JPH03203813A - Magnetic tape - Google Patents

Magnetic tape

Info

Publication number
JPH03203813A
JPH03203813A JP33997489A JP33997489A JPH03203813A JP H03203813 A JPH03203813 A JP H03203813A JP 33997489 A JP33997489 A JP 33997489A JP 33997489 A JP33997489 A JP 33997489A JP H03203813 A JPH03203813 A JP H03203813A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic tape
examples
ratio
comparative examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33997489A
Other languages
Japanese (ja)
Inventor
Yoshiteru Matsubayashi
芳輝 松林
Masaru Hanayama
花山 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP33997489A priority Critical patent/JPH03203813A/en
Publication of JPH03203813A publication Critical patent/JPH03203813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve a traveling property and S/N by specifying the surface roughness expressed by the average value of the space wavelength on the rear surface of a magnetic tape. CONSTITUTION:The surface roughness n the rear surface of the magnetic tape in a magnetic recording and reproducing device is confined within 0.5 to 1.0mum width selected from a 4.5 to 8.0mum range in the average value of the space wavelength at the time of magnetic recoding and reproducing. The space wavelength referred to here signifies the value 2pi/omega obtd. from the spatial angular frequency a determined by inputting the measured data, and making Fourier transform with the respective sinusoidal functions is assuming the surface rougheness distributing on line or plane as a simusoidal function having various amplitude A and special angular frequency omega. Both of the S/N and the traveling property are improved in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ベースフィルムの表面に磁性塗膜を形成して
なる磁気記録再生用の磁気テープに関し、特に磁気記録
再生装置内におけるこの種の磁気テープの記録再生時の
S/N比及び走行性の改良技術に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a magnetic tape for magnetic recording and reproducing, which is formed by forming a magnetic coating film on the surface of a base film, and particularly relates to a magnetic tape for magnetic recording and reproducing in which a magnetic coating film is formed on the surface of a base film. This invention relates to technology for improving the S/N ratio and running performance during recording and reproduction of magnetic tape.

(従来の技術) 近年、磁気テープ等の磁気記録媒体の高密度化、高S/
N化はめざましく、高密度に記録再生が行なえ、かつS
/N比が高いこれ等の磁気記録媒体を得るために磁性層
の表面はますます平滑化される傾向にある。
(Prior art) In recent years, magnetic recording media such as magnetic tapes have become denser and have higher S/S.
The N conversion is remarkable, allowing high-density recording and playback, and S
In order to obtain these magnetic recording media with a high /N ratio, the surface of the magnetic layer tends to be increasingly smoothed.

ここで、磁性層の表面を平滑にするためには、ベースフ
ィルム等の支持体表面から磁性層への凹凸の転写を避け
るために支持体表面も平滑にしなくてはならず、従来の
磁気記録媒体にあっては磁気記録媒体の高密度化及び高
S/N化が進行するに従い、磁気記録媒体の走行性が悪
化する傾向があった。
Here, in order to make the surface of the magnetic layer smooth, the surface of the support must also be made smooth in order to avoid the transfer of unevenness from the surface of the support such as a base film to the magnetic layer. With regard to media, as the density and S/N of magnetic recording media have increased, the running properties of the magnetic recording media have tended to deteriorate.

このため、従来においては、■ベースフィルムの表面粗
さTAR値(μm)を0.015未満とするとともに単
位面積当りの突起数、即ちPCC値(単位側/mm’)
をaOO以上としく特開昭61−112629号)、■
支持体の裏面に平均粒子径が0.5μmより大きく2.
0未満であり、かつその最大粒子径が5μm以下である
非磁性粉末と結合剤とを含んでなるバックコート層を設
ける(特開昭60−136913号)などの磁気記録媒
体の走行性改良技術が提案されている。
Therefore, in the past, the surface roughness TAR value (μm) of the base film was set to less than 0.015, and the number of protrusions per unit area, that is, the PCC value (unit side/mm')
(Japanese Patent Application Laid-Open No. 61-112629), ■
2. The average particle diameter is larger than 0.5 μm on the back side of the support.
Technology for improving the runnability of magnetic recording media, such as providing a back coat layer comprising a binder and non-magnetic powder whose maximum particle diameter is less than 0 and whose maximum particle diameter is 5 μm or less (Japanese Patent Application Laid-open No. 136913/1983). is proposed.

(発明が解決しようとする課題) しかしながら、上記■の技術においてはPCC値を80
0以上にするとは言うものの、特開昭61−11262
9号の実施例で検討されている範囲は、600乃至21
00と空間波長に換算すると20μm乃至50μmの範
囲内にある。
(Problem to be solved by the invention) However, in the technique (■) above, the PCC value is 80
Although it is said to be greater than 0, JP-A-61-11262
The range considered in the example of No. 9 is 600 to 21
00, which is within the range of 20 μm to 50 μm when converted into spatial wavelength.

