JPS6080727A - Method for measuring temperaturae without contacting - Google Patents
Method for measuring temperaturae without contactingInfo
- Publication number
- JPS6080727A JPS6080727A JP18841483A JP18841483A JPS6080727A JP S6080727 A JPS6080727 A JP S6080727A JP 18841483 A JP18841483 A JP 18841483A JP 18841483 A JP18841483 A JP 18841483A JP S6080727 A JPS6080727 A JP S6080727A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- temperature
- temp
- positrons
- gamma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/30—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on X-radiation, gamma radiation or particle radiation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は非接触表面温度測定方法に係ゎシ、特に被測温
物体の放射率あるいは被測温物体の周囲の環境に影響さ
れずに測温できる非接触表面温度測定方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a non-contact surface temperature measurement method, and particularly to a method for measuring a surface temperature without being influenced by the emissivity of an object to be measured or the surrounding environment of the object to be temperature measured. This invention relates to a non-contact surface temperature measurement method.
非接触で測温可能な温度計としては赤外線温度計が知ら
れておシ、連続焼鈍炉等の工業用炉において静止または
走行状態で加熱される鋼板その他の物体の表面温度測定
、また工業用炉のみで無く。Infrared thermometers are known as thermometers that can measure temperature without contact, and are useful for measuring the surface temperature of steel plates and other objects that are heated while stationary or running in industrial furnaces such as continuous annealing furnaces, and for industrial purposes. Not just a furnace.
多くの分野でプロセス温度制御に赤外線温度針が用いら
れている。Infrared temperature needles are used for process temperature control in many fields.
赤外線温度計は、赤外線温度針の検出素子に入射する物
体からの放射される放射エネルギーEを測定する仁とに
より、被測温物体の表面温度Tを知るものであシ、放射
エネルギーEと被測温物体の表面温度Tとの間には(1
)式で示される近似関係が成立する。An infrared thermometer determines the surface temperature T of an object to be measured by measuring the radiant energy E emitted from the object, which is incident on the detection element of the infrared temperature needle. There is a difference between (1) and the surface temperature T of the temperature measuring object.
) holds true.
E=g・K−T” ・・・・・・・・・(1)ここで、
εは被測温物体の放射率、Kは定数、Tは被測温物体の
絶対温度でろシ、nは放射定数と測定波長との関数であ
られされる値である。E=g・K−T” ・・・・・・・・・(1) Here,
ε is the emissivity of the object to be measured, K is a constant, T is the absolute temperature of the object to be measured, and n is a value calculated as a function of the radiation constant and the measurement wavelength.
赤外線温度針は前述の如く、放射エネルギーEを測定す
るものであシ、従って、被側温物体の温度Tを赤外線温
度針によシ決定するためには、(1)式から明らかなよ
うに被測温物体の放射率εが既知でおるか、あるいは温
度測定時における放射率εを知らなければならない。ま
た、被測温匍体の周囲に加熱と−クが設けられているよ
うな場合には、赤外線温度針には被側温物体からの放射
エネルギーと共に、加熱ヒータからの放射エネルギーも
同時に入射する可能性があシ、被測温物体の温度評価上
に誤差が含まれるおそれがある。As mentioned above, the infrared temperature needle measures the radiant energy E. Therefore, in order to determine the temperature T of the heated object by using the infrared temperature needle, as is clear from equation (1), Either the emissivity ε of the object to be measured must be known, or the emissivity ε at the time of temperature measurement must be known. In addition, if a heating device is installed around the object to be measured, the infrared temperature needle receives the radiant energy from the heater as well as the radiant energy from the object. There is a possibility that an error may be included in the temperature evaluation of the object to be measured.
かかる問題に対して、赤外線温度針と表面粗さ測定器(
粗度計)を併用し、放射率と表面温度を同時に測定する
方法が提案されておシ(特開昭54−85079 )、
また、その他にも赤外線温度針を用いた表面温度測定法
に関する提案がいくつかなされてはいるが、いずれも被
測温物体の放射率を測定することが必要であるという問
題点がある。さらに、これらの方法では、被側温物体の
表面状態が、酸化や不純物の付着等によシ、時々刻刻変
化し、それに伴なって放射率が変化する場合には連続的
に表面温度を測定できないという欠点がある。また、赤
外線温度計は被測温物体からの放射エネルギーを測定す
る原理に基いているために、ある程度以上(約1mφ以
上〕の測定面積を必要とし、被測温物体の寸法が極めて
小さい場合や、あるいは被測温物体の任意の位置の温度
測定を行なう場合には適用が困難であるという問題が生
じていた。To solve this problem, infrared temperature needles and surface roughness measuring instruments (
A method of simultaneously measuring emissivity and surface temperature using a roughness meter (roughness meter) has been proposed (Japanese Patent Application Laid-open No. 85079/1983).
