという長所をも併せ持っている。
As described above, this embodiment has the effect of overcoming all the disadvantages of pure infrared thermometers, namely emissivity, stray light, and low resolution, and also has a good S/N ratio for temperature measurement. It also has advantages.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被測温物体の放射率、形状および被測
温物体の周囲の環境に全く影響さnないので1表面温度
の測定、微少部分の温度測定に効果がある。
According to the present invention, the emissivity and shape of the temperature-measuring object and the surrounding environment of the temperature-measuring object are not affected at all, so it is effective in measuring the surface temperature and the temperature of a minute part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明による温度測定装置の概略断面図と測
定系統図、第2図は陽電子消滅実験の原理の説明図、第
3図はγ−γ角相関強度曲線図。 第4図は消滅γ線の同時計数値と被測塩物体の温度との
関係′f、表わす線図、第5図は消滅γ線の工不ルキー
スペクトルを表わす線図である。 1・・・被測温物体、2・・・γ線検出器、3・・・γ
線検出素子片冷却器、4・・・前置増幅器、5・・・主
増幅器、6・・・アナログ中デジタル変換器、7・・・
マルチ・チャンネル渡島分析器、8・・・計測・制御用
計算機、9・・・駆動装置制御系、10・・・試料駆動
装置、11・・・陽電子源、12・・・集速レンズ、1
3・・・高電圧源、14・・・試料、15.16・・・
スリット、17・・・消滅第 1 図 第2図 $3 囲 茅4目 1度(°C) (色7寸纒−麿角逆菱(2 ′$5 θ・SIIMe“し γ線エネルヤー
FIG. 1 is a schematic sectional view and measurement system diagram of a temperature measuring device according to the present invention, FIG. 2 is an explanatory diagram of the principle of a positron annihilation experiment, and FIG. 3 is a γ-γ angle correlation strength curve diagram. FIG. 4 is a diagram showing the relationship 'f between the coincidence value of annihilation γ-rays and the temperature of the salt-measuring object, and FIG. 5 is a diagram showing the engineering-influence spectrum of annihilation γ-rays. 1...Temperature measured object, 2...γ ray detector, 3...γ
Line detection element piece cooler, 4... Preamplifier, 5... Main amplifier, 6... Analog to digital converter, 7...
Multi-channel Oshima analyzer, 8... Measurement/control computer, 9... Drive device control system, 10... Sample drive device, 11... Positron source, 12... Focusing lens, 1
3... High voltage source, 14... Sample, 15.16...
Slit, 17...disappearance No. 1 Figure 2 Figure 2 $3 Surroundings 4 eyes 1 degree (°C)

Claims (1)

【特許請求の範囲】[Claims] 1、物体の測温法において、被測温物体に陽電子を入射
し、陽電子の消滅γ線強匠により測温することを特徴と
した温度測定装置。
1. A temperature measuring device which is characterized in that, in the temperature measurement method of an object, positrons are incident on the object to be temperature measured and the temperature is measured by the annihilation gamma rays of the positrons.
JP197284A 1984-01-11 1984-01-11 Temperature measuring apparatus Pending JPS60146125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP197284A JPS60146125A (en) 1984-01-11 1984-01-11 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP197284A JPS60146125A (en) 1984-01-11 1984-01-11 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60146125A true JPS60146125A (en) 1985-08-01

Family

ID=11516470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP197284A Pending JPS60146125A (en) 1984-01-11 1984-01-11 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60146125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175624A (en) * 2011-12-22 2013-06-26 中国计量学院 Non-contact LED junction temperature measurement method and device
CN113029380A (en) * 2021-03-10 2021-06-25 南京航空航天大学 Online dynamic detection method for temperature field in industrial closed space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175624A (en) * 2011-12-22 2013-06-26 中国计量学院 Non-contact LED junction temperature measurement method and device
CN113029380A (en) * 2021-03-10 2021-06-25 南京航空航天大学 Online dynamic detection method for temperature field in industrial closed space

Similar Documents

Publication Publication Date Title
Winn et al. Directional-correlation attenuation factors for Ge (LI) γ-ray detectors
Fain et al. Experimental results on elastic scattering of protons on the light nuclei 2H, 3H, 3He and 4He at 600 MeV
Kaburagi et al. Neutron/γ-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF (Ce) in a γ-ray field
Qin et al. Characterization of a 6Li enriched Cs2LiYCl6: Ce scintillator and its application as a γ-ray detector
Voytas et al. Direct Measurement of the L/K Ratio in B 7 e Electron Capture
JPS60146125A (en) Temperature measuring apparatus
Shera Measurement of the energy of the 6129-keV γ ray of O 16
Paul et al. Thick target neutron spectral yield and dose measurements with natC (p, n) system at intermediate proton energies between 8–20 MeV
JPS6080727A (en) Method for measuring temperaturae without contacting
Howell et al. High energy beam lifetime analysis
Avdeichikov et al. Energy calibration of CsI (Tl) scintillator in pulse-shape identification technique
Young et al. Absolute gamma-ray efficiency of a 50 cm3 Ge (Li) detector
Kernel et al. Angular distributions from the reaction 12C (α, γ0) 16O in the 13 MeV excitation region of 16O
Uedono et al. A positron age-momentum correlation spectrometer for the study of open spaces in amorphous polymers
McMillan et al. Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays
Perry et al. A high-efficiency NaI (Tl) detector array with position sensitivity for experiments with fast exotic beams
US3582652A (en) Method for reading a thermoluminescent dosimeter
SU1144503A1 (en) Thermoluminescent dosimeter of mixed gamma and neutron radiation
Snow et al. A measurement of the neutron lifetime by counting trapped protons
Mordovskoy et al. Time Parameters of Silicon Detectors as a Function of Bias Voltage
Young et al. Absolute calibration of nuclear activation diagnostics for intense pulsed ion beams
Fleischer et al. Personnel neutron dosimetry using particle tracks in solids: a comparison
Sakurai Project 7 Establishment of Integrated System for Dose Estimation in BNCT (30P7)
Ryngnga et al. Covariance analysis of efficiency calibration of NaI (Tl) detector
Lee et al. Comparison between the measurements by the fiber-optic gamma radiation sensors with the sensing probes of different height