このように空間波長の大きな表面粗さ範囲のものを磁気
テープの裏面として磁気記録再生装置中を摺動させた場
合には、例えR1やSR,で測定される突起の高さに相
当する表面粗さが適正な範囲にあったとしても、磁気テ
ープが走行する際に微妙な振動を発生し、この振動がノ
イズレベルを上げ、ビデオテープの場合にはビデオ装置
で記録再生を行なうと特にC−5/N比、即ちクロマ信
号のS/N比の低下が生じる。
If a surface roughness range with a large spatial wavelength is used as the back side of a magnetic tape and is slid through a magnetic recording/reproducing device, the surface roughness corresponding to the height of the protrusion measured by R1 or SR, for example. Even if the roughness is within the appropriate range, subtle vibrations occur when the magnetic tape runs, and these vibrations increase the noise level, and in the case of video tapes, when recording and playing back with a video device, especially C. -5/N ratio, that is, a decrease in the S/N ratio of the chroma signal occurs.

また、バックコート層中の非磁性粉末によって磁気テー
プの走行性を改良する場合には、非磁性粉末の粒子径を
制御するだけで走行性及び上記S/N比の両者が共に優
れた磁気テープが得られる訳ではない。
In addition, when improving the running properties of a magnetic tape by using non-magnetic powder in the back coat layer, it is possible to create a magnetic tape that has both excellent running properties and the above-mentioned S/N ratio by simply controlling the particle size of the non-magnetic powder. It does not mean that you will get

ビデオテープレコーダ(VTR)等の磁気記録再生装置
にもよるが、前記■の技術によって特開昭60−136
913号に記載されている非磁性粉末をバックコート層
全体に対して5〜60重量%含む好適な範囲として、例
えばVHS (日本ビクター(株)社の登録商標)方式
、5−VH5方式及び8mm方式のビデオテープを製造
した場合、この場合にも表面粗さにおける空間波長が大
きく、磁気テープが走行する際に微妙な振動を発生し、
この振動がノイズレベルを上げ、上述したC −S/N
比の低下が生じる。ここで非磁性粉末のバックコート層
全体に対する比率が一定の場合、非磁性粉末の粒子径が
大きくなるにつれて磁気テープ裏面の表面粗さにおける
空間波長が大きくなり、上記S/N比の低下が更に大き
くなる。
Although it depends on the magnetic recording and reproducing device such as a video tape recorder (VTR), the above technology
Suitable ranges containing 5 to 60% by weight of the non-magnetic powder described in No. 913 based on the entire back coat layer include, for example, VHS (registered trademark of Japan Victor Co., Ltd.) system, 5-VH5 system, and 8mm When manufacturing video tapes using this method, the spatial wavelength of the surface roughness is large, and subtle vibrations occur when the magnetic tape runs.
This vibration increases the noise level, and the above-mentioned C-S/N
A decrease in the ratio occurs. Here, if the ratio of the non-magnetic powder to the entire back coat layer is constant, as the particle size of the non-magnetic powder increases, the spatial wavelength in the surface roughness of the back surface of the magnetic tape increases, and the above-mentioned S/N ratio decreases further. growing.

このように従来においてはビデオテープ等の磁気テープ
につき、磁気記録再生装置中の走行性及び記録再生時の
S/N比を両方とも満足できるものは得られておらず、
このような要求を満足する磁気テープが求められている
As described above, in the past, it has not been possible to obtain a magnetic tape such as a video tape that satisfies both running performance in a magnetic recording and reproducing device and S/N ratio during recording and reproducing.
There is a need for a magnetic tape that satisfies these requirements.

(課題を解決するための手段) 本発明は、上記課題を解決するため、磁気記録再生時に
磁気記録再生装置中を摺動する磁気テープの裏面の表面
粗さを空間波長の平均値で4.5μm乃至8.0μmの
範囲から選ばれる0、 5μm乃至1.0μm幅に収め
たものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention has a surface roughness of 4.5 mm on the average spatial wavelength of the back surface of a magnetic tape that slides in a magnetic recording and reproducing apparatus during magnetic recording and reproducing. The width is selected from the range of 5 μm to 8.0 μm and is within the range of 0.5 μm to 1.0 μm.