In addition, several other proposals have been made regarding surface temperature measurement methods using infrared temperature needles, but all of them have the problem that it is necessary to measure the emissivity of the object to be temperature measured. Furthermore, in these methods, if the surface condition of the heated object changes from time to time due to oxidation or adhesion of impurities, and the emissivity changes accordingly, the surface temperature is continuously adjusted. The drawback is that it cannot be measured. In addition, since infrared thermometers are based on the principle of measuring radiant energy from the temperature-measuring object, they require a measurement area of a certain size or more (approximately 1 mφ or more). Alternatively, there has been a problem in that it is difficult to apply when measuring the temperature at an arbitrary position of an object to be measured.
これらの問題点、欠点を解決する一提案として、第1図
に示す赤外線温度計を用いた表面温度測定法が最近提案
されている。この測定法は、第1図に示すごとく、被測
温物体lの上方に、人工黒体カバー3を配置することに
よシ、被測温物体lの放射率を見捌は上、人工黒体カバ
ー3と被測温物体1表面との間の空間形状のみによって
決まる一定値に予め設定し、との見捌けの放射率を用い
て被測温物体1の表面温度を測定する方法であシ、被測
温物体1の放射率に無関係に測温できる効果を有してい
る。しかしながら、見捌けの放射率は被測温物体1の放
射率と人工魚体カバー3の反射率との関数でアシ、第2
図に示すごとく、見釧けの放射率が実質上一定と見なせ
る領域は第2図の斜線を施した領域に限定され、このた
め、第1図に示した温度測定法の範囲がある程度制限を
受けるという問題点がある。As a proposal to solve these problems and drawbacks, a surface temperature measurement method using an infrared thermometer as shown in FIG. 1 has recently been proposed. In this measurement method, as shown in Fig. 1, an artificial blackbody cover 3 is placed above the object L to be measured, and the emissivity of the object L to be measured is adjusted to the desired level. This is a method of measuring the surface temperature of the object to be measured 1 using an emissivity that is preset to a constant value determined only by the shape of the space between the body cover 3 and the surface of the object to be measured 1. Second, it has the effect of being able to measure the temperature regardless of the emissivity of the object 1 to be measured. However, the emissivity of the sensor is a function of the emissivity of the object to be measured 1 and the reflectance of the artificial fish body cover 3.
As shown in the figure, the area in which the emissivity of the mitsume can be considered to be substantially constant is limited to the shaded area in Figure 2, and for this reason, the range of the temperature measurement method shown in Figure 1 is limited to some extent. There is a problem with receiving it.
本発明の目的は、物体の表面温度測定法において、被測
温物体の放射率、形状および被側温物体の周囲の環境に
無関係に測温でき、しかも、高い位置分解能を有する非
接触温度測定方法を提供することにある。An object of the present invention is to provide a non-contact temperature measurement method that can measure the surface temperature of an object, regardless of the emissivity and shape of the object to be measured, and the surrounding environment of the heated object, and that has high positional resolution. The purpose is to provide a method.
被側温物体に陽電子を打ち込み、陽電子が被測温物体中
の陰電子と対消滅する際に発生するγ線の強度が、被測
温物体の温度に依存することを利用し、このγ線強度に
より物体の表面温度を測定する。By using the fact that the intensity of the gamma rays generated when a positron is annihilated with a negative electron in the object to be measured by shooting a positron into the hot object to be measured depends on the temperature of the object to be measured, this gamma ray is Measures the surface temperature of an object based on intensity.
以下、本発明の一実施例を第3図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.
本実施例は、陽電子源5.第1スリット6、第2スリツ
ト7、第1γ線検出器8.第2γ線検出器9.前置増幅
器10.線形増幅器11.シングルチャンネル波高弁別
器12.同時回路13.計数回路14.計算機15.試
料駆動装置16.駆動装置制御系17.集束レンズ18
、および高電圧電源19より構成まれている。In this embodiment, positron source 5. First slit 6, second slit 7, first gamma ray detector 8. Second gamma ray detector9. Preamplifier 10. Linear amplifier 11. Single channel pulse height discriminator 12. Simultaneous circuit 13. Counting circuit 14. Calculator 15. Sample drive device 16. Drive device control system 17. Focusing lens 18
, and a high voltage power supply 19.
陽電子源5は、被測温物体1へ陽電子を入射するために
陽電子を放出するものでアリ、陽電子源5としては、原
子核崩壊(陽電子崩壊)することにより陽電子を放出す
る核種、たとえば、”Na1B1CO,’7Nil I
aCO等、を用いるのが便利であシ、本発明においては
、半減期が約2.6年と比較的長く、また陽電子崩壊の
割合が約91%と大きい”Naを陽電子源5として使用
している。The positron source 5 emits positrons in order to inject the positrons into the temperature-measuring object 1, and the positron source 5 is made of a nuclide that emits positrons by nuclear decay (positron decay), such as "Na1B1CO". ,'7Nil I
In the present invention, it is convenient to use Na, which has a relatively long half-life of about 2.6 years and a high positron decay rate of about 91%. ing.
