JPS60145523A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPS60145523A
JPS60145523A JP135584A JP135584A JPS60145523A JP S60145523 A JPS60145523 A JP S60145523A JP 135584 A JP135584 A JP 135584A JP 135584 A JP135584 A JP 135584A JP S60145523 A JPS60145523 A JP S60145523A
Authority
JP
Japan
Prior art keywords
magnetic
surface roughness
recording medium
magnetic tape
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP135584A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
飯島 哲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP135584A priority Critical patent/JPS60145523A/en
Publication of JPS60145523A publication Critical patent/JPS60145523A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise outputs and resolution of a reproducing signal, and also to improve S/N by reducing noise of a recording medium, by controlling the surface roughness of the recording medium to a specified range, and bringing a quantitative decrease and a qualitative variation on the surface roughness. CONSTITUTION:Calender processing and lapping processing of a magnetic tape are executed so that a probability distribution in a 50% amplitude level of an Abbot load curve of surface roughness of a magnetic layer on a magnetic recording medium is 0.45-0.9, and also a value of a tertiary moment standardized by a value of the 2/3 power of a secondary moment of a surface roughness curve has a surface roughness distribution of +0.5--1.0. As for this lapping processing, a relative speed between a lapping tape and the magnetic tape is set to 0.1-1.0m/sec, and it is executed under the condition that a pressing force of the lapping tape is set to 2-200g/cm<2>, and the surface roughness is reduced quantitatively, and also its qualitative variation is induced.

Description

【発明の詳細な説明】 皮粟上■科朋分立 本発明は磁気記録媒体に関する。更に詳しくは、情報処
理用またはディジクルVTI?用等のディジタル信号の
記録に適した磁気記録媒体並びにその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium. For more details, please refer to information processing or digital VTI? The present invention relates to a magnetic recording medium suitable for recording digital signals such as those for use in other applications, and a method for manufacturing the same.

従未且開。Unconformed and open.

従来から磁気記録再生用の媒体としてハード磁気ディス
ク、磁気テープ、あるいはフレキシブル磁気ディスクな
どが使用されている。これら磁気記録媒体の開発におけ
る開発目標は高密度化、具体的には高出力・高分解能化
であり、高信号対雑音比(S/N)化にあると言える。
Conventionally, hard magnetic disks, magnetic tapes, flexible magnetic disks, and the like have been used as media for magnetic recording and reproduction. It can be said that the development goal in the development of these magnetic recording media is high density, specifically high output and high resolution, and a high signal-to-noise ratio (S/N).

特に、情報処理用ディジタル信号の記録再生装置におい
ては、高いS/Nが記録媒体の信号品質を決定する最も
重要な要因であることが知られている。これら各種磁気
記録装置の進歩・発達に伴って、磁気特性及び媒体表面
平滑性の優れた磁気記録媒体が要求されてきている。
In particular, in a recording/reproducing apparatus for digital signals for information processing, it is known that a high S/N ratio is the most important factor determining the signal quality of a recording medium. With the progress and development of these various magnetic recording devices, there has been a demand for magnetic recording media with excellent magnetic properties and medium surface smoothness.

一般に、磁気記録媒体のS/Nを制限する要因として、
媒体雑音と再生増幅器初段の能動回路による所謂機器雑
音とがある。磁気テープ媒体雑音は、媒体の不連続性に
基づくもので、例えば、J、C,Mallinson 
: ”Maximun Signal−to−Nois
ellatio of a Tape Recorde
r ” + IEEE Trans、onMagn、、
HAG−5,pp、182〜186 (1979)等の
文献に述べられている。また、磁気テープ媒体雑音は、
信号記録再生時には磁気ヘッドとの接触状態、即ち該磁
性層表面の凹凸に起因するスペーシング損失の違いによ
り変調を受け、所謂変調雑音といわれるものとなる。一
般の磁気記録装置、特に磁気テープを使った装置に於い
ては前述の変調雑音が支配項となるように設計されるの
が普通である。
In general, factors that limit the S/N of magnetic recording media include:
There are medium noise and so-called equipment noise caused by the active circuit of the first stage of the regenerative amplifier. Magnetic tape media noise is based on media discontinuities, e.g., J. C. Mallinson.
: ”Maximun Signal-to-Nois
Ellation of a Tape Record
r” + IEEE Trans,onMagn,,
It is described in literature such as HAG-5, pp. 182-186 (1979). In addition, magnetic tape media noise is
During signal recording and reproduction, the signal is modulated by differences in spacing loss caused by the state of contact with the magnetic head, that is, the unevenness of the surface of the magnetic layer, resulting in so-called modulation noise. General magnetic recording devices, especially devices using magnetic tape, are usually designed so that the above-mentioned modulation noise becomes a dominant factor.

かくして、磁気テープ変調雑音の原因となる磁気記録媒
体の表面粗さは可能な限り小さいことが望ましい。
Thus, it is desirable that the surface roughness of the magnetic recording medium, which causes magnetic tape modulation noise, be as small as possible.

現在代表的な情報処理用磁気テープあるいはフレキシブ
ル磁気ディスクにあっては0.1〜0.4μmの高さの
凹凸(表面粗さ)があるが、高密度ディジタル記録用磁
気テープでは特に0.2μm以下とすることが高出力・
高分解能化及び高S/N化の点から望ましい。
Current typical magnetic tapes for information processing or flexible magnetic disks have unevenness (surface roughness) with a height of 0.1 to 0.4 μm, but magnetic tapes for high-density digital recording have a height of 0.2 μm in particular. High output and
This is desirable from the viewpoint of high resolution and high S/N.