尚、ここで言う空間波長とは線上あるいは平面上に分布
する表面粗さを種々の振幅Aと空間角周波数ωを有する
正弦関数とみなし、測定されたデータを入力してそれぞ
れの正弦関数につきフーリエ変換をして求められる空間
角周波数ωから得られる値2π/ωを意味する。
Note that the spatial wavelength referred to here refers to the surface roughness distributed on a line or plane as a sine function with various amplitudes A and spatial angular frequencies ω, and by inputting the measured data and using a Fourier method for each sine function. It means the value 2π/ω obtained from the spatial angular frequency ω obtained by transformation.

また、本発明の磁気テープはベースフィルムの裏面にバ
ックコート層を形成したものであってもしていないもの
でありても良い。
Further, the magnetic tape of the present invention may or may not have a back coat layer formed on the back surface of the base film.

バックコート層を形成していない場合には、ベースフィ
ルムの裏面がそのまま磁気テープの裏面となるが、この
ようなベースフィルム裏面の表面粗さは、ベースフィル
ム製造段階で適当な非磁性粉末(フィラー)を充填した
り、あるいはカレンダー処理の際の表面制御やテクスチ
ャー処理等を行なうなど、公知の方法によって形成する
ことができる。
If a back coat layer is not formed, the back surface of the base film becomes the back surface of the magnetic tape, but the surface roughness of the back surface of the base film can be reduced by adding an appropriate non-magnetic powder (filler) at the base film manufacturing stage. ), or by performing surface control or texture treatment during calendering, etc., by a known method.

また、バックコート層を形成した磁気テープの裏面とな
るバックコート層の表面粗さもフィルム製造段階で適当
な非磁性粉末(フィラー)を充填するなどにより形成す
ることができるが、バックコート層の製造段階で適当な
非磁性粉末を充填する場合には既に発明が解決しようと
する課題で述べた理由(第4頁16行〜第5頁第9行参
照)から非磁性粉末の粒子径は平均で0.5μm未満と
することが好ましい。
In addition, the surface roughness of the back coat layer, which is the back surface of the magnetic tape on which the back coat layer is formed, can be formed by filling an appropriate non-magnetic powder (filler) in the film manufacturing stage. When filling an appropriate non-magnetic powder in the step, the average particle size of the non-magnetic powder is It is preferable to set it as less than 0.5 micrometer.

(作用) 磁気テープ裏面の空間波長の平均値で表される表面粗さ
が4.5μm乃至8,0μmの範囲で空間波長が大きく
なるにつれてC−3/N比は低下し、逆にY−3/N比
、即ち輝度信号のS/N比は良好になる。そして、この
空間波長が4.5μm乃至8.0μmの範囲から選ばれ
る前記所定幅を越えた場合には記録再生時のY−3/N
比及びC−3/N比のどちらか一方が劣悪となる。
(Function) When the surface roughness expressed as the average value of the spatial wavelength on the back side of the magnetic tape is in the range of 4.5 μm to 8.0 μm, the C-3/N ratio decreases as the spatial wavelength increases, and conversely, the C-3/N ratio decreases as the spatial wavelength increases. The 3/N ratio, that is, the S/N ratio of the luminance signal becomes better. If this spatial wavelength exceeds the predetermined width selected from the range of 4.5 μm to 8.0 μm, Y-3/N during recording and reproduction.
Either the ratio or the C-3/N ratio becomes poor.

(実施例) 以下に実施例を示し、本発明を更に詳しく説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

(実施例1〜3.比較例1〜4) 鉄合金磁性粉     ・・・300重量部ポリビニル
ブチラール ・・・ 60重量部ポリウレタン樹脂  
 ・・・ 60重量部ポリイソシアネート樹脂・・・ 
20重量部Cr2O3・−15重量部 カーボンブラック   ・・・ 20重量部シクロへキ
サノン   :・・400重量部トルエン      
 ・・・400重量部上記組成物をボールミルで24時
間混練してベースフィルム表面に塗布して磁性層を形成
した。
(Examples 1 to 3. Comparative Examples 1 to 4) Iron alloy magnetic powder: 300 parts by weight Polyvinyl butyral: 60 parts by weight Polyurethane resin
... 60 parts by weight polyisocyanate resin...
20 parts by weight Cr2O3 -15 parts by weight Carbon black...20 parts by weight Cyclohexanone:...400 parts by weight Toluene
...400 parts by weight of the above composition was kneaded in a ball mill for 24 hours and applied to the surface of the base film to form a magnetic layer.

また、ベースフィルム表面にはバンクコート要用塗料を
塗布してバックコート層を形成したが、バックコート層
用塗料としては以下の組成のものを使用した。
Further, a back coat layer was formed by applying a paint required for bank coating to the surface of the base film, and a paint with the following composition was used as the paint for the back coat layer.