本実施例においては、被測温物体1への入射陽電子の数
を多くする目的で集束レンズ18を使用している。尚電
圧電源19によシ、集束レンズ18部分で高い電場が形
成され、陽電子源5から放出された陽電子を被測温物体
lの微少部位へ入射することも可能である。なお、陽電
子源50強度、あるいは、陽電子源5と被測温物体1と
の距離によっては、集束レンズ18を用いること無く、
陽電子源5のみで済ませることが可能であることは言う
までも無い。In this embodiment, a focusing lens 18 is used for the purpose of increasing the number of positrons incident on the object 1 to be temperature measured. A high electric field is formed in the focusing lens 18 by the voltage power source 19, and it is also possible to cause the positrons emitted from the positron source 5 to enter a minute portion of the temperature-measuring object l. Note that depending on the intensity of the positron source 50 or the distance between the positron source 5 and the object to be measured 1, the focusing lens 18 may not be used.
Needless to say, it is possible to use only the positron source 5.
陽電子源5がら放出され、あるいは集束レンズ18によ
り集束されて被測温物体IK入射した陽電子は、被測温
物体1中の電子と衝突して対消滅する。この時に、0.
511 MeVのエネルギーを有する2本のγ線が互い
に反対方向に飛び出す。陽電子と電子が対消滅すること
にょシ放出される2本のγ線を検出するために、2つの
γ線検出器8゜9が被測温物体工を介しで、−直線上に
配置されておシ、被測温物体1がら互いに反対方向に放
出された消滅γ線は、γ線検出器8.9の前方におかれ
たスリット6.7の間隙を通って、それぞれγ線検出8
,9に入射する。Positrons emitted from the positron source 5 or focused by the focusing lens 18 and incident on the temperature-measuring object IK collide with electrons in the temperature-measuring object 1 and are annihilated. At this time, 0.
Two gamma rays with an energy of 511 MeV are emitted in opposite directions. In order to detect the two gamma rays emitted when positrons and electrons annihilate, two gamma ray detectors 8゜9 are placed on a straight line through the object to be measured. The annihilation gamma rays emitted from the object 1 to be temperature measured in opposite directions pass through the gap between the slits 6.7 placed in front of the gamma ray detector 8.9, and pass through the gamma ray detector 8.9.
, 9.
第3図において、10〜12は通常のγ線検出糸であシ
、前置増幅器1oおよび線形増幅器11により、検出器
8.9に入射したr#のパルス信号を増幅し、シングル
チャンネル波高分析器12によシ、入射γ線のエネルギ
ーを弁別する。同時(ロ)路13へFi2つのシングル
チャンネル波高分析器からの信号が入力し、同時に入力
した信号のみを計数回路14で計測する。計数回路14
による計数値は計算機15へ入力し、後述する本発明の
原理に従って、あらかじめめられている較正曲線を基に
、計算機15内で温度に換算され、温度情報として出力
される。In Fig. 3, reference numerals 10 to 12 are ordinary gamma ray detection threads, and a preamplifier 1o and a linear amplifier 11 amplify the r# pulse signal incident on the detector 8.9 for single-channel pulse height analysis. The energy of the incident gamma rays is discriminated by the device 12. Signals from the two Fi single-channel pulse height analyzers are input to the simultaneous (b) path 13, and only the simultaneously input signals are measured by the counting circuit 14. Counting circuit 14
The counted value is input to the calculator 15, and is converted into temperature within the calculator 15 based on a predetermined calibration curve according to the principle of the present invention, which will be described later, and is output as temperature information.
なお、被測温物体lは、X方向およびY方向に微動が可
能な試料駆動装置16上に置かれ、試料駆動装置16は
、駆動装置制御系17を介して計算機16と接続されて
おシ、計算機15からの指令によシ、被側温物体1の表
面の任意の位置の測温か可能となる機能を有している。The object to be measured l is placed on a sample drive device 16 that can be moved slightly in the X and Y directions, and the sample drive device 16 is connected to a computer 16 via a drive device control system 17. , has a function that allows temperature measurement at any position on the surface of the heated object 1 according to instructions from the computer 15.
次に、本発明による温度測定法の原理について以下に述
べる。Next, the principle of the temperature measurement method according to the present invention will be described below.
陽電子は電子(陰電子)と同じ静止質量を持ち。Positrons have the same rest mass as electrons (negative electrons).