塗布型磁気テープの表面粗さを小さくする方法としては
大きく別けて以下のような2つの方法がある。その1つ
は磁気テープの磁性粒子充填率を高めることである。即
ち、塗布型テープは磁性粒子を高分子バインダ中に分散
させて得られる所謂不連続媒体であり、該磁性層中にお
ける磁性粒子及び高分子バインダとよばれる非磁性物質
の占有率は体積密度で各々1/3、残りが空孔である。
There are two main methods for reducing the surface roughness of a coated magnetic tape: One of them is to increase the magnetic particle filling rate of the magnetic tape. In other words, coated tape is a so-called discontinuous medium obtained by dispersing magnetic particles in a polymer binder, and the occupancy rate of the magnetic particles and a non-magnetic substance called the polymer binder in the magnetic layer is determined by the volume density. 1/3 of each, the rest being holes.

従って、この方法は磁性粒子の体積密度を増して連続媒
体へ近づけ、それに伴って媒体表面粗さを改善しようと
する試みである。もう1つはカレンダ処理と言われるも
のであり、磁性層の塗布後に金属の熱ローラ間に通して
媒体表面の凹凸、とりわけ凸部をつぶして平滑化しよう
とするものである。
Therefore, this method is an attempt to increase the volume density of magnetic particles to bring them closer to a continuous medium, thereby improving the surface roughness of the medium. The other method is called calendering, in which after the magnetic layer is applied, the medium is passed between heated metal rollers to flatten the unevenness, especially the convex portions, of the surface of the medium.

前者の方法は相対的に磁性粒子を包むバインダ量が減少
するため、磁気ヘッド等との摺動耐久性が著しく劣化す
ることになり、また一方で表面粗さの減少度は比較的僅
かである。従来公知のとおり、後者の方法においても塗
液の性質、具体的にはバインダ素材として熱可塑性樹脂
、熱硬化性樹脂、反応型樹脂あるいはこれらの混合物の
いずれを使用するかによって媒体表面粗さへの影響が異
なる。また塗液中に混入する磁性粒子の充填率によって
その影響が大きく違ってくる。
In the former method, since the amount of binder surrounding the magnetic particles is relatively reduced, the sliding durability with the magnetic head etc. is significantly deteriorated, and on the other hand, the degree of reduction in surface roughness is relatively small. . As is conventionally known, even in the latter method, the surface roughness of the medium is influenced by the properties of the coating liquid, specifically whether a thermoplastic resin, thermosetting resin, reactive resin, or a mixture thereof is used as the binder material. have different effects. In addition, the influence greatly differs depending on the filling rate of magnetic particles mixed in the coating liquid.

例えば、磁性粒子充填率について言えば情報処理用磁気
テープあるいは情報処理用のフレキシブル磁気ディスク
媒体でば磁気ヘッドとの摺動耐久性を確保するため磁性
粒子充填率が約70wt%(バインダと磁性粒子を含め
た塗液全体に対する重量%)と比較的低いのでカレンダ
処理を施すことによる媒体表面粗さの改善効果は、第1
表に示すように小さい。この例かられかる通り情報処理
用磁気・テープあるりは情報処理用のフレキシブル磁気
ディスク媒体においては媒体の表面粗さを前述した如<
0.2μm以下とすることば困難である。
For example, regarding the magnetic particle filling rate, in a magnetic tape for information processing or a flexible magnetic disk medium for information processing, the magnetic particle filling rate is approximately 70 wt% (binder and magnetic particle (% by weight of the entire coating liquid, including
Small as shown in the table. As can be seen from this example, in magnetic tape for information processing or flexible magnetic disk media for information processing, the surface roughness of the medium is determined as described above.
It is difficult to reduce the thickness to 0.2 μm or less.

また、このような表面粗さおよび磁気特性をもつ情報処
理用テープ或いはフレキシブル磁気ディスク媒体におい
ては、出力・分解能等の電磁変換特性あるいはS/Nの
値は将来の高密度用磁気記録装置の要求値を十分満足す
るものではなかった。
In addition, for information processing tapes or flexible magnetic disk media that have such surface roughness and magnetic properties, electromagnetic conversion properties such as output and resolution, or S/N values will meet the requirements of future high-density magnetic recording devices. The value was not fully satisfied.

第1表 発」坏11吋 本発明の目的は再生信号の出力・分解能が高く、S’/
Nを著しく改善した磁気記録媒体、並びにその製法を提
供することにある。
The purpose of the present invention is to achieve high output and resolution of the reproduced signal, S'/
An object of the present invention is to provide a magnetic recording medium with significantly improved nitrogen content, and a method for producing the same.

介皿夙揺戊 本発明者等は上記従来法の諸問題点を解決するために磁
気記録媒体の表面粗さに着目し種々検耐した結果、該記
録媒体の表面粗さを制御することにより、即ち該表面粗
さの量的減少と質的変化とをもたらすことにより、再生
信号の出力・分解能が高められ、同時に記録媒体雑音が
低減してS/Nが著しく改善されることを見出し、本発
明を完成するに至った。
In order to solve the problems of the above-mentioned conventional method, the present inventors focused on the surface roughness of the magnetic recording medium and conducted various tests, and found that by controlling the surface roughness of the recording medium. That is, by bringing about a quantitative reduction and qualitative change in the surface roughness, the output and resolution of the reproduced signal are increased, and at the same time, recording medium noise is reduced and the S/N ratio is significantly improved, The present invention has now been completed.

即ち、本発明の磁気記録媒体にあっては磁性層の表面粗
さのアボット負荷曲線の50%振幅レベル〔表面オ■さ
のPV (Peak−to−valley)値の50%
レベル〕における確率分布が0.45〜0.9であり、
かつ表面粗さ曲線の2次モーメントの3/2乗の値で規
格化した3次モーメントの値が+0.5〜−1.0なる
範囲の表面粗さ分布を有することを特徴とする。
That is, in the magnetic recording medium of the present invention, the 50% amplitude level of the Abbott load curve of the surface roughness of the magnetic layer [50% of the PV (Peak-to-valley) value of the surface roughness]
level] is 0.45 to 0.9, and
It is also characterized by having a surface roughness distribution in which the value of the third moment normalized by the value of the second moment of the surface roughness curve to the 3/2 power is in the range of +0.5 to -1.0.