炭酸カルシウム    ・・弓00重量部塩化ビニル 
     ・・・ 30重量部ポリウレタン樹脂   
・・・ 30重量部ポリイソシアネート樹脂・・・ 1
0重量部シクロヘキサノン   ・・・200重量部ト
ルエン       ・・・200重量部ここで使用し
たバンクコート要用塗料は非磁性粉末である炭酸カルシ
ウムの平均粒径が0.18μmのバックコート層用塗料
A1と0.25μmのバックコート層用塗料B、と0.
5μmのバンクコート要用塗料CIの3種類であり、カ
レンダリングの際の処理速度及びニップ圧を調整するこ
とにより第1表に示す平均空間波長及び表面粗さSR,
を有する実施例1〜3及び比較例1〜4の磁気テープ(
ビデオテープ)を得た。
Calcium carbonate...00 parts by weight Vinyl chloride
... 30 parts by weight polyurethane resin
... 30 parts by weight polyisocyanate resin... 1
0 parts by weight Cyclohexanone...200 parts by weight Toluene...200 parts by weight The paint required for bank coating used here is back coat layer paint A1 in which the average particle size of calcium carbonate, which is a non-magnetic powder, is 0.18 μm. 0.25 μm back coat layer paint B, and 0.25 μm back coat layer paint B.
There are three types of paints CI that require bank coating of 5 μm, and by adjusting the processing speed and nip pressure during calendering, the average spatial wavelength and surface roughness SR shown in Table 1 can be achieved.
The magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 4 having
videotape) was obtained.

以上の実施例1〜3及び比較例1〜4の磁気テープのY
−3/N比及びC−5/N比をソニ(株)社製のEV−
A300の名で知られる8mm方式のVTR装置とシバ
ツク社製のNTSCノイズメータで測定するとともに、
このVTR装置中で走行を繰り返して走行性を評価し、
第1表に併記する結果を得た。尚、表中において○は良
好、△はやや悪い、×は悪いを示す。
Y of the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 4 above
-3/N ratio and C-5/N ratio are EV- manufactured by Sony Corporation.
In addition to measuring with an 8mm VTR device known as A300 and an NTSC noise meter manufactured by Shibatsu,
The running performance was evaluated by repeatedly running in this VTR device,
The results shown in Table 1 were obtained. In the table, ◯ indicates good, △ indicates slightly poor, and × indicates poor.

第1表 第1表の結果から、VTR装置のハーフ中のガイドビン
をはじめとする各種ガイドピン、ロール及びヘッドドラ
ム等に接触して摺動する磁気テープの裏面の表面粗さが
空間波長の平均値で4.5μm乃至5.0μmである実
施例1〜3の磁気テープ、即ち8mm用ビデオテープは
Y−3/N比及びC−5/N比が両者とも良好である。
Table 1 From the results in Table 1, it can be seen that the surface roughness of the back surface of the magnetic tape that slides in contact with various guide pins including the guide bin in the half of the VTR device, rolls, head drums, etc. The magnetic tapes of Examples 1 to 3, ie, 8 mm video tapes, which have an average value of 4.5 μm to 5.0 μm, have good Y-3/N ratios and C-5/N ratios.

これに対し前記空間波長が平均で4.5μm未満の比較
例1及び2の磁気テープはY−S/N比が劣り、5.0
μmを越える比較例3及び4の磁気テープはC−S/N
比が劣っていることが分かる。
On the other hand, the magnetic tapes of Comparative Examples 1 and 2, in which the spatial wavelength was less than 4.5 μm on average, had poor Y-S/N ratios of 5.0 μm.
The magnetic tapes of Comparative Examples 3 and 4 with a C-S/N exceeding μm
It can be seen that the ratio is inferior.

また、バックコート層を形成した磁気テープの走行性は
磁気テープの裏面となっているバックコート層表面のS
R,に依存して変り、SR,がo、oto未満では悪く
、0.010以上では良好となっていることが分かる。
In addition, the runnability of the magnetic tape on which the back coat layer is formed is determined by the S
It can be seen that it varies depending on R, and is bad when SR is less than o and oto, and good when SR is 0.010 or more.