電子の電荷(負電荷)と絶対値が等しく符号が反対の電
荷を有する粒子である。陽電子が物質中に入射すると、
約to−H秒程度の短かい時間で熱エネルギー程度まで
減速され、正に荷電している物質中の原子核とのクーロ
ン相互作用によシ反撥され、原子核から比較的遠い所を
移動するうちKi!子と対消滅し、この時に、電子の静
止質量に相轟するエネルギー(0,511MeV)を有
する2本(Dr線が、それぞれ反対方向(180’)へ
放出する。物質中での陽電子の運動エネルギーは上述し
たように熱エネルギー程度(〜0.025eV)であシ
、また厳密には電子の運動エネルギーが必ずしも0でな
いために、2本の消滅γ線が飛びだす方向は互に180
’方向から少しずれることとなる。A particle that has a charge that is equal in absolute value and opposite in sign to the charge (negative charge) of an electron. When a positron enters a substance,
It is decelerated to the level of thermal energy in a short time of about to-H seconds, is repelled by Coulomb interaction with the positively charged atomic nucleus in the substance, and as it moves relatively far from the atomic nucleus, Ki ! At this time, two (Dr rays) with energy (0,511 MeV) that reverberate with the rest mass of the electron are emitted in opposite directions (180').Positron movement in matter As mentioned above, the energy is approximately thermal energy (~0.025 eV), and strictly speaking, the kinetic energy of the electron is not necessarily 0, so the directions in which the two annihilation gamma rays are emitted are 180 degrees from each other.
'It will deviate slightly from the direction.
第4図は、陽電子消滅実験の原理を示す図であシ、陽電
子源5から放出された陽電子が試料2゜中に入射し、試
料中の電子と対消滅することKよj)11!11反対方
向に放射された2本のγ線は、それぞれ第1スリツト6
および第2スリツト7の間隙を通って、各々のスリット
の後部に設けられたγ線検出器8.9に入射する。第1
スリツト6と第2スリツト7を通ってγ線検出器8.9
に入ったパルスが同時であれば、そのγ線は同じ消滅現
象、即ち、入射した一つの陽電子に対応して一つの電子
が対消滅したことにょシ同時に放出されたγ線であると
考えることができる。Figure 4 is a diagram showing the principle of the positron annihilation experiment, in which positrons emitted from the positron source 5 enter the sample 2° and annihilate with electrons in the sample. The two gamma rays emitted in opposite directions are each passed through the first slit 6.
The light passes through the gap between the second slits 7 and enters the gamma ray detector 8.9 provided at the rear of each slit. 1st
The gamma ray detector 8.9 passes through the slit 6 and the second slit 7.
If the input pulses are simultaneous, consider that the γ-rays are the same annihilation phenomenon, that is, the γ-rays are emitted at the same time as one electron annihilates in response to one incident positron. I can do it.
いま、第1スリツト6を固定し、第2スリツト7を試料
20のまわシに回転し、回転角θの関数として同時計測
数N(θ)を測定すれば、第5図に示すような曲線が得
られる。第5図に示した曲線がγ−γ角相関強度曲線と
呼ばれる曲線でアシ、電子の運動エネルギーが必ずしも
Oでないためにγ線強度に回転角依存性が現われたもの
である。Now, if the first slit 6 is fixed, the second slit 7 is rotated around the sample 20, and the number of simultaneous measurements N(θ) is measured as a function of the rotation angle θ, a curve as shown in Fig. 5 is obtained. is obtained. The curve shown in FIG. 5 is called a γ-γ angular correlation intensity curve, and since the kinetic energy of electrons is not necessarily O, rotation angle dependence appears in the γ-ray intensity.
ところで、γ−r角相関強度曲線においては、θ=0で
の同時計測数N(0)が試料温度に依存するという実験
事実が見出されている(B、T、A、Mckeeeta
l 、phys、11.ev、I、ett、 28.3
58 (1972) l。第6図は、いくつかの金属に
ついて、同時計廁数N(0)と温度との関係を示す図で
あり、同時計測数N(0)による試料温度の評価が可能
であることがわかる。同時計測数N (0)が温度依存
性を有する理由の詳細については、いくつかの論文(堂
山昌男、応用物理41,684(1972)等)に記さ
れているので省略する。By the way, in the γ-r angle correlation strength curve, an experimental fact has been found that the number of simultaneous measurements N(0) at θ = 0 depends on the sample temperature (B, T, A, Mckeeeta
l, phys, 11. ev, I, ett, 28.3
58 (1972) l. FIG. 6 is a diagram showing the relationship between the number of simultaneous measurements N(0) and temperature for some metals, and it can be seen that the sample temperature can be evaluated based on the number of simultaneous measurements N(0). The details of the reason why the number of simultaneous measurements N (0) has temperature dependence are described in several papers (Masao Doyama, Applied Physics 41, 684 (1972), etc.), so the details will be omitted.