磁気記録媒体の磁性層に前記のような特性を付与するご
とにより、本発明の目的とする優れた品質の磁気記録媒
体を得ることができ、従来製品の上記欠点を完全に解決
することができる。
By imparting the above characteristics to the magnetic layer of a magnetic recording medium, it is possible to obtain a magnetic recording medium of excellent quality, which is the object of the present invention, and completely solve the above-mentioned drawbacks of conventional products. .

本発明の磁気記録媒体は情報処理用磁気テープ装置、情
報処理用フレキシブル磁気ディスク装置、オーディオデ
ツキあるいはVTR等の磁気記録媒体において使用する
ことができる。
The magnetic recording medium of the present invention can be used in magnetic recording media such as magnetic tape devices for information processing, flexible magnetic disk devices for information processing, audio decks, and VTRs.

表面粗さは、通常の表面粗さ測定器、例えばクリサーフ
−4型粗さ計及びタリノハ(共にTAYLOI?+10
 B S ON製)を使用し”ζ測定することができる
The surface roughness was measured using a conventional surface roughness measuring instrument, such as a Kurisurf-4 type roughness meter and a Talinoha (both TAYLOI?+10).
(manufactured by BS ON) can be used to measure "ζ".

ここで表面!’Ilさの表示法としてはJIS−BO6
0L(1982)に記載されているがこれらは高さの情
報、ピンチ(位相)情報、分布情報に大別される。高さ
の情報としζはRa 、 Rmax 、 Rz等、ピッ
チ情報としてはゼロクロス点の平均間隔、分布情報とし
ては表面粗さ曲線y (χ)のn次モーメンI・(n−
2は所謂rms値、n=3は分布の偏りを表す)、ある
いは確率分布曲線即ち所謂アボット負荷曲線等がある。
Surface here! 'JIS-BO6 is the method of expressing the degree of illumination.
0L (1982), and these are broadly classified into height information, pinch (phase) information, and distribution information. The height information ζ is Ra, Rmax, Rz, etc., the pitch information is the average interval of zero crossing points, and the distribution information is the n-th moment I・(n−) of the surface roughness curve y (χ).
2 represents the so-called rms value, n=3 represents the bias of the distribution), or a probability distribution curve, ie, the so-called Abbott load curve.

本発明では、RaとRtm(Rmaxの平均値)、さら
にrms値の3/2乗で規格化した3次モーメントRs
k: (L:測定長) とアポ、ト負荷曲線の50%振幅レヘルにお+)る確率
(P2O)で表すことにする。
In the present invention, Ra and Rtm (average value of Rmax), and the third-order moment Rs normalized by the 3/2 power of the rms value
k: (L: measurement length) and the probability (P2O) of reaching the 50% amplitude level of the appointment load curve.

例えば、ガウス分布で近似できる表面第11さかある場
合、規格化した3次モーメン1−は()、アポ。
For example, if there is a surface 11th inverted that can be approximated by a Gaussian distribution, the normalized third moment 1- is (), apo.

ト負荷曲線の50%振幅レヘルにおける確率は0.5と
表される。また、凸又は凹が支配的な表面粗さに対して
は夫々Rsk値が正または負に対応する。
The probability at the 50% amplitude level of the load curve is expressed as 0.5. Furthermore, the Rsk value corresponds to a positive or negative Rsk value for a surface roughness in which convexity or concaveness is dominant, respectively.

従って、これらの値からもとの媒体の表面1′11さ曲
線の分布形状がわかる。
Therefore, from these values, the distribution shape of the original surface 1'11 curve can be determined.

本発明の磁気記録媒体にあってはRsk値が0.49〜
0.9の範囲内でありP2O値が+0.5〜−1.0の
範囲内である。Rsk及びP2Oの値が前記範囲を外れ
る場合には本発明の目的とする高密度磁気記録媒体を得
ることができない。
The magnetic recording medium of the present invention has an Rsk value of 0.49 to
The P2O value is within the range of +0.5 to -1.0. If the values of Rsk and P2O are outside the above ranges, the high-density magnetic recording medium targeted by the present invention cannot be obtained.

本発明の磁気記録媒体は以下のような方法に従って製造
することができる。
The magnetic recording medium of the present invention can be manufactured according to the following method.

即ち、基体とし゛ζポリエステル、ポリイミド、ポリ塩
化ビニルなどの可撓性プラスチックフィルムを使用し、
磁性粒子塗液を該基体フィルム上に塗布し、通常の乾燥
工程を経て磁気テープを(qる。
That is, a flexible plastic film such as ζ polyester, polyimide, or polyvinyl chloride is used as the base,
A magnetic particle coating liquid is applied onto the base film, and a magnetic tape is formed through a normal drying process.

この磁気テープの製法並びに磁性塗液の成分、組成、そ
の製法等は既に公知のいかなる方法を利用することも可
能であり、何等制限されるものではない。磁気テープは
、例えば昭晃堂刊、[ティジタル磁気記録j p、p1
59〜166(昭和54年10月25日発行)に記載さ
れた方法に従って作製できる。
The manufacturing method of this magnetic tape, the components and composition of the magnetic coating liquid, the manufacturing method thereof, etc. can be any known method and are not limited in any way. Magnetic tape is, for example, published by Shokodo, [Tigital Magnetic Recording jp, p.
It can be produced according to the method described in No. 59-166 (published October 25, 1978).

本発明の方法によれば、か(してiilられる磁気テー
プを次にカレンダ処理及びラッピング処理に何し、所定
め表面第11さ及び表面I’llさ分布をイ1する磁気
テープとする。
According to the method of the present invention, the thus prepared magnetic tape is then subjected to calendering and lapping processes to produce a magnetic tape having a predetermined surface thickness and surface I'll distribution.

前記カレンダ処理は、例えばハードクロムメ。The calendering process is, for example, hard chrome.

