JPH09180170A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH09180170A
JPH09180170A JP22636996A JP22636996A JPH09180170A JP H09180170 A JPH09180170 A JP H09180170A JP 22636996 A JP22636996 A JP 22636996A JP 22636996 A JP22636996 A JP 22636996A JP H09180170 A JPH09180170 A JP H09180170A
Authority
JP
Japan
Prior art keywords
powder
magnetic
recording medium
magnetic recording
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22636996A
Other languages
Japanese (ja)
Inventor
Takeo Ito
武男 伊藤
Hajime Takeuchi
肇 竹内
Minoru Hashimoto
稔 橋本
Tatsumi Maeda
辰巳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22636996A priority Critical patent/JPH09180170A/en
Publication of JPH09180170A publication Critical patent/JPH09180170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetic recording medium for high density recording generating low noise and excellent in orienting property by dispersing hexagonal ferromagnetic powder having a specified specific surface area and a specified coercive force in a resin binder. SOLUTION: This magnetic recording medium contains hexagonal ferromagnetic powder having 25-45m<2> /g specified surface area and 400-2,000Oe coercive force dispersed in 10-40 pts.wt. resin binder based on 100 pts.wt. of the powder. In the case of <400Oe coercive force, it is difficult to increase recording density. In the case of >2,000Oe, a magnetic recording head is liable to cause saturation. The ferromagnetic powder is preferably Baferrite powder and the axes of easy magnetization of the powder have been preferably oriented in a direction perpendicular to the surface of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に係
り、特に、低ノイズで、配向性が優れた高密度記録用の
磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium for high density recording which has low noise and excellent orientation.

【0002】[0002]

【従来の技術】従来磁気記録媒体の大部分は磁性粉末と
樹脂結合剤よりなる磁気塗料をポリエステルフィルムな
どの支持基体上に塗布して構成されている。上記磁性粉
末としてはγ−Fe23 系、Fe34 系及びこれら
のコバルト吸着系、あるいはCrO2 系などを用いた針
状強磁性粉末が主として用いられている。しかしながら
これらの針状強磁性粉末は、その保磁力が小さいために
記録密度の点ではすでに限界に達し最近の高密度記録の
要求には適合し得ない欠点があった。このため最近この
欠点を改良するために針状強磁性粉末の粒子長を極力小
さくすること、あるいは保磁力(Hc)、最大磁束密度
(Ms)を向上させることが考えられている。しかしこ
れら針状強磁性粉に於いて粒子長を小さくしてゆくと、
反磁界の影響により低域での電磁変換特性が悪化し十分
な特性向上を期待しえない欠点を有していた。
2. Description of the Related Art Most of conventional magnetic recording media are constructed by coating a magnetic coating material comprising magnetic powder and a resin binder on a supporting substrate such as a polyester film. The magnetic The powder gamma-Fe 2 O 3 system, Fe 3 O 4 system and these cobalt adsorption system, or CrO acicular ferromagnetic powder used 2 system or the like is mainly used. However, these needle-shaped ferromagnetic powders have a drawback that they cannot meet the recent demands for high-density recording because their coercive force is small and the recording density has already reached its limit. Therefore, it has recently been considered to reduce the particle length of the acicular ferromagnetic powder as much as possible or to improve the coercive force (Hc) and the maximum magnetic flux density (Ms) in order to improve this defect. However, if the particle length is reduced in these acicular ferromagnetic powders,
Due to the influence of the demagnetizing field, the electromagnetic conversion characteristics in the low frequency range deteriorated, and there was a drawback that sufficient improvement in characteristics could not be expected.

【0003】一方、磁性鉄粉の微粉を樹脂バインダー中
に分散せしめ、得られた磁気塗料を支持基体の面に塗布
したいわゆるメタルテープが知られている。これは、従
来のγ−Fe23 磁性酸化鉄の場合よりも高密度の磁
気記録を可能にするという利点を有する反面、空気中の
酸素によって容易に酸化され、磁性鉄粉の製造過程若し
くは磁気塗料の製造過程での爆発の危険性が極めて高
く、その取扱いが困難であるのみならず、磁気記録媒体
としての特性の長期安定性に劣るという問題が生ずる。
On the other hand, a so-called metal tape is known in which fine powder of magnetic iron powder is dispersed in a resin binder and the obtained magnetic coating is applied to the surface of a supporting substrate. This has the advantage of enabling higher density magnetic recording than in the case of conventional γ-Fe 2 O 3 magnetic iron oxide, but on the other hand, it is easily oxidized by oxygen in the air, and There is an extremely high risk of explosion in the manufacturing process of the magnetic coating material, and it is difficult to handle the magnetic coating material, and the long-term stability of the characteristics of the magnetic recording medium is poor.

【0004】このような諸問題を解決して、高密度記録
を可能にする磁性粉末として、化学的に安定で、しかも
垂直磁気記録に適する六方晶系強磁性粉末が注目されて
いる。垂直磁気記録方法は記録密度が高まるほど、記録
媒体中の反磁界が減少するので、本質的に高密度記録に
適するからである。
Hexagonal system ferromagnetic powder, which is chemically stable and is suitable for perpendicular magnetic recording, has been attracting attention as a magnetic powder capable of solving such problems and enabling high density recording. This is because the perpendicular magnetic recording method is essentially suitable for high-density recording because the demagnetizing field in the recording medium decreases as the recording density increases.

