JPS6014444A - Selective annealing method of semiconductor wafer - Google Patents

Selective annealing method of semiconductor wafer

Info

Publication number
JPS6014444A
JPS6014444A JP58121318A JP12131883A JPS6014444A JP S6014444 A JPS6014444 A JP S6014444A JP 58121318 A JP58121318 A JP 58121318A JP 12131883 A JP12131883 A JP 12131883A JP S6014444 A JPS6014444 A JP S6014444A
Authority
JP
Japan
Prior art keywords
film
layer
ion implantation
thickness
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121318A
Other languages
Japanese (ja)
Other versions
JPH0138368B2 (en
Inventor
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58121318A priority Critical patent/JPS6014444A/en
Publication of JPS6014444A publication Critical patent/JPS6014444A/en
Publication of JPH0138368B2 publication Critical patent/JPH0138368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE:To activate a selective ion implantation layer as a metal having no heat resistance such as Al is left as it adheres by forming a resistor thin-film on the ion implantation layer and forming a film having specific relative permittivity and thickness on the thin-film and annealing the film having said permittivity and thickness. CONSTITUTION:A Ta thin-film 24 and a film 25, relative permittivity epsilontau thereof satisfies the formula of 1<epsilontau<=120pi/Zl (Zl represents electromagnetic wave impedance obtained by estimating a lower section from the surface of a resistor thin-film) and thickness thereof satisfies the formula of (2n+1)lambda/4(n=0,1..., lambda represents a wavelength), are formed on the surface of a GaAs substrate 21 with an activated n layer 22. There is an n<+> layer 23 injected through the films 24, 25 while using a gate metal 26 as a mask in the substrate 21, electromagnetic waves are reflected because impedance lows in the gate metal 26 when planar electromagnetic waves 27 are projected, and electromagnetic waves are absorbed efficiently in a section to which the film 25 is attached, and activate the n<+> layer 23 in place of heat in the Ta film 24, loss thereof is large.

Description

【発明の詳細な説明】 本発明は半導体ウェハーの選択アニール方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively annealing semiconductor wafers.

近年、GaAs等の化合物半尋体を用いたディスクリ−
) FET 、ディジタル集λデ゛1回路、アナログ1
1.へ積回路の研究開発が活発に行なわれ−Cいる。こ
れらのデバイスにおいて、アクティブ素子として通常用
いられているショットキー障壁ゲートμ)1昌fj界効
果トランジスタ(八ESFET)が有するゲート・ソー
ス間寄生抵抗およびゲートドレイン四吾生抵抗を低減す
ることが、ゲ[究の盾要な11°1題の一つとなってい
る。この寄生抵抗を低減するだめにはいくつかのアプロ
ーチがあるが、工:、”L造プロセスが比Ii;テ的容
易な、側熱性ゲート金属をマスクとしてIf )r、V
をセルファラインでイオン注入する方法が広く用いられ
ている。この方法はn+)○をイオン注入した後にゲー
ト金属を付けICまま、800℃前後の高温でアニール
を行い、イオン注入層の活性化を行う必要がある。した
がってゲート金属には耐熱性が要求され、TiW 、 
TiWシリザイド、 WAG 、ルV等のh4熱性金属
がゲート金属として採用されている。
In recent years, discretization using compound hemibases such as GaAs has been developed.
) FET, digital integrated λ di 1 circuit, analog 1
1. Research and development of hexagonal circuits is being actively conducted. In these devices, reducing the gate-source parasitic resistance and gate-drain resistance of the Schottky barrier gate μ) 1-sho fj field-effect transistor (ESFET), which is commonly used as an active element, is [This is one of the 11°1 questions that are essential to studying. There are several approaches to reducing this parasitic resistance.
The method of ion implantation using self-alignment is widely used. In this method, after ion implantation of n+)○, it is necessary to attach a gate metal and perform annealing at a high temperature of around 800° C. to activate the ion implantation layer. Therefore, the gate metal is required to have heat resistance, and TiW,
H4 thermal metals such as TiW silicide, WAG, and LuV are employed as gate metals.

しかしながら、これらの金11の耐熱性は必ずしも十分
でないという問題があった。さらにこれらのいわゆる耐
熱性金属は、ゲート金属として広く用いられているMに
比べて(Mには耐熱性はない)、抵抗が大きく、信頼性
も劣るという問題があった。
However, there was a problem in that the heat resistance of these gold 11s was not necessarily sufficient. Furthermore, these so-called heat-resistant metals have a problem in that they have higher resistance and lower reliability than M, which is widely used as a gate metal (M has no heat resistance).