キを施した平滑なロールとロールとの間に該磁気テープ
を通して磁性層表面を平滑化する処理であり得る。また
、前記ラッピング処理は媒体表面平滑化処理の一手段と
して特公昭57−150139 、号公報等に開示され
た処理を利用することができる。但し、該公報発明にお
いては表面粗さ分布の変化については何等記載されてい
ない。
The magnetic layer surface may be smoothed by passing the magnetic tape between coated smooth rolls. Further, the wrapping process can utilize the process disclosed in Japanese Patent Publication No. 57-150139, No. 150139, etc. as a means of medium surface smoothing process. However, the published invention does not describe any changes in surface roughness distribution.

本発明の方法におけるラッピング処理は上記公報の発明
の方法と類似するか、本発明の方法では磁気記録媒体の
表面粗さを量的に減少させると共にその質的変化をも誘
起するように、特にラッピングの方向、速度押しつけ力
等を特定の範囲に制限してラッピング処理を行う。
The lapping process in the method of the present invention is similar to the method of the invention in the above-mentioned publication, or the method of the present invention specifically reduces the surface roughness of the magnetic recording medium quantitatively and also induces a qualitative change in the surface roughness of the magnetic recording medium. The wrapping process is performed by limiting the wrapping direction, speed, pressing force, etc. to a specific range.

まず、研磨テープとしては例えば粒径O63μn+のア
ルミナ粉を塗布したもの(商品名:■町+erialL
apping Film Roles #OG4.5c
otcl+社製)を使用することができる。
First, as an abrasive tape, for example, one coated with alumina powder with a particle size of O63 μn+ (product name: ■Machi+erialL
apping Film Roles #OG4.5c
(manufactured by otcl+) can be used.

ラッピング処理はカレンダ処理後の磁気テープを平坦な
プレート上に置き、該磁気テープの被ランプ面に前記ラ
ッピングテープを押しイ1けるごとによりラッピング処
理を行う。該う、7ビングテープと磁気テープとの相対
速度は0.1〜1.0 m /secの範囲とし、また
押し付は力は2〜200g/crA、好ましくは4〜5
0g/cn+の範囲とすることが重要である。
In the lapping process, the calendered magnetic tape is placed on a flat plate, and the wrapping process is performed by pressing the lapping tape against the lamped surface of the magnetic tape each time. The relative speed between the 7-bing tape and the magnetic tape is in the range of 0.1 to 1.0 m/sec, and the pressing force is 2 to 200 g/crA, preferably 4 to 5 m/sec.
It is important to keep it in the range of 0 g/cn+.

該ラッピングチーブの相対速度並びに押し付り力が上記
範囲外である場合には、本発明の目的とする所定の物質
を有する、換君ずれば寿命の長い優れた性質の磁気記録
媒体を得ることばできない。
If the relative speed and pressing force of the wrapping chive are outside the above ranges, it is impossible to obtain a magnetic recording medium with excellent properties and a long life, which is the object of the present invention and which contains the specified material. Can not.

磁気テープまたはラッピングテープもしくは両者を回転
させつつラッピング処理することも可能であるが、実際
的には磁気テープを回転することは一般に困難であるの
でラッピングテープを回転させることが望ましい。
Although it is possible to perform the wrapping process while rotating the magnetic tape, the wrapping tape, or both, it is generally difficult to rotate the magnetic tape in practice, so it is desirable to rotate the wrapping tape.

また、前記押しイζJ番ツカが大きすぎる場合には上記
の問題の他、被ランプ面を摩耗させる等の不都合が生ず
る。
Furthermore, if the pusher number ζJ is too large, in addition to the above-mentioned problem, other inconveniences such as abrasion of the surface to be lamped will occur.

更に、該押しイ4け力は、前記範囲内で、中心部はど高
くなるように分布させることが望ましい。
Furthermore, it is desirable that the pushing force be distributed within the above range so that it is higher at the center.

というのは中心部でのラッピング効率6を高めると同時
に発生ずるゴミを外部に逃がすためである。
This is to increase the wrapping efficiency 6 in the center and at the same time to release generated dust to the outside.

尚、本発明の方法においてはカレンダ処理を省略するこ
ともでき、この場合にも同様な効果を達成し得ることは
、以下に述べる理由から当業者には明らかであろう。即
ち、通常カレンダ処理は磁気特性を向上させることが第
1の目的であり、また、カレンダ処理によっては表面粗
さの質的変化は殆ど期待できず、従って表面粗さと電磁
変換特性の大幅な改善は望めない。この点については、
本発明の目的に照らして考えれは、う、2ピンク処理に
よる表面litさの改善が電磁変換特性改善の支配的要
因であり、又、カレンダ処理の省略は、例えばラッピン
グ圧力を高める等の手段で楯ね1し替できる。
It should be noted that in the method of the present invention, it will be clear to those skilled in the art that the calendering process can be omitted, and that similar effects can be achieved in this case as well, for the reasons described below. In other words, the primary purpose of calendering is usually to improve magnetic properties, and calendering can hardly be expected to bring about any qualitative changes in surface roughness, so it can significantly improve surface roughness and electromagnetic characteristics. I can't hope for that. Regarding this point,
In light of the purpose of the present invention, it is considered that the improvement of the surface brightness by the 2-pink treatment is the dominant factor in improving the electromagnetic conversion characteristics, and the omission of the calender treatment can be achieved by, for example, increasing the lapping pressure. One shield can be replaced.

実施−ず舛 以下、本発明を比較例と共に記載される実施例に従って
更に具体的に説明−3−る。面、以下にボす成分、割合
、操作順序等は単なる例示であ−)で、本発明を何等制
限するものではない。
EXAMPLE 1 Hereinafter, the present invention will be explained in more detail according to examples described together with comparative examples. The ingredients, proportions, order of operations, etc. mentioned below are merely illustrative and do not limit the present invention in any way.