【0005】六方晶系強磁性粉末は、通常、六角板状の
粒子であり、板面に垂直な方向に磁化容易軸を持つ。こ
のため、この磁性粉は塗布しただけでも板面が支持基体
面と平行になりやすく、磁場配向処理もしくは機械的配
向処理によって容易にその磁化容易軸が垂直配向する。
従って、このような性質を有する六方晶系強磁性粉末
を、単磁区構造の微細粉(平均粒径0.25μm 以下)
として、樹脂結合剤と共に支持基体面に均一に塗布する
ならば、極めて記録密度の高い磁気記録媒体となること
が期待される。
The hexagonal ferromagnetic powder is usually a hexagonal plate-like particle and has an easy axis of magnetization in the direction perpendicular to the plate surface. For this reason, even if this magnetic powder is applied, the plate surface is likely to be parallel to the supporting substrate surface, and the easy axis of magnetization is easily vertically aligned by the magnetic field orientation treatment or the mechanical orientation treatment.
Therefore, a hexagonal ferromagnetic powder having such properties is used as a fine powder having a single domain structure (average particle size of 0.25 μm or less).
As a result, if it is applied uniformly on the surface of the supporting substrate together with the resin binder, it is expected that the magnetic recording medium will have an extremely high recording density.

【0006】しかしながら、前記六方晶系強磁性粉末
は、平均粒径が0.25μm 以下の微細粉になると、粒
子間の凝集力が大きくなるため、これを磁気塗料中に高
度に分散せしめることが極めて困難となる。その結果、
得られる磁気記録媒体の垂直配向性が低下し、その高域
における再生出力特性は、当初期待した程、優れるもの
でなく、またノイズ特性が低いという欠点を有してい
た。
However, when the hexagonal ferromagnetic powder becomes a fine powder having an average particle size of 0.25 μm or less, the cohesive force between particles becomes large, so that it can be highly dispersed in the magnetic paint. It will be extremely difficult. as a result,
The perpendicular orientation of the obtained magnetic recording medium is deteriorated, and the reproduction output characteristics in the high range are not as excellent as initially expected, and the noise characteristics are low.

【0007】磁性粉末の粒子の平均粒径が0.2μm 以
上の場合には、分散性が若干改善されるものの、この場
合にも前記の事情は同様にあてはまる。このため、六方
晶系強磁性粉の分散性を改善し、以って、これを用いる
磁気記録媒体の配向性、ノイズ特性を高めることが望ま
れていた。
When the average particle size of the magnetic powder is 0.2 μm or more, the dispersibility is slightly improved, but the above-mentioned circumstances also apply to this case. Therefore, it has been desired to improve the dispersibility of the hexagonal ferromagnetic powder and thereby enhance the orientation and noise characteristics of the magnetic recording medium using the same.

【0008】[0008]

【発明が解決しようとする課題】本発明は、低ノイズ
で、しかも配向性の優れた高密度記録用の磁気記録媒体
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic recording medium for high density recording which has low noise and excellent orientation.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、六方晶系強磁性粉
末は、平均粒径が0.05〜0.25μm 範囲におい
て、粒径と比表面積の大きさの間には必ずしも逆比例関
係がなく、その分散性の良否は、粒径には直接依存せ
ず、比表面積の大小と強い相関性を有する事実を見い出
し、本発明を完成した。
As a result of intensive studies to achieve the above object, the present inventors have found that hexagonal ferromagnetic powder has an average particle size of 0.05 to 0.25 μm. There is not necessarily an inverse proportional relationship between the particle size and the size of the specific surface area, and the quality of the dispersibility does not directly depend on the particle size, but it was found that there is a strong correlation with the size of the specific surface area. Completed the invention.

【0010】即ち、本発明の磁気記録媒体は比表面積が
23〜45m2/g、保磁力が400〜2000 Oe である
六方晶系強磁性粉末が、該粉末100重量部に対して1
0〜40重量部の樹脂結合剤中に分散されていることを
特徴とする。
That is, in the magnetic recording medium of the present invention, a hexagonal ferromagnetic powder having a specific surface area of 23 to 45 m 2 / g and a coercive force of 400 to 2000 Oe is 1 to 100 parts by weight of the powder.
It is characterized by being dispersed in 0 to 40 parts by weight of a resin binder.

【0011】用いる六方晶系強磁性粉末としてはCo、
Co−Cr、Co−Mn、Mn−Al等のようにそのも
ので六方晶を形成する金属の微粒子、一般式MO・n(F
23 )で表わされる六方晶系フェライト(MはB
a、Sr、Pb、Caのいずれか一種、n は5〜6であ
り、Feの一部はTi、Co、Zn、In、Mn、C
u、Ge、Nb等の遷移金属で置換されていてもよい)
等が挙げられ、好ましくは、六方晶系フェライト、更に
好ましくはBa−フェライトとする。
The hexagonal ferromagnetic powder used is Co,
Fine particles of a metal such as Co-Cr, Co-Mn, and Mn-Al that form hexagonal crystals by themselves, a general formula MO · n (F
e 2 O 3 ) hexagonal ferrite (M is B
Any one of a, Sr, Pb, and Ca, n is 5 to 6, and part of Fe is Ti, Co, Zn, In, Mn, and C.
It may be substituted with a transition metal such as u, Ge or Nb)
And the like, and preferably hexagonal ferrite, more preferably Ba-ferrite.

【0012】一般に六方晶系フェライトは保磁力が高い
ので、構成原子の一部を特定の原子で置換し、その保磁
力を垂直磁気記録に適した範囲にまで低減したものが、
本発明の磁性粉末として好ましい。
Since hexagonal ferrite generally has a high coercive force, some of the constituent atoms have been replaced with specific atoms and the coercive force thereof has been reduced to a range suitable for perpendicular magnetic recording.
It is preferable as the magnetic powder of the present invention.