本発明は、とのr−r角相関強度曲線のθ=0における
同時計曲j数N(0)が温度に依存することを利用して
、被測温物体の温度測定を行なうものであシ、赤外線測
温法と物理的に全く異なった事象に基づくものである。The present invention measures the temperature of an object to be measured by utilizing the fact that the number N(0) of coincidence j curves at θ = 0 of the r-r angle correlation strength curve with is dependent on temperature. It is based on a phenomenon that is physically completely different from that of infrared thermometry.
本発明の温度測定法は、被測温物体の外部から陽電子を
打ち込み、被測温物体中の電子との対消滅γ線を計測す
るものであるために、被測温物体の表面状態および被測
温物体をとシまく環境の影響を全く受けないオU点を有
すると共に、互いに反対方向に飛びだす消滅γ線を同時
計測するため、温度情報を表わす消滅現象だけを計測で
きるので温度測定に対するS/N比が良いという利点を
持つ。さらに、消滅γ線のエネルギーは、電子の静止質
量に相当するエネルギー(0,511MeV)であシ、
この値は変化することが無いために、シングルチャンネ
ル波高分析器におけるエネルギー弁別幅を、消滅γ線の
エネルギーに調整すること罠よシ、消滅γ線のみを選択
的に測定できる利点を持つため、S/N比がより向上し
、計測数は少なくても精度の良い測定を行なうことが可
能である。In the temperature measurement method of the present invention, positrons are injected from the outside of the temperature-measuring object and annihilation gamma rays with electrons in the temperature-measuring object are measured. It has an O-U point that is completely unaffected by the environment surrounding the temperature measuring object, and because it simultaneously measures annihilation gamma rays emitted in opposite directions, it is possible to measure only the annihilation phenomenon that represents temperature information. It has the advantage of a good /N ratio. Furthermore, the energy of the annihilation gamma ray is the energy equivalent to the rest mass of an electron (0,511 MeV).
Since this value does not change, it is not necessary to adjust the energy discrimination range in the single channel pulse height analyzer to the energy of the annihilation gamma rays, but it has the advantage of being able to selectively measure only the annihilation gamma rays. The S/N ratio is further improved, and it is possible to perform highly accurate measurements even with a small number of measurements.
次に、本発明の測温法を用いた場合の測温所要時間につ
いて検討する。Next, the time required for temperature measurement when using the temperature measurement method of the present invention will be discussed.
第7図において、陽電子源5を点線源とし、陽電子源5
から集束レンズ19を臨む立体角をΩI、消滅点21が
検出器8(あるいは9)を臨む立体角をΩ!、γ−γ角
相関強度曲線においてピーク値をとる幅としてθ=0か
ら±2ミリラジアンを許容すれば、
・・・(3)
となる。ここでγは集束レンズ18の半径、tは陽電子
源5と集束レンズ18との距離である。陽電子源5の強
度をAC; (キュリー)とすると、検出器8.9に入
射する消(!;、r線の粒子数Xはによ請求められる。In FIG. 7, the positron source 5 is a point source, and the positron source 5
The solid angle at which the focusing lens 19 is viewed from is ΩI, and the solid angle at which the vanishing point 21 faces the detector 8 (or 9) is Ω! , if we allow ±2 milliradians from θ=0 as the width of the peak value in the γ-γ angle correlation strength curve, we get (3). Here, γ is the radius of the focusing lens 18, and t is the distance between the positron source 5 and the focusing lens 18. If the intensity of the positron source 5 is AC; (Curie), then the number of r-ray particles X entering the detector 8.9 can be expressed as:
一方、検出器の検出効率は、NaIシンチレータの場合
、全効率をEt、 ピーク対トータル比をPとおくと、
エネルギーEのγ線に対して、Etf(E J=P (
E)XEt (E) −(5)から計算される。3イン
チ直径×3インチ厚のNaIシンチレータの場合には、
消滅γ線のエネルギー(0,511MeVlでは、P=
0.65 、 Ei (E)=0.15であ#)(野ロ
正安著、γ線スペクトロメトリ、日刊工業新聞社)従っ
て検出器の検出効率は
Erf(E)=0.1 ・・・(6)
となる。消滅γ線の酬数率は、(4)および(6)式か
ら、と計算される。On the other hand, the detection efficiency of the detector is, in the case of a NaI scintillator, if the total efficiency is Et and the peak-to-total ratio is P.
For a γ-ray with energy E, Etf(E J=P (
E) Calculated from XEt (E) - (5). For a 3 inch diameter x 3 inch thick NaI scintillator,
Energy of annihilation gamma ray (at 0,511 MeVl, P=
0.65, Ei (E) = 0.15 (#) (Masayasu Noro, γ-ray spectrometry, Nikkan Kogyo Shimbun) Therefore, the detection efficiency of the detector is Erf (E) = 0.1... (6) becomes. The compensation rate of annihilation γ-rays is calculated from equations (4) and (6).