(実施例4〜6.比較例5〜8) 実施例1〜3及び比較例1〜4の磁性層を形成する際に
使用する組成物中の鉄合金磁性粉をコバルト被着γ−F
e203に変え、ポリビニルブチラールを30重量部、
ポリウレタン樹脂を40重量部、シクロヘキサノン及び
トルエンをそれぞれ300重量部とし、バックコート層
を形成する際のバックコート層用塗料に同様の組成であ
ってそれぞれ炭酸カルシウムの平均粒径が0.2μm、
0.27μm、0.55μmと異なるバックコート層用
塗料A2、B2及びC2の3種類を用いた以外は実施例
1〜3及び比較例1〜4と同様にして第2表に示す平均
空間波長及び表面粗さSR。
(Examples 4 to 6. Comparative Examples 5 to 8) The iron alloy magnetic powder in the composition used when forming the magnetic layers of Examples 1 to 3 and Comparative Examples 1 to 4 was coated with cobalt γ-F.
e203, 30 parts by weight of polyvinyl butyral,
The polyurethane resin was 40 parts by weight, cyclohexanone and toluene were each 300 parts by weight, and the composition was the same as that of the paint for the back coat layer when forming the back coat layer, and each had an average particle size of calcium carbonate of 0.2 μm.
The average spatial wavelength shown in Table 2 was obtained in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4, except that three types of back coat layer paints A2, B2, and C2, which were different in diameter from 0.27 μm to 0.55 μm, were used. and surface roughness SR.

を有する実施例4〜6及び比較例5〜8の磁気テープ(
ビデオテープ)を得た。
The magnetic tapes of Examples 4 to 6 and Comparative Examples 5 to 8 having
videotape) was obtained.

以上の実施例4〜6及び比較例5〜8の磁気テープのY
−3/N比及びC−3/N比を日本ビクター(株)社製
のHR−S7000の名で知られる5−VH5方式のV
TR装置とシバツク社製のNTSCノイズメータで測定
するとともに、このVTR装置中で走行を繰り返して走
行性を評価し、第2表に併記する結果を得た。尚、表中
の記号O1Δ、×の意味は第1表と同様である。
Y of the magnetic tapes of Examples 4 to 6 and Comparative Examples 5 to 8 above
-3/N ratio and C-3/N ratio were determined using the 5-VH5 system VH5 known as HR-S7000 manufactured by Victor Company of Japan.
In addition to measuring with a TR device and an NTSC noise meter manufactured by Sibaku Corporation, the running performance was evaluated by repeatedly running in this VTR device, and the results shown in Table 2 were obtained. The meanings of the symbols O1Δ and × in the table are the same as in Table 1.

第2表 第2表の結果から、VTR装置中を摺動するバックコー
ト層の表面粗さが空間波長の平均値で5.5μm乃至6
.5μmである実施例4〜6の磁気テープ、即ち5−V
H3用ビデオテープはY−3/N比及びC−3/N比が
両者とも良好である。これに対し前記空間波長の平均が
5.5μm未満の比較例5及び6の磁気テープはY−3
/N比が劣り、6.5μmを越える比較例7及び8の磁
気テープはC−3/N比が劣っていることが分かる。
Table 2 From the results shown in Table 2, the surface roughness of the back coat layer sliding in the VTR device is 5.5 μm to 6 μm in average spatial wavelength.
.. The magnetic tapes of Examples 4-6 which are 5 μm, i.e. 5-V
The H3 videotape has good Y-3/N ratio and C-3/N ratio. On the other hand, the magnetic tapes of Comparative Examples 5 and 6 in which the average spatial wavelength was less than 5.5 μm were Y-3
It can be seen that the magnetic tapes of Comparative Examples 7 and 8, which have a poor C-3/N ratio and a diameter exceeding 6.5 μm, have a poor C-3/N ratio.

また、・バックコート層を形成した磁気テープの走行性
は磁気テープの裏面となっているバックコート層表面の
SR,に依存して変り、SR,が0.010未満では悪
く、0.010以上では良好となっていることが分かる
In addition, the running properties of a magnetic tape with a back coat layer formed thereon vary depending on the SR of the back coat layer surface, which is the back surface of the magnetic tape.If the SR is less than 0.010, it is poor; It can be seen that the condition is good.

(実施例7〜9.比較例9〜12) 実施例4〜6及び比較例5〜8の磁性層を形成する際に
使用する組成物中のポリビニルブチラールを40重量部
とし、バックコート層を形成する際のバックコート層用
塗料に同様の組成であってそれぞれ炭酸カルシウムの平
均粒径が0.2μm0.3μm% 0.6μmと異なる
バックコート層用塗料A3、Bs及びC8の3種類を用
いた以外は実施例4〜6及び比較例5〜8と同様にして
第3表に示す平均空間波長及び表面粗さSR,を有する
実施例7〜9及び比較例9〜12の磁気テープ(ビデオ
テープ)を得た。
(Examples 7 to 9. Comparative Examples 9 to 12) Polyvinyl butyral in the composition used when forming the magnetic layers of Examples 4 to 6 and Comparative Examples 5 to 8 was 40 parts by weight, and the back coat layer was Three types of back coat layer paints A3, Bs, and C8 having the same composition but different average particle diameters of calcium carbonate of 0.2 μm, 0.3 μm%, and 0.6 μm were used for the back coat layer paints during formation. The magnetic tapes of Examples 7 to 9 and Comparative Examples 9 to 12 (video tape) was obtained.