【0013】磁性粉末の保磁力は、400〜2000 O
e とする。保磁力が400 Oe 未満では記録密度を高め
ることが困難となり、また、2000 Oe を超えると磁
気記録ヘッドが飽和する傾向が生ずるので不都合とな
る。
The coercive force of the magnetic powder is 400 to 2000 O
Let be e. If the coercive force is less than 400 Oe, it is difficult to increase the recording density, and if it exceeds 2000 Oe, the magnetic recording head tends to be saturated, which is inconvenient.

【0014】六方晶系強磁性粉末の比表面積は23〜4
5m2/gとし、好ましくは25〜40m2/gとする。ここ
で、比表面積とは、窒素ガスのBET吸着法によって測
定した単位重量当りの粉末の表面積を言う。比表面積を
23〜45m2/gとするのは、この領域で樹脂等の結合剤
の磁性粉表面に対する吸着力が磁性粉相互の凝集力に打
ち勝ち、磁性粉を磁気塗料もしくは塗膜中に均一に分散
されるばかりでなく、それによって塗料流動性が改善さ
れるため平滑な塗膜面が得られる。その結果、磁気記録
媒体の配向性が高くなり、再生出力特性およびノイズ特
性が向上する。換言すれば、比表面積が23m2/g未満で
は、結合剤の吸着が不十分となり、磁性粉末の凝集力が
結合剤の吸着力に打ち勝ち、また、比表面積が45m2/g
を超える場合には、磁性粉の表面エネルギーが増大する
ことによって磁性粉末の凝集力が大きくなり、やはり磁
性粉末の凝集力が結合剤の吸着力に打ち勝つため、磁性
粉末の分散性が低下し、再生出力特性およびノイズ特性
が低下することになる。
The specific surface area of the hexagonal ferromagnetic powder is 23-4.
And 5m 2 / g, preferably with 25~40m 2 / g. Here, the specific surface area means the surface area of the powder per unit weight measured by the BET adsorption method of nitrogen gas. The specific surface area is set to 23 to 45 m 2 / g because the adsorption force of the binder such as resin to the magnetic powder surface overcomes the cohesive force between the magnetic powder particles in this region, and the magnetic powder is evenly distributed in the magnetic paint or coating film. Is not only dispersed, but also improves the fluidity of the paint, resulting in a smooth coating surface. As a result, the orientation of the magnetic recording medium is enhanced, and the reproduction output characteristic and noise characteristic are improved. In other words, when the specific surface area is less than 23 m 2 / g, the adsorption of the binder becomes insufficient, the cohesive force of the magnetic powder overcomes the adsorption force of the binder, and the specific surface area is 45 m 2 / g.
When it exceeds, the cohesive force of the magnetic powder increases due to the increase in the surface energy of the magnetic powder, and since the cohesive force of the magnetic powder overcomes the adsorption force of the binder, the dispersibility of the magnetic powder decreases. Playback output characteristics and noise characteristics are degraded.

【0015】また、六方晶系強磁性粉末の粒径は0.0
5〜0.25μm 、好ましくは0.05〜0.2μm で
ある。平均粒径が0.05μm 未満では、磁性粉末の表
面の非磁性層の厚さが無視できなくなり、磁性粉末の最
大磁束密度(Ms)が低下し始め、更には配向性も低下
するため高密度記録を行うことが困難となる。一方、平
均粒径が0.25μm を超えると配向性が向上するもの
の、磁性粉末の磁気凝集力が増大するためノイズが増加
し、上と同様に高密度記録が困難となる。
The particle size of the hexagonal ferromagnetic powder is 0.0
It is 5 to 0.25 μm, preferably 0.05 to 0.2 μm. If the average particle size is less than 0.05 μm, the thickness of the non-magnetic layer on the surface of the magnetic powder cannot be ignored, the maximum magnetic flux density (Ms) of the magnetic powder begins to decrease, and the orientation also decreases, resulting in high density. It becomes difficult to record. On the other hand, when the average particle size exceeds 0.25 μm, the orientation is improved, but the magnetic cohesive force of the magnetic powder increases, so that noise increases, making high-density recording difficult as in the above case.

【0016】このような六方晶系強磁性粉は、本出願人
の出願に係る特願昭54−143859号、特願昭55
−34769号の明細書に記載したガラス結晶化法等に
より製造することが可能である。これらの磁性粉の比表
面積と粒径の調整は、製造時の反応条件を適宜変更する
ことにより広い範囲の比表面積と粒径のものが得られ
る。
Such hexagonal ferromagnetic powders are disclosed in Japanese Patent Application No. 54-143859 and Japanese Patent Application No. 55-55, filed by the present applicant.
It can be produced by the glass crystallization method described in the specification of No. 34769. In adjusting the specific surface area and particle size of these magnetic powders, a wide range of specific surface area and particle size can be obtained by appropriately changing the reaction conditions during production.

【0017】用いる樹脂結合剤としては、可撓性のある
フィルム形成性材料であって、支持体材料、磁性粉と親
和性のある材料であれば、いずれも使用可能である。こ
れらの例としては、塩化ビニル−酢酸ビニル系共重合体
材料、NBR−ポリ酢酸ビニル系材料、ウレタン可塑化
塩化ビニル−酢酸ビニル系共重合体材料、ポリウレタン
系材料、ポリエステル系樹脂、イソシアネート系材料等
の公知材料を挙げることができる。本発明の磁気記録媒
体は、通常、可撓性、引張強度、寸法安定性等の機械的
特性に優れた支持基体、例えば、ポリエステルフィルム
上に塗着される。このように支持基体上に塗着せしめる
ことによって、磁気記録媒体の取扱が極めて容易とな
る。
As the resin binder to be used, any film-forming material having flexibility, which is compatible with the support material and the magnetic powder, can be used. Examples of these are vinyl chloride-vinyl acetate-based copolymer materials, NBR-polyvinyl acetate-based materials, urethane plasticized vinyl chloride-vinyl acetate-based copolymer materials, polyurethane-based materials, polyester-based resins, isocyanate-based materials. Known materials such as The magnetic recording medium of the present invention is usually coated on a supporting substrate excellent in mechanical properties such as flexibility, tensile strength and dimensional stability, for example, a polyester film. By coating the magnetic recording medium on the supporting substrate in this manner, handling of the magnetic recording medium becomes extremely easy.