陽電子源5と集束レンズ18との距離tと集束レンズの
半径「の比を1:1としても消滅γ線の計数率は約0.
28CpSであシ、例えば第6図に示したように同時計
側数として100カウントを得るのに要する時間は6分
程度であシ、比較的短時間で測温可能となり得る。Even if the ratio between the distance t between the positron source 5 and the focusing lens 18 and the radius of the focusing lens is 1:1, the counting rate of annihilation gamma rays is about 0.
At 28 CpS, for example, as shown in FIG. 6, the time required to obtain 100 simultaneous counts is about 6 minutes, making it possible to measure temperature in a relatively short time.
次に、分解能に関しては、赤外線温度計は被測温物体か
らの放射エネルギーを測定するため、ある程度(1鰭φ
以上)の測温面積を必要とするのに対し、本発明による
測温法では陽電子源から放出される陽電子を集束レンズ
によシ被測温物体の微少部分(< 1 wanφ)へ入
射可能なこと、あるいは、陽電子が集束されずに試料面
に入射している場合であっても、試料駆動装置として1
例えば顕微鏡等で使用されている装置を用いれば0.1
鰭ステツプで試料を移動することは充分可能であること
から、赤外線温度計に比べれば最低でも約10倍の位置
分解能を得ることができる。Next, regarding resolution, infrared thermometers measure the radiant energy from the object being measured, so to a certain extent (1 fin φ
In contrast, in the temperature measurement method according to the present invention, the positrons emitted from the positron source can be incident on a minute part (< 1 wanφ) of the object to be temperature measured using a focusing lens. Even if the positrons are not focused and are incident on the sample surface, the sample driving device
For example, if a device used in a microscope etc. is used, 0.1
Since it is sufficiently possible to move the sample in fin steps, it is possible to obtain a positional resolution that is at least about 10 times higher than that of an infrared thermometer.
本発明による測温法は前述の如く、θ=0での同時計測
数N(0)の温度依存性を利用することが基本となって
いる。従って、まず被側温物体と同一組成を有する試料
について、同時計測数N(0)と温度(熱電対等を用い
て測定すれは良い)とを測定し、第6図に示したような
曲線をめる必要がある。同時計測数N(0)と試料温度
との関係がめられたならば、試料温度を同時計測数N
(0)の関数として関係式を計算機に入力しておくこと
にi、被測温物体の測定中に計算機に入力してくる同時
計数値を自動的に温度に変換し出力することができる。As described above, the temperature measurement method according to the present invention is based on utilizing the temperature dependence of the number of simultaneous measurements N(0) at θ=0. Therefore, first measure the number of simultaneous measurements N(0) and the temperature (measuring with a thermocouple or the like) for a sample having the same composition as the hot object on the side, and create a curve as shown in Figure 6. It is necessary to Once the relationship between the number of simultaneous measurements N (0) and the sample temperature is established, the sample temperature can be determined by the number of simultaneous measurements N (0).
By inputting the relational expression as a function of (0) into the computer, it is possible to automatically convert the simultaneous clock value input into the computer while measuring the temperature of the object to be measured into temperature and output it.
以上記した如く、本実施例によれば、赤外線温度計の有
する短所、すなわち、放射率、迷光および低分解能をす
べて克服できる効果があると共に、さらに、
1)同時計数である
11)陽電子消滅γ線エネルギーが一定(0,511M
eV)であるので、シングルチャンネル波高分析器の入
射エネルギー幅を調整すれば消滅γ線のみを針側できる
という2点のために、S/N比が良いという長所を併せ
持っている。As described above, this embodiment has the effect of overcoming all of the disadvantages of infrared thermometers, namely emissivity, stray light, and low resolution, and also has the following advantages: 1) Coincidence 11) Positron annihilation γ Line energy is constant (0,511M
eV), it has the advantage of having a good S/N ratio because of two points: by adjusting the incident energy width of the single channel pulse height analyzer, only the annihilation gamma rays can be placed on the needle side.
第8図乃至第10図は、本発明の一変形例を示す。第8
図では、被測温物体1へ入射する陽電子の数を増加する
ために陽電子集束レンズ系を設置した例であり、陽電子
源5の後部にポジトロンリフレクタ−電極22を、前部
に引き出し電極23と集束レンズ18を設けている。ポ
ジトロンリフレクタ−電極22は回転放物面状をしてお
シ、その焦点位置に陽電子源5が置かれている。ポジト
ロンリフレクタ−電極22に正電圧を印加することによ
シ、回転放物面の焦点に置かれた陽電子源5から4π方
向に放出された陽電子はポジトロンリフレクタ−電極2
2で反射され、被測温物体1の方向へ訪導されるため、
被測温物体1へ入射する陽電子数は増加する。FIGS. 8 to 10 show a modification of the present invention. 8th
The figure shows an example in which a positron focusing lens system is installed in order to increase the number of positrons incident on the object 1 to be temperature measured, with a positron reflector electrode 22 at the rear of the positron source 5 and an extraction electrode 23 at the front. A focusing lens 18 is provided. The positron reflector electrode 22 has a paraboloid of revolution shape, and the positron source 5 is placed at its focal point. By applying a positive voltage to the positron reflector electrode 22, positrons emitted in the 4π direction from the positron source 5 placed at the focal point of the paraboloid of revolution are transferred to the positron reflector electrode 22.