ル較−例−1− 磁性粒子(Co−rFe2O3) 100 (重量部)
ポリウレタン樹脂(分子量50000〜200000)
 32 (= )ジイソシアネ−1−5(〃) 脂肪酸エステル又は脂肪族炭化水i 5C〜 )カーボ
ンブランク 5(〃 ) レシチン 1(/) ) 」二記に示す組成で各成分をトルエンまたはテトラヒド
ロフラン等の有機溶剤と共にボールミルに入れ十分混合
分散させた後、これを厚さ約35μmのポリエステルフ
ィルム基体上に塗布して磁気テープを作製した。これを
カレンダ処理及びラッピング処理を施すことな(、通常
の乾燥工程を経て磁気テープ八を得た。
Comparison Example 1 Magnetic particles (Co-rFe2O3) 100 (parts by weight)
Polyurethane resin (molecular weight 50,000-200,000)
32 (=) Diisocyanate-1-5 (〃) Fatty acid ester or aliphatic hydrocarbon i 5C~) Carbon blank 5 (〃) Lecithin 1 (/))'' Each component was mixed with toluene or tetrahydrofuran, etc. in the composition shown in 2. After thoroughly mixing and dispersing the mixture with an organic solvent in a ball mill, the mixture was coated on a polyester film substrate having a thickness of about 35 μm to produce a magnetic tape. This was subjected to a normal drying process without calendering or lapping to obtain a magnetic tape.

叶」肚 比較例1と同じ方法で得られた磁気テープを通品のカレ
ンダ処理を1回旋して磁気テープBを得た。ここで、カ
レンダ処理に用いたロールの表面粗さは上記JIS−B
O601(1982年)の規格による表示で0.1s相
当である。
A magnetic tape obtained in the same manner as in Comparative Example 1 was subjected to one round of calendering to obtain magnetic tape B. Here, the surface roughness of the roll used for calendering is JIS-B
It is equivalent to 0.1 s according to the O601 (1982) standard.

且救皿主 比較例1と同じ方法で得られた磁気テープを比較例2に
示したカレンダロールにまりカレンダ処理を3〜4回施
して磁気テープCを得た。
A magnetic tape obtained in the same manner as in Comparative Example 1 was placed in a calender roll as shown in Comparative Example 2 and calendered 3 to 4 times to obtain a magnetic tape C.

本光肌皿 比較例1と同じ方法で得られた磁気テープを比較例2に
示したカレンダロールによりカレンダ処理を3〜4回施
した後(即ち比較例2の磁気テープ作mf&)、ラッピ
ング処理を施し磁気テープDを得た。
The magnetic tape obtained by the same method as Comparative Example 1 was calendered 3 to 4 times using the calender roll shown in Comparative Example 2 (i.e., magnetic tape production mf & of Comparative Example 2), and then wrapped. A magnetic tape D was obtained.

本例におけるラッピング処理は、上記のようにして作製
した幅広の磁気テープ原反から直j¥約30cmの円板
状に打ち1友いたシー1−を、平坦なプレート上に置き
、該シー1−の被ランプ面にラソレングテープ(商品名
: Imperial Lapping Film R
oles# OG4.5cotcb社製)を回転(相対
速度0.2m/5ec)させつつ、中心部10g/cn
l、外周部4 g / c艷の押しイ1け力で押し付け
て行った。
In the wrapping process in this example, sheet 1-, which was produced by punching a sheet 1 into a disk of approximately 30 cm in diameter from the wide magnetic tape material produced as described above, is placed on a flat plate. - Apply Lasoleng tape (Product name: Imperial Lapping Film R) to the lamp surface.
While rotating (relative speed 0.2m/5ec) the center part 10g/cn
The outer periphery was pressed with a pushing force of 4 g/c.

以上作製した各種磁気テープの表面粗さ、及び電磁変換
特性、S/Nを調べ第2表に示した。
The surface roughness, electromagnetic conversion characteristics, and S/N of the various magnetic tapes prepared above were investigated and shown in Table 2.

また、これらの磁気媒体を直径約30cmのシート状に
切断し、武田等の1−高密度磁気記録用球面カント形ヘ
ッド」昭和55年電子通信学会総合全国大会講演集(分
冊1 ) 、517−5,272〜273に詳述されて
いるモノリシック型磁気ヘッドにより信号を記録・再生
し、再生信号(2F)の出力と2F/IF分解能、およ
びS/Nを測定した。信号<S)はOp (zero−
to−peak)値を、雑音(N)は直流(DC)から
20MHz (雑音波長成分で1.5 pm以上までの
媒体雑音成分のrms値で定義し、dBで表した。尚、
後述する第1図に示すように、媒体雑音電力スペクI・
ルば1.5μm以下の波長で殆どその成分を持たないこ
とから、DC〜20MH2までの帯域を考えれば十分で
ある。また、媒体雑音のrms値は通常の方法で、即ぢ
観測される(機器雑音→−媒体11C音)の電力スペク
トルから雑音電力をめ、これから同様にしてめた機器雑
音の電力を差し引いている。
In addition, these magnetic media were cut into sheets with a diameter of approximately 30 cm, and Takeda et al.'s 1-Spherical cant-shaped head for high-density magnetic recording, 1981 IEICE Comprehensive National Conference Lectures (Volume 1), 517- Signals were recorded and reproduced using a monolithic magnetic head as detailed in No. 5,272-273, and the output of the reproduced signal (2F), 2F/IF resolution, and S/N were measured. Signal < S) is Op (zero-
The noise (N) is defined as the rms value of the medium noise component from direct current (DC) to 20 MHz (noise wave length component of 1.5 pm or more) and expressed in dB.
As shown in FIG. 1, which will be described later, the media noise power spec I.
Since it has almost no component at a wavelength of 1.5 μm or less, it is sufficient to consider the band from DC to 20 MH2. In addition, the rms value of the medium noise is obtained by calculating the noise power from the power spectrum of the immediately observed (equipment noise → -medium 11C sound) using the usual method, and subtracting the power of the equipment noise obtained in the same way from this. .