【0018】本発明の磁気記録媒体は、例えば、次のよ
うにして得ることができる。即ち、先ず、サンドグライ
ンダーポットのような分散・混合機の中に、前記六方晶
系強磁性体粉末と樹脂結合剤と、適宜、溶媒を所定量添
加した後、混合機を運転して磁気塗料を調製する。
The magnetic recording medium of the present invention can be obtained, for example, as follows. That is, first, in a dispersing / mixing machine such as a sand grinder pot, the hexagonal ferromagnetic powder and the resin binder, and a predetermined amount of a solvent are appropriately added, and then the mixing machine is operated to operate the magnetic paint. To prepare.

【0019】その際、磁性粉末と樹脂結合剤との配合比
は、磁性粉末100重量部に対して、樹脂結合剤10〜
40重量部とする。樹脂結合剤が10重量部未満では、
磁性塗料の均一性、安定性が損われる。この結果、媒体
表面の平滑性が低下し、ヘッドと媒体とのスペースロス
が大きくなり、出力が低下する。一方、樹脂結合剤が4
0重量部を越えると、磁性粉の充填量が不足し、そのた
め媒体の最大磁束密度(Ms)が小さくなるので、やは
り出力が低下する。磁気塗料は、その他、カーボンブラ
ックなどの帯電防止用導電材、レシチンなどの分散剤、
潤滑剤、研摩剤、安定剤等、公知の添加剤を加えること
ができる。
At this time, the compounding ratio of the magnetic powder and the resin binder is such that the resin binder is 10 to 100 parts by weight of the magnetic powder.
40 parts by weight. If the resin binder is less than 10 parts by weight,
The uniformity and stability of the magnetic paint are impaired. As a result, the smoothness of the medium surface deteriorates, the space loss between the head and the medium increases, and the output decreases. On the other hand, the resin binder is 4
If it exceeds 0 parts by weight, the filling amount of the magnetic powder becomes insufficient, and therefore the maximum magnetic flux density (Ms) of the medium becomes small, so that the output also decreases. Magnetic paint is also used as antistatic conductive material such as carbon black, dispersant such as lecithin,
Known additives such as lubricants, abrasives and stabilizers can be added.

【0020】次に、得られた磁気塗料を、例えば、リバ
ースロールコータ、ドクターブレードコータ、グラビア
コータ等を用いる公知の方法によって塗布し、好ましく
は、支持基体面に対して垂直方向に、磁場配向処理もし
くは機械的配向処理を施しつつ、乾燥・平滑化処理を行
い、本発明の磁気記録媒体を得る。その際、磁性粉末の
配向は、例えば、本出願人の出願に係る特願昭54−7
1278号、特願昭55−132145号、特願昭55
−132138号の明細書に記載されている方法および
装置によって行うことができる。
Next, the obtained magnetic coating material is applied by a known method using, for example, a reverse roll coater, a doctor blade coater, a gravure coater, or the like, and preferably magnetic field orientation is carried out in a direction perpendicular to the surface of the supporting substrate. The magnetic recording medium of the present invention is obtained by performing a drying / smoothing process while performing the treatment or the mechanical orientation treatment. At that time, the orientation of the magnetic powder is, for example, Japanese Patent Application No. 54-7 filed by the present applicant.
1278, Japanese Patent Application No. 55-132145, Japanese Patent Application No. 55
-132138 can be performed by the method and apparatus described in it.

【0021】[0021]

【発明の効果】以上の説明から明らかな通り、本発明の
磁気記録媒体は六方晶系強磁性体粉末を用いるので磁
性層の磁化容易軸が垂直配向しやすいこと、その比表
面積が23〜45m2/gであるため、分散性が良好であ
り、その結果、塗膜の平滑性、配向率、ノイズ特性が優
れること、従って、高密度記録を可能にする等の効果
を奏し、その工業的価値は極めて大である。
As is apparent from the above description, since the magnetic recording medium of the present invention uses hexagonal ferromagnetic powder, the easy axis of magnetization of the magnetic layer is easily oriented vertically and its specific surface area is 23 to 45 m. Since it is 2 / g, the dispersibility is good, and as a result, the smoothness of the coating film, the orientation rate, and the noise characteristics are excellent. Therefore, it has the effect of enabling high-density recording. The value is extremely large.

【0022】[0022]

【実施例】以下、本発明の磁気記録媒体を実施例に沿っ
て詳説する。
EXAMPLES The magnetic recording medium of the present invention will be described in detail below with reference to examples.