次いで、以上の実施例7〜9及び比較例9〜12の磁気
テープのY−3/N比及びC−3/N比を日本ビクター
(株)社製のHR−37000の名で知られるV)(S
方式VTR装置とシバツク社製のNTSCノイズメータ
で測定するとともに、このVTR装置中で走行を繰り返
して走行性を評価し、第3表に併記する結果を得た。尚
、表中の記号○、Δ、×の意味は第1表と同様である。
Next, the Y-3/N ratio and C-3/N ratio of the magnetic tapes of Examples 7 to 9 and Comparative Examples 9 to 12 were determined using V known as HR-37000 manufactured by Victor Company of Japan. )(S
The vehicle was measured using a VTR device and an NTSC noise meter manufactured by Sibaku Corporation, and the running performance was evaluated by repeatedly running the vehicle in this VTR device, and the results shown in Table 3 were obtained. The meanings of the symbols ○, Δ, and × in the table are the same as in Table 1.

(以下、余白) 第3表 第3表の結果から、VTR装置中を摺動するバックコー
ト層の表面粗さが空間波長の平均値で7.0μm乃至8
.0μmの範囲にある実施例7〜9の磁気テープ(VH
3用ビデオテープ)はY−S/N比及びC−3/N比が
両者とも良好である。これに対し前記空間波長の平均が
7.0μm未満の比較例9及び10の磁気テープはY−
3/N比が劣り、8.0μmを越える比較例11及び1
2の磁気テープはC−3/N比が劣っていることが分か
る。
(Hereinafter, blank space) From the results in Table 3, it can be seen that the surface roughness of the back coat layer that slides in the VTR device is 7.0 μm to 8 μm in average spatial wavelength.
.. The magnetic tapes of Examples 7 to 9 (VH
3 videotape) has good Y-S/N ratio and C-3/N ratio. On the other hand, the magnetic tapes of Comparative Examples 9 and 10 in which the average spatial wavelength was less than 7.0 μm were Y-
Comparative Examples 11 and 1 with poor 3/N ratio exceeding 8.0 μm
It can be seen that the magnetic tape No. 2 has an inferior C-3/N ratio.

また、バックコート層を形成した磁気テープの走行性は
磁気テープの裏面となっているバックコート層表面のS
R,に依存して変り、SR,が0.010未満では悪く
、o、oto以上では良好となっていることが分かる。
In addition, the runnability of the magnetic tape on which the back coat layer is formed is determined by the S
It can be seen that it changes depending on R, and is bad when SR is less than 0.010 and good when SR is more than o.

(実施例10,11、比較例13〜16)裏面の平均空
間波長及びSR,が第4表に示される値であるベースフ
ィルム上に下記組成鉄合金磁性粉     ・・・30
0重量部ポリビニルブチラール ・・・ 40重量部ポ
リウレタン樹脂   ・・・ 60重量部研磨剤   
     ・・・ 15重量部カーボンブラック   
・・・ 20重量部シクロヘキサノン   ・・・30
0重量部トルエン       ・・・300重量部か
らなる組成物を混合分散した後、イソシアネート系硬化
剤を20重量部加えて更に分散して得られた塗布液を前
記ベースフィルムの表面に塗布して配向、カレンダー、
硬化等の所定の工程を経て、実施例10.11及び比較
例13〜16の磁気テープ(ビデオテープ)を得た。
(Examples 10 and 11, Comparative Examples 13 to 16) Iron alloy magnetic powder with the following composition was placed on a base film whose back surface had the average spatial wavelength and SR as shown in Table 4...30
0 parts by weight Polyvinyl butyral 40 parts by weight Polyurethane resin 60 parts by weight Abrasive
... 15 parts by weight carbon black
... 20 parts by weight cyclohexanone ...30
After mixing and dispersing a composition consisting of 300 parts by weight of 0 parts by weight toluene, 20 parts by weight of an isocyanate curing agent is added and further dispersed, and the resulting coating liquid is applied to the surface of the base film for orientation. ,calendar,
Through predetermined steps such as curing, magnetic tapes (video tapes) of Examples 10 and 11 and Comparative Examples 13 to 16 were obtained.