2 and is guided in the direction of the temperature measurement object 1,
The number of positrons incident on the object to be measured 1 increases.
第9図および第1θ図は、検出器側の利得を向上させる
ための変形例を示し、第9図においては、複数個のγ線
検出器9を一組としてγ線検出器群を構成し、一対以上
のγ線検出器群を被測温物体lを介して一直線上に配置
している。また比10図は、被測温物体1を介して一対
以上のγ線検出器をそれぞれ一直線上に配置した例を丞
す。FIG. 9 and FIG. 1θ show a modification example for improving the gain on the detector side, and in FIG. 9, a plurality of γ-ray detectors 9 are set as one set to constitute a γ-ray detector group. , one or more pairs of gamma ray detectors are arranged in a straight line with the temperature measured object l interposed therebetween. Further, FIG. 10 shows an example in which one or more pairs of γ-ray detectors are arranged in a straight line with the temperature measurement object 1 interposed therebetween.
本発明によれば、被測温物体の放射率、形状および被測
温物体の周囲の環境に全く影響されないので、表面温度
の測定、微少部分の温度測定に効果がある。According to the present invention, since it is not affected at all by the emissivity and shape of the temperature-measuring object and the surrounding environment of the temperature-measuring object, it is effective in measuring the surface temperature and the temperature of a minute part.
第1図は赤外線測温法の一例を示す概略断面図。
第2図は見拐けの放射率が一定と見なせる領域を被測温
物体の放射率と人工黒体カバーの反射率で示した模式図
、第3図は本発明による温度測定装置の概略断面図と測
定系統を表わす図、第4図は陽電子消滅実験の原理を示
す図、第5図はγ−γ角相関強度曲線、第6図は消滅γ
線の同時計数値と被測温物体の温度との関係を表わす図
、第7図は検出器への入射粒子数をめるだめの概略図、
第8図乃至第10図は本発明の変形例を示す概略断面図
を表わす。
1・・・被測温物体、2・・・赤外線温度計、3・・・
人工黒体カバー、4・・・対物補助カバー、5・・・陽
電子源、6・・・第1スリツト、7・・・第2スリツト
、8.9・・・γ線検出器、10・・・前置増幅器、1
1・・・線形増幅器、12・・・シングルチャンネル波
高分析器、13・・・同時回路、14・・・計数回路、
15・・・計算機、16・・・試料駆動装置、17・・
・駆動装置制御系、18・・・集束レンズ、19・・・
高電圧源、20・・・試料、21・・・消滅点、22・
・・ポジトロンリフレクタ−電第 1 図
第 2 ロ
回転筒(り
第6図
旦度(・C)
C’1r)x tooo(w−り
第7図FIG. 1 is a schematic cross-sectional view showing an example of an infrared temperature measurement method. Fig. 2 is a schematic diagram showing the region where the emissivity can be regarded as constant, using the emissivity of the object to be measured and the reflectance of the artificial blackbody cover, and Fig. 3 is a schematic cross-section of the temperature measuring device according to the present invention. Figure 4 shows the principle of positron annihilation experiment, Figure 5 shows the γ-γ angle correlation strength curve, and Figure 6 shows the annihilation γ
A diagram showing the relationship between the coincident value of the line and the temperature of the object to be measured, Figure 7 is a schematic diagram of how to calculate the number of particles incident on the detector,
FIGS. 8 to 10 are schematic sectional views showing modifications of the present invention. 1...Temperature measured object, 2...Infrared thermometer, 3...
Artificial black body cover, 4... Objective auxiliary cover, 5... Positron source, 6... First slit, 7... Second slit, 8.9... γ-ray detector, 10...・Preamplifier, 1
DESCRIPTION OF SYMBOLS 1... Linear amplifier, 12... Single channel pulse height analyzer, 13... Simultaneous circuit, 14... Counting circuit,
15... Computer, 16... Sample drive device, 17...
- Drive device control system, 18... Focusing lens, 19...
High voltage source, 20... Sample, 21... Vanishing point, 22.