【0023】実施例1 六方晶系フェライト粉末として、平均粒径0.09μm
、比表面積27m2/g,保磁力780 Oe ,最大磁束密
度59emu/g の置換型バリウムフェライトBaO・6
{(Fe0.86Co0.07Ti0.0723 }粉末100重
量部に、導電性カーボンブラック8.3重量部、レシチ
ン6.7重量部、メチルエチルケトン100重量部、ト
ルエン66.7重量部を加えて良く混合したのち、更
に、塩化ビニル−酢酸ビニル共重合体(商標VAGH:
ユニオンカーバイド社製)10重量部およびポリウレタ
ン樹脂(商標N−2301:日本ポリウレタン(株)
製)10重量部を加えて混合し、約2時間サンドグライ
ンダーポット中で分散処理した。得られた磁気塗料を濾
過し、ポリイソシアナート硬化剤(商標コロネートL:
日本ポリウレタン(株)製)を添加した後、リバースロ
ールコータによってポリエステルフィルム上に塗布し、
垂直磁場内を通過せしめつつ乾燥し、塗膜厚さ約2μm
の磁性層を作成した。最後に、これをスーパーカレンダ
ーロール装置を通過せしめて平滑化処理し、本発明の磁
気記録媒体を得た。
Example 1 As a hexagonal ferrite powder, the average particle size was 0.09 μm.
, Specific surface area 27 m 2 / g, coercive force 780 Oe, maximum magnetic flux density 59 emu / g substitutional barium ferrite BaO ・ 6
To 100 parts by weight of {(Fe 0.86 Co 0.07 Ti 0.07 ) 2 O 3 } powder, 8.3 parts by weight of conductive carbon black, 6.7 parts by weight of lecithin, 100 parts by weight of methyl ethyl ketone, and 66.7 parts by weight of toluene were added. After mixing well, a vinyl chloride-vinyl acetate copolymer (trademark VAGH:
Union Carbide Co., Ltd.) 10 parts by weight and polyurethane resin (Trademark N-2301: Nippon Polyurethane Co., Ltd.)
(Manufactured by Mfg. Co., Ltd.) was added and mixed, and the mixture was dispersed in a sand grinder pot for about 2 hours. The magnetic paint obtained was filtered and the polyisocyanate curing agent (trademark Coronate L:
After adding Nippon Polyurethane Co., Ltd., apply it on a polyester film with a reverse roll coater,
Drying while passing through a vertical magnetic field, coating thickness about 2μm
The magnetic layer of Finally, this was passed through a super calender roll device and smoothed to obtain a magnetic recording medium of the present invention.

【0024】この磁気記録媒体について、磁性層の表面
粗さ、垂直配向率およびキャリヤー信号対雑音比(C/
N)(4MHz キャリヤ、テープスピード3.5m/sec )
を測定した。その結果を次表に示す。尚、第1表のキャ
リヤー信号対雑音比(C/N)の値は、磁性粉末として
平均粒径0.27μm 、比表面積36m2/g、 保磁力12
70 Oe 、最大磁束密度170emu/g の強磁性金属粉末
をを用いて、上記と類似の方法によって得たメタルテー
プのC/N値(0dB)を基準とした相対値である。第1
表から明らかな通り、本発明の磁気記録媒体は平滑な塗
膜面、高い垂直配向率、優れたC/ N値を有していた。
For this magnetic recording medium, the surface roughness of the magnetic layer, the vertical orientation ratio and the carrier signal-to-noise ratio (C /
N) (4MHz carrier, tape speed 3.5m / sec)
Was measured. The results are shown in the following table. The values of carrier signal to noise ratio (C / N) in Table 1 are 0.27 μm as magnetic powder, specific surface area 36 m 2 / g, coercive force 12
This is a relative value based on the C / N value (0 dB) of a metal tape obtained by a method similar to the above, using a ferromagnetic metal powder having a magnetic flux density of 70 Oe and a maximum magnetic flux density of 170 emu / g. First
As is clear from the table, the magnetic recording medium of the present invention had a smooth coating film surface, a high vertical orientation rate and an excellent C / N value.

【0025】実施例2 実施例1で用いた六方晶系フェライトの代りに平均粒径
0.17μm 、比表面積35m2/g、保磁力740Oe、
最大磁束密度60emu/g の置換型バリウムフェライトB
aO・6{(Fe0.86Co0.07Ti0.07)23 }粉末を
用いたこと以外は実施例1と同様の方法によって、本発
明の磁気記録媒体を得、磁性層の表面粗さ、垂直配向
率、およびC/N値を測定した。その結果を次表に示
す。第1表から明らかな通り、本発明の磁気記録媒体
は、平滑な塗膜面、高い垂直配向率、優れたC/N値を
有していた。
Example 2 Instead of the hexagonal ferrite used in Example 1, an average particle size of 0.17 μm, a specific surface area of 35 m 2 / g, a coercive force of 740 Oe,
Substitution type barium ferrite B with maximum magnetic flux density of 60emu / g
A magnetic recording medium of the present invention was obtained in the same manner as in Example 1 except that aO.6 {(Fe 0.86 Co 0.07 Ti 0.07 ) 2 O 3 } powder was used, and the surface roughness and vertical orientation of the magnetic layer were obtained. The rate and C / N value were measured. The results are shown in the following table. As is apparent from Table 1, the magnetic recording medium of the present invention had a smooth coating film surface, a high vertical orientation rate and an excellent C / N value.

【0026】実施例3 実施例1で用いた六方晶系フェライトの代りに、平均粒
径0.25μm 、比表面積33m2/g、保磁力830O
e、最大磁束密度61emu/g の置換型バリウムフェライ
トBaO・6{(Fe0.86Co0.07Ti0.07)23 }粉
末を用いたこと以外は実施例1と同様の方法によって、
本発明の磁気記録媒体を得、磁性層の表面粗さ、垂直配
向率およびC/N値を測定した。その結果を次表に示
す。第1表から明らかな通り、本発明の磁気記録媒体
は、平滑な塗膜面、比較的高い垂直配向率、優れたC/
N値を有していた。
Example 3 Instead of the hexagonal ferrite used in Example 1, an average particle size of 0.25 μm, a specific surface area of 33 m 2 / g and a coercive force of 830O
e, by the same method as in Example 1 except that the substitution type barium ferrite BaO · 6 {(Fe 0.86 Co 0.07 Ti 0.07 ) 2 O 3 } powder having a maximum magnetic flux density of 61 emu / g was used.
The magnetic recording medium of the present invention was obtained, and the surface roughness of the magnetic layer, the vertical orientation rate and the C / N value were measured. The results are shown in the following table. As is clear from Table 1, the magnetic recording medium of the present invention has a smooth coating surface, a relatively high vertical orientation rate, and an excellent C /
It had an N value.