記録ヘッドのトランク幅は80μm、再往−・ソ]・の
トラック幅は50μm、媒体・ヘッド相対速度は約30
m /sec 、媒体・ヘッド間スペーシングは約0.
2μmである。また線密度は800ヒソl−/闘とした
The trunk width of the recording head is 80 μm, the forward track width is 50 μm, and the relative speed of the medium and head is approximately 30 μm.
m/sec, the spacing between the medium and the head is approximately 0.
It is 2 μm. Moreover, the linear density was set to 800 hiso l-/unit.

第2表 第2表から媒体表面粗さの値及び分布に関し以下のこと
がわかる。
Table 2 From Table 2, the following can be seen regarding the value and distribution of the medium surface roughness.

(a)塗布後の磁気テープA(比較例1)では表面粗さ
のRmaχの平均値:Rtm、及びRaとも大きく、規
格化3次モーメント(Rsk)は正、アボット負荷曲線
の50%レベルの確率分布(P2O)は0.1〜0.5
と極めて突起の多い表面形状である。
(a) For magnetic tape A (comparative example 1) after coating, the average value of Rmaχ of the surface roughness: Rtm and Ra are both large, the normalized third moment (Rsk) is positive, and it is at the 50% level of the Abbott load curve. Probability distribution (P2O) is 0.1 to 0.5
It has an extremely protruding surface shape.

(b)カレンダ処理後の磁気テープB(比較例2)では
磁気テープ八と比べRtm、Raは各々0.2810.
35=0.8.0.05010.065 =0.77倍
と小さくなるが、Rsk、 P2Oば殆ど変化せず僅か
I)50が0.1〜0.6とその範囲が増加する順向に
ある。
(b) Magnetic tape B (comparative example 2) after calendering has Rtm and Ra of 0.2810, respectively, compared to magnetic tape 8.
35 = 0.8.0.05010.065 = 0.77 times smaller, but Rsk and P2O hardly change, only slightly I) 50 is 0.1 to 0.6, and the range is increasing. be.

即ち、磁気テープ八と比べると表iイ+i ’I′ll
さの分布は殆ど変わらず全体に突起が減少している。
In other words, when compared with magnetic tape 8, Table i+i 'I'll
The distribution of protrusions remains almost the same, with fewer protrusions throughout.

(C)カレンダ処理を3〜4回施した磁気テープC(比
較例3)では、磁気テープB(比較例2)と比べてRu
m及びRaは0.3010.28 = 1.07及び0
.05610.050 =1.12倍と逆に大きくなっ
た。しかし表面粗さの分布は(blと同様殆ど変化かな
い。
(C) Magnetic tape C (comparative example 3) subjected to calendering 3 to 4 times has a higher Ru content than magnetic tape B (comparative example 2).
m and Ra are 0.3010.28 = 1.07 and 0
.. On the contrary, it became larger, 05610.050 = 1.12 times. However, the surface roughness distribution (similar to bl) hardly changes.

(d)以上の比較例に対し、本発明に係る実施例ではR
tm及びRaが0.1810.35=0.51 C対磁
気テープA)及び0.03210.065 =0.49
 (対磁気テープA)と約半分になったのをはじめ、R
skが+1.0〜0から+0.5〜−1.0 、P2O
が0.1〜0.5から0.45〜0.9と大きく変化し
た。即ち、磁気テープDでは媒体突起部が削られ、表面
が著しく平滑化されたことを示している。
(d) In contrast to the above comparative example, in the example according to the present invention, R
tm and Ra are 0.1810.35 = 0.51 C vs. magnetic tape A) and 0.03210.065 = 0.49
(vs. magnetic tape A), R
sk from +1.0 to 0 to +0.5 to -1.0, P2O
changed significantly from 0.1-0.5 to 0.45-0.9. That is, in magnetic tape D, the medium protrusion was shaved off, and the surface was significantly smoothed.

さらに第2表の電磁変換特性、S/Nの結果から、本発
明例(磁気テープD)では出力・分解能及び媒体雑音実
効値の各項目とも大幅な改善が達成されることがわかっ
た。即ち、カレンダ処理による表面粗さの改善ではS/
Hの改善量は高々2dBにずぎないが、ラッピング処理
を施した磁気テープDでは、表面粗さの量的及び質的変
化によっ°ζS/Nは比較例1に対して+6.5dB、
カレンダ処理を施した比較例2に対して+4.8dBと
大幅に改善された。
Further, from the electromagnetic conversion characteristics and S/N results shown in Table 2, it was found that the example of the present invention (magnetic tape D) achieved significant improvements in each item of output, resolution, and effective medium noise value. In other words, in improving surface roughness by calendering, S/
Although the amount of improvement in H is only 2 dB at most, in magnetic tape D subjected to wrapping processing, °ζ S/N is +6.5 dB compared to Comparative Example 1 due to quantitative and qualitative changes in surface roughness.
This was significantly improved by +4.8 dB compared to Comparative Example 2 which was subjected to calendar processing.

第1図は、再生増幅器出力端で観測した雑音電力スペク
トラムを示すものである。第1図中1は機器雑音(テー
プを走行しない時に観測される雑音)、2及び3は各々
磁気テープB(比較例2)及び磁気テープD(本発明例
)の場合を示す。雑音電力スペクトラムは1iII’r
%のスベクI−ラムアナライザ(Y HP−8568A
 )を用いて観測した。図かられかる通り、広い帯域に
わたって媒体雑音成分の低下が観測される。
FIG. 1 shows the noise power spectrum observed at the output end of the regenerative amplifier. In FIG. 1, 1 represents equipment noise (noise observed when the tape is not running), and 2 and 3 represent magnetic tape B (comparative example 2) and magnetic tape D (invention example), respectively. The noise power spectrum is 1iII'r
% Subek I-Ram Analyzer (Y HP-8568A
) was used for observation. As can be seen from the figure, a decrease in the medium noise component is observed over a wide band.