...Positron reflector - Figure 1 Figure 2 Rotating tube (Figure 6) C'1r) x toooo (W- Figure 7
Claims (1)
し、陽電子の消滅r線強度にょシ測温することを特徴と
した非接触温度測定方法。 2、特許請求の範囲第1項記載の方法において、γ−r
角相関強度曲線を用いることを特徴とした非接触温度測
定方法。 3、特許請求の範囲第2項記載の方法において、r線ピ
ーク強度の温度依存性を用いることを特徴とした非接触
温度測定方法。[Scope of Claims] 1. A non-contact temperature measuring method of an object, characterized by injecting positrons into the object to be temperature measured and measuring the temperature based on the annihilation r-ray intensity of the positrons. 2. In the method according to claim 1, γ-r
A non-contact temperature measurement method characterized by using an angular correlation intensity curve. 3. A non-contact temperature measuring method according to claim 2, characterized in that the temperature dependence of the r-ray peak intensity is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18841483A JPS6080727A (en) | 1983-10-11 | 1983-10-11 | Method for measuring temperaturae without contacting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18841483A JPS6080727A (en) | 1983-10-11 | 1983-10-11 | Method for measuring temperaturae without contacting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6080727A true JPS6080727A (en) | 1985-05-08 |
Family
ID=16223237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18841483A Pending JPS6080727A (en) | 1983-10-11 | 1983-10-11 | Method for measuring temperaturae without contacting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6080727A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0819934A1 (en) * | 1996-07-16 | 1998-01-21 | Japan Science and Technology Corporation | Method and apparatus for investigating the physical properties of material surface layer |
JP2012018937A (en) * | 2011-10-11 | 2012-01-26 | Central Res Inst Of Electric Power Ind | Temperature measurement device, temperature measurement method and electron microscope |
CN114018428A (en) * | 2021-10-26 | 2022-02-08 | 南京航空航天大学 | Device and method for detecting temperature field of combustion chamber of aircraft engine based on positron annihilation technology |
-
1983
- 1983-10-11 JP JP18841483A patent/JPS6080727A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0819934A1 (en) * | 1996-07-16 | 1998-01-21 | Japan Science and Technology Corporation | Method and apparatus for investigating the physical properties of material surface layer |
JP2012018937A (en) * | 2011-10-11 | 2012-01-26 | Central Res Inst Of Electric Power Ind | Temperature measurement device, temperature measurement method and electron microscope |
CN114018428A (en) * | 2021-10-26 | 2022-02-08 | 南京航空航天大学 | Device and method for detecting temperature field of combustion chamber of aircraft engine based on positron annihilation technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Clark | Balloon observation of the X-ray spectrum of the Crab Nebula above 15 keV | |
Jeong et al. | Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies | |
Craig et al. | Optical model studies of proton scattering at 30 MeV:(III). Polarization in Elastic Scattering by Ca, Co59, Ni58, Ni60, Sn120 and Pb208 | |
Sadowski et al. | Investigation on the response of CR-39 and PM-355 track detectors to fast protons in the energy range 0.2–4.5 MeV | |
Agodi et al. | BaF2 scintillator: A stand-alone detector for γ-rays and light charged particles | |
Kaburagi et al. | Neutron/γ-ray discrimination based on the property and thickness controls of scintillators using Li glass and LiCAF (Ce) in a γ-ray field | |
Qin et al. | Characterization of a 6Li enriched Cs2LiYCl6: Ce scintillator and its application as a γ-ray detector | |
JPS6080727A (en) | Method for measuring temperaturae without contacting | |
US2954473A (en) | Cerenkov radiation fission product detector | |
Sobolev et al. | A setup for measuring total cross sections of nuclear reactions | |
Barillon et al. | Variation of the critical registration angle of alpha particles in CR39: Implications for radon dosimetry | |
Xie et al. | Measurement of Time-Dependent Drive Flux on the Capsule for Indirectly Driven Inertial Confinement Fusion Experiments | |
Wei et al. | Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy | |
Ma | Measurement of radiation | |
US7446314B2 (en) | Superconducting gamma and fast-neutron spectrometers with high energy resolution | |
JPS60146125A (en) | Temperature measuring apparatus | |
Avdeichikov et al. | Energy calibration of CsI (Tl) scintillator in pulse-shape identification technique | |
Benveniste et al. | Elastic Scattering of Protons by Fe 56, Fe 58, and Ni 58 at 10.9 and 11.7 MeV | |
Ayaz-Maierhafer et al. | Sensing of 252 Cf fission gamma rays using same-size glass detectors | |
US5753914A (en) | Method and apparatus for investigating the physical properties of material surface layer | |
McMillan et al. | Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays | |
Chastel et al. | A convenient calibration technique for neutron detectors | |
Urbański et al. | Review of X-ray detection systems | |
Casolaro et al. | The polysiloxane-based scintillator for measurements of fast neutron spectra in nuclear physics experiments | |
Horowitz et al. | A beta-ray spectrometer based on a two-or three silicon detector coincidence telescope |