【0027】比較例1 実施例1とほぼ同じ化学組成を有する平均粒径0.08
μm 、比表面積19m2/g、保磁力810Oe、最大磁束
密度60emu/g の置換型バリウムフェライト粉末を用い
たこと以外は、実施例1と同様の方法によって、磁気記
録媒体を得、磁性層の表面粗さ、垂直配向率およびC/
N値を測定した。その結果を第1表に併記する。この結
果を実施例の結果と比較することによって明らかな通
り、塗面の平滑性、垂直配向率、C/N値のいずれの特
性も、本発明の磁気記録媒体より劣っていた。
Comparative Example 1 Average particle size 0.08 having almost the same chemical composition as in Example 1.
A magnetic recording medium was obtained in the same manner as in Example 1 except that the substitutional barium ferrite powder having a μm, a specific surface area of 19 m 2 / g, a coercive force of 810 Oe and a maximum magnetic flux density of 60 emu / g was used. Surface roughness, vertical orientation ratio and C /
The N value was measured. The results are shown in Table 1. As is clear from comparison of this result with the result of the example, the characteristics of the smoothness of the coated surface, the vertical orientation ratio, and the C / N value were all inferior to those of the magnetic recording medium of the present invention.

【0028】比較例2 実施例1とほぼ同じ化学組成を有する平均粒径0.24
μm 、比表面積22m2/g、保磁力780Oe、最大磁束
密度61emu/g の置換型バリウムフェライト粉末を用い
たこと以外は、実施例1と同様の方法によって、磁気記
録媒体を得、磁性層の表面粗さ、C/N値を測定した。
その結果を第1表に併記する。この結果を実施例の結果
と比較することによって明らかな通り、塗面の平滑性、
C/N値のいずれの特性も、本発明の磁気記録媒体より
劣っていた。
Comparative Example 2 Average particle size 0.24 having almost the same chemical composition as in Example 1.
A magnetic recording medium was obtained in the same manner as in Example 1 except that a substitutional barium ferrite powder having a μm, a specific surface area of 22 m 2 / g, a coercive force of 780 Oe, and a maximum magnetic flux density of 61 emu / g was used. The surface roughness and C / N value were measured.
The results are shown in Table 1. As is clear by comparing this result with the result of the example, the smoothness of the coated surface,
Both characteristics of C / N value were inferior to the magnetic recording medium of the present invention.

【0029】比較例3 実施例1とほぼ同じ化学組成を有する平均粒径0.06
μm 、比表面積51m2/g、保磁力760Oe、最大磁束
密度52emu/g の置換型バリウムフェライト粉末を用い
たこと以外は、実施例1と同様の方法によって、磁気記
録媒体を得、磁性層の表面粗さ、垂直配向率およびC/
N値を測定した。その結果を第1表に併記する。この結
果を実施例の結果と比較することによって明らかな通
り、塗面の平滑性、垂直配向率、C/N値のいずれの特
性も、本発明の磁気記録媒体より劣っていた。
Comparative Example 3 Average particle size 0.06 having substantially the same chemical composition as in Example 1.
A magnetic recording medium was obtained by the same method as in Example 1 except that a substitutional barium ferrite powder having a μm, a specific surface area of 51 m 2 / g, a coercive force of 760 Oe, and a maximum magnetic flux density of 52 emu / g was used. Surface roughness, vertical orientation ratio and C /
The N value was measured. The results are shown in Table 1. As is clear from comparison of this result with the result of the example, all the characteristics of the smoothness of the coated surface, the vertical orientation ratio, and the C / N value were inferior to those of the magnetic recording medium of the present invention.

【0030】[0030]

【表1】 [Table 1]

【0031】試験例 実施例1とほぼ同じ化学組成を有する平均粒径0.06
〜0.1μm 、比表面積14〜45m2/gの各種置換型バ
リウムフェライト粉末について、実施例と同様の方法に
よって、磁気記録媒体を得た。これらについて、キャリ
ヤ信号対雑音比C/N値(4MHz キャリヤ、テープスピ
ード3.5m/sec )を測定し、その値と磁性粉の比表面
積との関係を求めた。その結果を図に示す。第1図から
明らかな通り、23〜45m2/gの比表面積を有する磁性
粉末は優れたC/N値を示した。尚、第1図において縦
軸のC/N値は、前記同様のメタルテープのC/N値
(0dB)を基準とした相対値を表わす。
TEST EXAMPLE Average particle size 0.06 having approximately the same chemical composition as in Example 1.
~0.1Myuemu, the various substituted barium ferrite powder having a specific surface area of 14~45m 2 / g, by the same method as in Example to obtain a magnetic recording medium. The carrier signal-to-noise ratio C / N value (4 MHz carrier, tape speed 3.5 m / sec) of these was measured, and the relationship between the value and the specific surface area of the magnetic powder was determined. The result is shown in the figure. As is clear from FIG. 1, the magnetic powder having a specific surface area of 23 to 45 m 2 / g showed an excellent C / N value. Incidentally, the C / N value on the vertical axis in FIG. 1 represents a relative value based on the C / N value (0 dB) of the same metal tape as described above.