表面粗さの改善によってS/Nが向上することは、例え
ば飯島、細用により「磁気テープ雑音のパルスジッタに
及はず影響」、昭和53年度電子通信学会総合全国大会
講演集(分冊1) 、S]3−6゜285〜286にお
いて述べられている如く、媒体表1一部が雑音として作
用すると考えられ、表面111さを抑えることが媒体・
ヘッド間の実行スペーシングを減少することと等価であ
ると嵩えるこ1とで説明できる。
The fact that S/N can be improved by improving surface roughness can be seen in, for example, Iijima, "Influence of Magnetic Tape Noise on Pulse Jitter", Proceedings of the 1980 IEICE Comprehensive National Conference (Volume 1), S. ] As stated in 3-6°285-286, it is thought that a part of the media surface 1 acts as noise, and suppressing the surface roughness is a
This can be explained by saying that this is equivalent to reducing the execution spacing between heads.

以上述べたように、S/Hの11WM的向上は媒体表面
粗さの量的減少と媒体表面粗さの質的変化を与えること
により達成されたことは明らかであり、このことは媒体
表面の微少突起が大幅に減少したことを意味する。
As mentioned above, it is clear that the 11WM improvement in S/H was achieved by quantitatively reducing the medium surface roughness and qualitatively changing the medium surface roughness. This means that microprotrusions have been significantly reduced.

一方、13.R,Becker : ” 八Dropo
ut Model for a旧gital tape
 Recorder ”、IEEE、Trans、on
 Magn。
On the other hand, 13. R, Becker: “8 Dropo
ut Model for a old digital tape
Recorder”, IEEE, Trans, on
Magn.

MAG−13+no、5+pp、 1196−1198
 (1977)で明らかなように、S/Nとビット誤り
率は相関があるので、S/Hの改善と同時に該媒体表面
の微少突起に起因するピッi・誤り率の大幅な減少をも
たらすことが容易に結論づりられる。
MAG-13+no, 5+pp, 1196-1198
(1977), there is a correlation between the S/N and the bit error rate, so it is possible to improve the S/H and at the same time significantly reduce the error rate caused by minute protrusions on the surface of the medium. can be easily concluded.

発別洩遁沫 以上説明したように、本発明によれば磁気記録媒体表面
粗さの分布を制御するごとにより、従来のカレンダ処理
では実現が難しかった媒体表面粗さを0.03μm R
a程度以下、又は0.2 pm Rmax以下に小さく
できるばかりでなく、表面粗さの規格化3次モーメンt
l?skを+1.0〜Oから+0.5〜−1.0と負側
へ、またアホソト負荷曲線の50%振幅レベルにおける
確率分布P50が0.1〜0.5から0.45〜0.9
へと大きい方へシフ1−するという、言わば表面粗さ分
布の質的変化が生じて(媒体表面の微少突起が著しく減
少して)電磁変換特性を支配する媒体・ヘッド間実効ス
ペーシンクが小さくなる。従って、より高密度になるほ
と電磁変換特性・S/Hに及ばず改善効果は大きくなる
ことも明らかである。また、S/Nとピノ1−誤り率の
間には相関があるので、同時にヒノI−誤り率も大幅に
低減できるという利点がある。
As explained above, according to the present invention, by controlling the distribution of the surface roughness of the magnetic recording medium, it is possible to reduce the medium surface roughness to 0.03 μm R, which was difficult to achieve with conventional calendaring.
Not only can it be reduced to less than about a or 0.2 pm Rmax, but also the normalized third moment of surface roughness t
l? sk to the negative side from +1.0~O to +0.5~-1.0, and the probability distribution P50 at the 50% amplitude level of the Ahosoto load curve changes from 0.1~0.5 to 0.45~0.9.
There is a qualitative change in the surface roughness distribution, which is a shift towards a larger one (1-), and the effective spacing between the medium and the head, which governs the electromagnetic conversion characteristics, becomes smaller (as the number of minute protrusions on the surface of the medium decreases significantly). . Therefore, it is clear that the higher the density, the less the electromagnetic conversion characteristics and S/H, and the greater the improvement effect. Furthermore, since there is a correlation between the S/N and the Pino 1 error rate, there is an advantage that the Hino I error rate can also be significantly reduced at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明例と比較例2で示した研気テープ媒体雑
音電力スペクトル、及び磁気テープを走行しない場合の
機器雑音型カスベクトルを示す図である。いずれも再生
増幅器出力θillで観測したものである。 (主な参照番号) ■・・・機器雑音の電力スペクI・ル 2・・ (機器雑音)+(磁ゲテープ丁3の媒体11C
音)の電力スペクトル 3・・ (機器雑音)→−(磁気テープDの媒体雑音)
の電力スペクトル 手続補正書く自発) 昭和59年3月12日 )FJr許庁長宮殿 1、事件の表示 昭和59年1に許願第0(11355
号2、発明の名称 磁気記録媒体とその製法3、補正を
する者 事4′1との関係 112f許出願人 住 所 東京都千代田区内幸町1丁目1番6号名 称 
(422) 日本電信電話公社代表者 真 藤 恒 4、代理人 5、補正命令の日付 自発 6、補正の対象 明細書の発明の詳細な説明の欄*、、
、、式4rL\ 7、補正の内容 (1)明細書第13頁第11行〜第12行の゛処理する
ことも可能であるが、実際的には″なる部分を以下のよ
うに訂正する。 「処理するすることが可能である−0但し、磁気テープ
(長尺物)の場合、実際的には」 (2)同書第15頁第4行の゛ジイソシアネートパを「
ジイソシアネート」と言1正する。 (3)同書第22頁第13行の“′媒体・′\ラッド間
実行゛′なる部分を「媒体雑音の低減とともに媒体・へ
・ノド間の実効jとa1正する。
FIG. 1 is a diagram showing the sharpening tape medium noise power spectrum shown in the present invention example and comparative example 2, and the equipment noise type cass vector when the magnetic tape is not running. Both were observed using the regenerative amplifier output θill. (Main reference number) ■...Equipment noise power spectrum I/Le 2... (Equipment noise) + (Magnetic tape 3 medium 11C
Sound) power spectrum 3... (equipment noise) → - (media noise of magnetic tape D)
Voluntary writing of amendments to the power spectrum procedures) March 12, 1980) FJr Governor's Palace 1, Incident Display In 1988, Application No. 0 (11355)
No. 2, Title of the invention Relationship between the magnetic recording medium and its manufacturing method 3, and the person making the amendment 4'1 112f Applicant's address 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Name
(422) Nippon Telegraph and Telephone Public Corporation Representative Tsune Shinto 4, Agent 5, Date of amendment order Voluntary 6, Subject of amendment Detailed explanation of the invention in the specification *
,,Formula 4rL\7, Contents of correction (1) Although it is possible to process ``'' in page 13, lines 11 to 12 of the specification, in practice, the part ``'' should be corrected as follows. "However, in the case of magnetic tape (long material), it is practically possible to treat it."
Diisocyanate,” he said, correcting himself. (3) In the 13th line of page 22 of the same book, the part ``'execution between the medium and the rad'' is changed to ``Reduce the medium noise and correct the effective j and a1 between the medium, the head, and the nod.