これ等の磁気テープを実施例1〜3及び比較例1〜4と
同様に測定、評価し、第4表に併記する結果を得た。
These magnetic tapes were measured and evaluated in the same manner as Examples 1 to 3 and Comparative Examples 1 to 4, and the results shown in Table 4 were obtained.

第4表 第4表の結果から明らかなようにY−3/N比及びC−
S/N比についてはバックコート層を形成していない実
施例10.11及び比較例13〜16の磁気テープもバ
ックコート層を形成した実施例1〜3及び比較例1〜4
と同様の傾向を示している。
Table 4 As is clear from the results in Table 4, the Y-3/N ratio and C-
Regarding the S/N ratio, the magnetic tapes of Examples 10 and 11 and Comparative Examples 13 to 16, in which no back coat layer was formed, were compared to the magnetic tapes of Examples 1 to 3 and Comparative Examples 1 to 4, in which back coat layers were formed.
shows a similar trend.

ただし、磁気テープの走行性の良し悪しの限界は実施例
1〜3及び比較例1〜4の場合とは異なり、SR,がほ
ぼ0.011μmの地点にあることが知見される。
However, unlike in Examples 1 to 3 and Comparative Examples 1 to 4, it is found that the limit of running performance of the magnetic tape is at a point where SR is approximately 0.011 μm.

(実施例12,13、比較例17〜20)裏面の平均空
間波長及びSR,が第5表に示される値であるベースフ
ィルム上に磁性層を形成する際に使用する組成物中の鉄
合金磁性粉をコバルト被着γ−Fe203に変えた以外
は上記実施例10.11及び比較例13〜16と同様に
して実施例12.13及び比較例17〜20の磁気テー
プ(ビデオテープ)を得た。
(Examples 12 and 13, Comparative Examples 17 to 20) Iron alloy in the composition used when forming a magnetic layer on a base film whose back surface has the average spatial wavelength and SR shown in Table 5. Magnetic tapes (video tapes) of Example 12.13 and Comparative Examples 17 to 20 were obtained in the same manner as in Example 10.11 and Comparative Examples 13 to 16 above, except that the magnetic powder was changed to cobalt-coated γ-Fe203. Ta.

これ等の磁気テープを実施例4〜6及び比較例5〜8と
同様に測定、評価し、第5表に併記する結果を得た。
These magnetic tapes were measured and evaluated in the same manner as Examples 4 to 6 and Comparative Examples 5 to 8, and the results shown in Table 5 were obtained.

第5表 第5表の結果から明らかなようにY−3/N比及びC−
3/N比についてはバックコート層を形成していない実
施例12.13及び比較例17〜20の磁気テープもバ
ックコート層を形成した実施例4〜6及び比較例5〜8
と同様の傾向を示している。
Table 5 As is clear from the results in Table 5, the Y-3/N ratio and C-
Regarding the 3/N ratio, the magnetic tapes of Examples 12 and 13 and Comparative Examples 17 to 20 in which a back coat layer was not formed were also compared to Examples 4 to 6 and Comparative Examples 5 to 8 in which a back coat layer was formed.
shows a similar trend.

ただし、磁気テープの走行性の良し悪しの限界は実施例
4〜6及び比較例5〜8の場合とは異なり、SR,がほ
ぼ0.011μmの間の地点にあることが知見される。
However, unlike in Examples 4 to 6 and Comparative Examples 5 to 8, it is found that the limit of running performance of the magnetic tape is at a point where SR is approximately 0.011 μm.

(実施例14.15、比較例21〜24)裏面の平均空
間波長及びSR,が第6表に示される値であるベースフ
ィルム上に実施例12゜13及び比較例17〜20と同
様にして実施例14.15及び比較例21〜24の磁気
テープ(ビデオテープ)を得た。
(Examples 14 and 15, Comparative Examples 21 to 24) In the same manner as in Examples 12 to 13 and Comparative Examples 17 to 20, the average spatial wavelength and SR of the back side were the values shown in Table 6. Magnetic tapes (video tapes) of Examples 14 and 15 and Comparative Examples 21 to 24 were obtained.

これ等の磁気テープを実施例7〜9及び比較例9〜12
と同様に測定、評価し、第5表に併記する結果を得た。
These magnetic tapes were used in Examples 7 to 9 and Comparative Examples 9 to 12.
Measurement and evaluation were carried out in the same manner as above, and the results shown in Table 5 were obtained.