【0032】〔数値限定範囲の特異性〕実施例1〜3、
比較例1〜3は、磁性粉100重量部に対し塩酢ビVA
GH10重量部、ウレタンN−2301 10重量部
の、合計樹脂結合剤20重量部による例であった。本発
明の数値限定範囲内における特性が、特異なものである
ことを実証するための試験も行った。その試験は、溶剤
組成、その他添加剤組成を実施例にならい、塩酢ビVA
GHとウレタンN−2301の配合比率も実施例同様
1:1にし、磁性粉100重量部に対する樹脂結合剤の
重量部数10〜40の下限、上限及びそれらの外と磁性
粉比表面積23〜45m2/gの下限、上限付近及びそれら
の外と、について行なった。磁性粉は比較例2および試
験例で使用した粉を用いた。その試験内容を第2表に示
す。
[Specificity of Numerical Limit Range] Examples 1 to 3,
Comparative Examples 1 to 3 are 100 parts by weight of magnetic powder and VA vinyl chloride.
This is an example of 10 parts by weight of GH and 10 parts by weight of urethane N-2301 with 20 parts by weight of the total resin binder. Tests were also carried out to demonstrate that the properties of the present invention within the numerical limits were unique. The test was carried out according to the solvent composition and other additive compositions as in the example.
The compounding ratio of GH and urethane N-2301 was set to 1: 1 as in the example, and the lower limit and the upper limit of 10 to 40 parts by weight of the resin binder with respect to 100 parts by weight of the magnetic powder and the outside thereof and the specific surface area of the magnetic powder of 23 to 45 m 2 were used. The lower limit and the upper limit of / g and the outside thereof were performed. As the magnetic powder, the powder used in Comparative Example 2 and Test Example was used. Table 2 shows the test contents.

【0033】[0033]

【表2】 [Table 2]

【0034】試験結果を第3表に示す。The test results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】第2表及び第3表における記号E4〜E7
は、実施例1〜実施例3の範囲内での良好な実験データ
を示し、C4〜C11は比較例1〜比較例3に続いて提
示される劣った比較データを示す。
Symbols E4 to E7 in Tables 2 and 3
Shows good experimental data within the range of Examples 1 to 3, and C4 to C11 show inferior comparative data presented following Comparative Examples 1 to 3.

【0037】第3表の結果を第2図のグラフで示す。第
2図から明らかな通り、E4、E5は、比表面積が下限
の23m2/g、樹脂結合剤が下限及び上限で、D〜0.1
2μm であることを反映してやや表面性が粗いものの、
C/N値はメタルテープと同等か、それ以上を確保して
いる。
The results of Table 3 are shown in the graph of FIG. As is clear from FIG. 2, E4 and E5 have a specific surface area of 23 m 2 / g, which is the lower limit, and a resin binder, which is the lower limit and the upper limit, of D to 0.1.
Although it has a slightly rough surface, reflecting that it is 2 μm,
The C / N value is equal to or higher than that of metal tape.

【0038】E6、E7は、比表面積が上限の43m2/
g、樹脂結合剤が下限及び上限であるが、D〜0.02
μm であることを反映して表面性は良好である。しかし
配向性の低下、σの低下、微粒子を充填することの困難
さからMs、SQRは低下気味であるものの、C/N値
はメタルテープと同等か、それ以上を確保している。
E6 and E7 have a specific surface area of 43 m 2 /
g, the resin binder is the lower limit and the upper limit, D ~ 0.02
The surface property is good reflecting the fact that it is μm. However, although the Ms and SQR tend to decrease due to a decrease in orientation, a decrease in σ, and difficulty in filling fine particles, the C / N value is secured to be equal to or higher than that of the metal tape.

【0039】C4、C5は、比表面積が下限の下の22
m2/g、樹脂結合剤が下限及び上限であるが、D〜0.2
4μm であることを反映してあらゆる樹脂量の領域で表
面性が粗く、粒子性ノイズが支配的で、メタルテープに
比べてC/N値は0dBを可成り下廻る。
C4 and C5 have a specific surface area of 22 below the lower limit.
m 2 / g, the lower limit and the upper limit of the resin binder, D ~ 0.2
Reflecting the fact that it is 4 μm, the surface property is rough in all resin amount regions, the particle noise is dominant, and the C / N value is much lower than 0 dB compared to the metal tape.

【0040】C6、C7はE4、E5の粉を樹脂量を変
えて作製した媒体である。比表面積が下限の23m2/gの
粉に対して9部のレジン量の組み合わせでは、磁性粉の
表面エネルギーはこの樹脂量では下げきれないため磁性
粉の分散性が低下するため表面性は粗くなる。41部の
樹脂量は過多で樹脂間相互作用による構造が現れ、表面
性は低下し配向性も阻害される。さらに充填性が悪いた
め出力が低くノイズが高いためC/N値は問題外であ
る。
C6 and C7 are media prepared by changing the resin amount of the E4 and E5 powders. When the resin amount of 9 parts is combined with the powder having a specific surface area of 23 m 2 / g which is the lower limit, the surface energy of the magnetic powder cannot be reduced by this amount of resin and the dispersibility of the magnetic powder is reduced, resulting in a rough surface property. Become. The resin amount of 41 parts is excessive and a structure due to the interaction between the resins appears, so that the surface property is deteriorated and the orientation is also hindered. Further, the C / N value is out of the problem because the output is low and the noise is high due to the poor filling property.