Claims (2)

【特許請求の範囲】[Claims] (1) 磁気層の表面粗さのアボット負荷曲線の50%
振幅レベルにおける確率分布が0.45〜0.9であり
、かつ表面粗さ曲線の2次モーメントの3/2乗の値で
規格化した3次モーメントの値が+0.5〜〜1.0な
る範囲の表面粗さ分布を有することを特徴とする磁気記
録媒体。
(1) 50% of the Abbott load curve for the surface roughness of the magnetic layer
The probability distribution at the amplitude level is 0.45 to 0.9, and the value of the third moment normalized by the value of the second moment of the surface roughness curve to the 3/2 power is +0.5 to 1.0. A magnetic recording medium characterized by having a surface roughness distribution within a range.
(2) 可1え性プラスチックフィルム基体上に磁性粒
子塗液を塗布し、乾燥して磁気記録媒体を得、次いで該
磁気記録媒体を必要によりカレンダ処理し、更にラッピ
ング処理に付す工程を含む磁気記録媒体の製造方法にお
いて、前記ラッピング処理を、ラッピングチーブと磁気
テープとの相対速度を0.1〜1.0m/secの範囲
とし、該ラッピングチーブの押し付は力を2〜200 
g / cJの範囲とする条件下で行うことを特徴とす
る上記磁気記録媒体の製造方法。
(2) A magnetic particle coating solution comprising a step of applying a magnetic particle coating liquid onto a flexible plastic film substrate, drying it to obtain a magnetic recording medium, then calendering the magnetic recording medium if necessary, and further subjecting it to a lapping treatment. In the method for manufacturing a recording medium, the lapping process is performed at a relative speed of 0.1 to 1.0 m/sec between the wrapping chive and the magnetic tape, and at a pressing force of 2 to 200 m/sec.
The method for manufacturing a magnetic recording medium as described above, characterized in that it is carried out under conditions in the range of g/cJ.
JP135584A 1984-01-10 1984-01-10 Magnetic recording medium and its manufacture Pending JPS60145523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP135584A JPS60145523A (en) 1984-01-10 1984-01-10 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP135584A JPS60145523A (en) 1984-01-10 1984-01-10 Magnetic recording medium and its manufacture

Publications (1)

Publication Number Publication Date
JPS60145523A true JPS60145523A (en) 1985-08-01

Family

ID=11499182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP135584A Pending JPS60145523A (en) 1984-01-10 1984-01-10 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS60145523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289218A (en) * 1985-10-15 1987-04-23 Hitachi Maxell Ltd Magnetic disk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677927A (en) * 1979-11-28 1981-06-26 Fuji Photo Film Co Ltd Magnetic recording medium
JPS57150139A (en) * 1981-02-05 1982-09-16 Basf Ag Method of and apparatus for processing surface of magnetic record carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677927A (en) * 1979-11-28 1981-06-26 Fuji Photo Film Co Ltd Magnetic recording medium
JPS57150139A (en) * 1981-02-05 1982-09-16 Basf Ag Method of and apparatus for processing surface of magnetic record carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289218A (en) * 1985-10-15 1987-04-23 Hitachi Maxell Ltd Magnetic disk
JPH0789407B2 (en) * 1985-10-15 1995-09-27 日立マクセル株式会社 Magnetic disk

Similar Documents

Publication Publication Date Title
JPS60145523A (en) Magnetic recording medium and its manufacture
JPS63237210A (en) Magnetic recording medium
JPH02134720A (en) Magnetic recording medium provided with back coating layer containing nonmagnetic powder
JPH03256223A (en) Magnetic transfering method
JPH0349031A (en) Magnetic recording medium and production thereof
JPH08167146A (en) Production of magnetic recording medium
JPH0552566B2 (en)
JPS6057130B2 (en) Manufacturing method for multilayer magnetic recording tape
JPH06215344A (en) Magnetic recording medium
JPS62166970A (en) Magnetic head surface polishing tape
JPS58143401A (en) Magnetic recording and reproducing device
JPS6050624A (en) Production of magnetic recording medium
JPH03203813A (en) Magnetic tape
JPH04172621A (en) Production of magnetic tape
JPH022219B2 (en)
JPH04163737A (en) Optical tape
JPH0444628A (en) Magnetic recording medium
JPH03292618A (en) Magnetic recording medium
JPS6379232A (en) Magnetic recording medium
JPH0969227A (en) Manufacture of double-side magnetic disk
JPS5856230A (en) Magnetic recording medium
JPH01173431A (en) Manufacture of coating type magnetic medium
JPH06101109B2 (en) Magnetic recording medium
JPS6262420A (en) Magnetic recording medium
JPH0793749A (en) Production of magnetic recording medium