第6表 第6表の結果から明らかなようにY−3/N比及びC−
S/N比についてはバックコート層を形成していない実
施例14.15及び比較例21〜24の磁気テープもバ
ックコート層を形成した実施例7〜9及び比較例9〜1
2と同様の傾向を示している。
Table 6 As is clear from the results in Table 6, the Y-3/N ratio and C-
Regarding the S/N ratio, the magnetic tapes of Examples 14 and 15 and Comparative Examples 21 to 24, in which no back coat layer was formed, were compared to the magnetic tapes of Examples 7 to 9 and Comparative Examples 9 to 1, in which back coat layers were formed.
It shows the same tendency as 2.

ただし、磁気テープの走行性の良し悪しの限界は実施例
4〜6及び比較例5〜8の場合とは異なり、SR,がほ
ぼ0.012乃至0.015μmの間の地点にあること
が知見される。
However, unlike in Examples 4 to 6 and Comparative Examples 5 to 8, it has been found that the limit of the running performance of the magnetic tape is at a point where SR, is approximately between 0.012 and 0.015 μm. be done.

(発明の効果) 以上の実施例からも明らかなように、本発明によれば、
Y−3/N比及びC−S/N比が両方とも従来よりも優
れた磁気テープが提供される。
(Effects of the Invention) As is clear from the above examples, according to the present invention,
A magnetic tape is provided that has both a Y-3/N ratio and a C-S/N ratio superior to those of the prior art.

従って磁気テープ裏面に露出するベースフィルムやバッ
クコート層、あるいは磁気記録再生装置における走行条
件等に応じてR1やSR,を適当に選択してやることに
より、これ等のS/N比及び走行性の両者に優れた磁気
テープが提供できる。
Therefore, by appropriately selecting R1 and SR according to the base film and back coat layer exposed on the back side of the magnetic tape, or the running conditions of the magnetic recording/reproducing device, both the S/N ratio and running properties of these can be improved. We can provide excellent magnetic tape for

Claims (1)

【特許請求の範囲】[Claims] (1)ベースフィルムの表面に磁性塗膜を形成してなる
磁気記録再生用の磁気テープにおいて、磁気記録再生時
に磁気記録再生装置中を摺動する磁気テープの裏面の表
面粗さを空間波長の平均値で4.5μm乃至8.0μm
の範囲から選ばれる0.5μm乃至1.0μm幅に収め
たことを特徴とする磁気テープ。
(1) In a magnetic tape for magnetic recording and reproducing in which a magnetic coating film is formed on the surface of a base film, the surface roughness of the back surface of the magnetic tape that slides in a magnetic recording and reproducing device during magnetic recording and reproducing is measured in terms of spatial wavelength. Average value 4.5μm to 8.0μm
A magnetic tape characterized by having a width of 0.5 μm to 1.0 μm selected from the range of 0.5 μm to 1.0 μm.
JP33997489A 1989-12-29 1989-12-29 Magnetic tape Pending JPH03203813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33997489A JPH03203813A (en) 1989-12-29 1989-12-29 Magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33997489A JPH03203813A (en) 1989-12-29 1989-12-29 Magnetic tape

Publications (1)

Publication Number Publication Date
JPH03203813A true JPH03203813A (en) 1991-09-05

Family

ID=18332534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33997489A Pending JPH03203813A (en) 1989-12-29 1989-12-29 Magnetic tape

Country Status (1)

Country Link
JP (1) JPH03203813A (en)

Similar Documents

Publication Publication Date Title
JPH02270126A (en) Magnetic recording medium
JPH03119516A (en) Magnetic recording medium and its production
JPS59203229A (en) Magnetic recording medium
JPH048855B2 (en)
JPH03256223A (en) Magnetic transfering method
JPH03203813A (en) Magnetic tape
JPH0373415A (en) Magnetic recording medium
US5324582A (en) Magnetic recording medium
JPH0935245A (en) Magnetic recording medium
JP3252224B2 (en) Magnetic recording media
JP3360317B2 (en) Non-magnetic support with masking layer for magnetic recording medium, and magnetic recording medium
JPS60151833A (en) Magnetic recording medium
EP0923069A1 (en) Magnetic recording mediums
JPH04163715A (en) Magnetic tape and manufacture thereof
JPH04286722A (en) Magnetic recording medium
JPH09293234A (en) Magnetic recording medium
JPH0461023A (en) Magnetic recording medium
JPH1040543A (en) Manufacture for magnetic recording medium
JPH03209627A (en) Magnetic recording medium
JPH1186270A (en) Magnetic recording medium
JPH09171618A (en) Production of magnetic recording medium
JPH11185242A (en) Magnetic recording medium
JPH11219512A (en) Magnetic recording medium
JPH01173431A (en) Manufacture of coating type magnetic medium
JPH09180170A (en) Magnetic recording medium