【0041】C8、C9はE6、E7の粉を樹脂量を変
えて作製した媒体である。比表面積は43m2/gと樹脂9
部の組み合わせでは磁性粉の表面エネルギーはこの樹脂
量では下げきれないため磁性粉の分散性が低下するため
E6に比べさらに表面性は低下する。41部との組み合
わせでは磁性粉の表面エネルギーは低下でき表面性は向
上するものの配向性の低下、σの低下、樹脂量多・微粒
子を充填することの困難さと相侯ってMsが低下し、さ
らにSQRの低下により出力低下ぎみでノイズ成分は少
ないもののC/N値は稼げない。
C8 and C9 are media prepared by changing the amount of resin from the powders of E6 and E7. Specific surface area is 43m 2 / g and resin 9
With the combination of the parts, the surface energy of the magnetic powder cannot be lowered by this amount of resin, and the dispersibility of the magnetic powder is lowered, so that the surface property is further lowered as compared with E6. In combination with 41 parts, the surface energy of the magnetic powder can be lowered and the surface property is improved, but the orientation is lowered, σ is lowered, Ms is lowered in combination with the difficulty of filling a large amount of resin and fine particles, Further, due to the decrease in SQR, the output component is small and the noise component is small, but the C / N value cannot be earned.

【0042】C10、C11は、C8、C9と同様の理
由により不可である。上記の実験データが示す通り、本
発明の磁気記録媒体は、その比表面積及び樹脂結合剤の
限定範囲内においては、その範囲外のものよりも特異な
特性を示す。
C10 and C11 are impossible for the same reason as C8 and C9. As shown by the above experimental data, the magnetic recording medium of the present invention exhibits more specific characteristics within the limited range of the specific surface area and the resin binder than those outside the range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は、六方晶系強磁性粉末100重量部が
樹脂結合剤20重量部中に分散された場合の、磁性粉の
比表面積と磁気記録媒体のC/N値の関係を示す本発明
の説明図である。
FIG. 1 shows the relationship between the specific surface area of magnetic powder and the C / N value of a magnetic recording medium when 100 parts by weight of hexagonal ferromagnetic powder are dispersed in 20 parts by weight of a resin binder. It is explanatory drawing of this invention shown.

【図2】第2図は、第1図に示すものと同じ材料に比表
面積を、本発明の限定範囲の下限、上限、下限の下、及
び上限の上に設定し、且つ樹脂結合剤の量を、本発明の
限定範囲の下限、上限、下限の下、及び上限の上に設定
して測定した実験例及び比較例のデータをグラフ化して
示す図である。
FIG. 2 shows the same material as shown in FIG. 1 with specific surface areas set at the lower limit, the upper limit, below the lower limit and above the upper limit of the present invention, and It is a figure which shows in a graph the data of the experimental example and comparative example which set and measured the amount of the lower limit, the upper limit, below the lower limit, and above the upper limit of the limiting range of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 辰巳 神奈川県川崎市幸区小向東芝町1番地 東 京芝浦電気株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsumi Maeda 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Higashi Koshibaura Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が25〜45m2/g、保磁力が4
00〜2000 Oeである六方晶系強磁性粉末が、該粉
末100重量部に対して10〜40重量部の樹脂結合剤
の中に分散されていることを特徴とする磁気記録媒体。
1. A specific surface area of 25 to 45 m 2 / g and a coercive force of 4
A magnetic recording medium, characterized in that a hexagonal ferromagnetic powder of 0 to 2000 Oe is dispersed in 10 to 40 parts by weight of a resin binder with respect to 100 parts by weight of the powder.
【請求項2】 六方晶系強磁性粉末がBa−フェライト
である特許請求の範囲第1項記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the hexagonal ferromagnetic powder is Ba-ferrite.
【請求項3】 支持基体上に塗着された磁気記録媒体で
あって、支持基体面に対して垂直な方向に磁性粉末の磁
化容易軸が配向された特許請求の範囲第1項記載の磁気
記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is coated on a supporting substrate, and the easy axis of magnetization of the magnetic powder is oriented in a direction perpendicular to the surface of the supporting substrate. recoding media.
JP22636996A 1996-08-28 1996-08-28 Magnetic recording medium Pending JPH09180170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22636996A JPH09180170A (en) 1996-08-28 1996-08-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22636996A JPH09180170A (en) 1996-08-28 1996-08-28 Magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58173241A Division JPS6066321A (en) 1983-09-21 1983-09-21 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH09180170A true JPH09180170A (en) 1997-07-11

Family

ID=16844068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22636996A Pending JPH09180170A (en) 1996-08-28 1996-08-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH09180170A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066321A (en) * 1983-09-21 1985-04-16 Toshiba Corp Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066321A (en) * 1983-09-21 1985-04-16 Toshiba Corp Magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0727631B2 (en) Magnetic recording medium
US4714654A (en) Magnetic recording medium
JPS6292128A (en) Magnetic recording medium
JP2802518B2 (en) Magnetic recording media
JPH0922524A (en) Magnetic recording medium
JPH0935245A (en) Magnetic recording medium
JPH09180170A (en) Magnetic recording medium
JP3852198B2 (en) Magnetic recording medium
JPH09212847A (en) Magnetic recording medium
JP2005032365A (en) Magnetic recording medium
JP3012190B2 (en) Magnetic recording media
KR890003201B1 (en) Magnetic recording carriage
JPH0349025A (en) Magnetic recording medium
JPH0719353B2 (en) Magnetic recording medium
JPS59144037A (en) Magnetic recording medium
JP2001006151A (en) Magnetic recording medium
JPH04184708A (en) Magnetic recording medium and manufacture thereof
JPH0463525B2 (en)
JPH0668452A (en) Magnetic recording medium
JPH10308014A (en) Magnetic recording medium
JPH11175952A (en) Magnetic recording medium
JPH09259422A (en) Magnetic recording medium
JPH0581643A (en) Magnetic recording medium
JPH11232634A (en) Magnetic record medium
JPH10275321A (en) Magnetic recording medium