本発明の目的は前記問題を解決し、MのようにiJ’ 
A’6性のない金スう1を着けたままでも・fオン注入
J11の活性化を図ることができる半導体ウェハーの通
釈アニール方法を提供することに必る。
The purpose of the present invention is to solve the above problem and to
It is necessary to provide a method for annealing a semiconductor wafer, which can activate the f-on implantation J11 even with the gold film 1 having no A'6 properties attached.

すなわち、本発明は半導体ウェハーの選択イオン注入層
の上に抵抗体薄膜を設け、さらにその上/120π に1くεr’> z、 (ただし2.は抵抗休み19表
面から下部を見込んだ電磁波インピーダンス)の+3’
j係で表1.2.・・・、λは波長)なる膜を設け、そ
の上方より単色光源より発せられる電磁波エネルギーを
照射して選択イオン注入層のアニールを行う半導体ウェ
ハーのアニール方法およびH’IU択イカイオン注入層
に抵抗体の薄膜を設け、さらにその上に1〈120π Cr< z、(ただしZ、は抵抗体薄膜表面から下部を
見込んだ電磁波インピーダンス)の関係で表わされる比
誘電率ε1、厚さくzn+J、 (ただしn=0 、1
 、2 。
That is, in the present invention, a resistor thin film is provided on the selective ion implantation layer of the semiconductor wafer, and furthermore, εr'> z, (where 2. is the electromagnetic wave impedance looking down from the surface of the resistor 19) ) +3'
Table 1.2 for section j. A semiconductor wafer annealing method in which a selective ion-implanted layer is annealed by irradiating electromagnetic wave energy emitted from a monochromatic light source from above the film, and resistance to the H'IU selective ion-implanted layer. A thin film of the resistor is provided on top of the thin film of the resistor, and a relative dielectric constant ε1 expressed by the relationship 1<120π Cr<z, (where Z is the electromagnetic wave impedance looking down from the surface of the resistor thin film) and a thickness zn+J, (where Z is n=0, 1
, 2.

・・・、λは波長)なる第一の誘電体JlΔを設け、さ
らにその上に誘電率は任意で厚さが剰λ(ただしn””
Or 1 + 2 +・・・)なる第二の「し電体膜を
設け、選択イオン注入磨以外の部分には前記第二の誘電
体膜のみを設け、その上方より単色光源より発せられる
電磁波エネルギーを照射して選択イオン注入JI′tの
アニールを行う半導体ウェハーの選択アニール方法であ
る。
..., λ is the wavelength), and on top of that a first dielectric material JlΔ with an arbitrary dielectric constant and a thickness of λ (where n"") is provided.
Or 1 + 2 + . This is a selective annealing method for semiconductor wafers in which selective ion implantation JI't is annealed by irradiating energy.

以下に本発明の実施例を図面と数式を用いてh)′−述
する。
Embodiments of the present invention will be described below using drawings and numerical formulas.

2f11図および第2図は本発明の詳細な説明するため
の図である。@1図において、′1」磁波インピーダン
スがそれぞれ7. 、 Zであるようす媒質1および2
が互いに接して配列され、さらに芳質2に抵抗体薄膜3
が接し、抵抗体薄膜3には半d1体基板4が接している
。旋質2と抵抗体r、71藤3との界面6から右側を児
込んだ電磁波インピーダンスを2、とすると、界面5か
ら右側を見込んだ電磁波インピーダンスZ′は と表わすことができる。たlビしlは婬f!12の長さ
、Z’−’−(2) Zノ となる。ここでもし zo = z’ (3) すなわち z = J ZoZ7 (4) の関係が成立するとき、インピーダンス2’、i>合が
起こり、媒Zj i、 (c入射されたエネルギーは全
て界面6より右に伝送される。ただしTユの損失が大き
いだめ、電イ:’1.波のエネルギーの大半tよ抵抗体
薄Il′1!3中で熱に変わる。ととろで智:Hitt
 2の比誘電〉(、可をε1、真空中の誘電率をε。、
群112の比透磁率なit、、真空中の透磁阜をμ。と
すると、 となる。μ、は通常1である。(4)式において70を
J゛〔空中の電磁波インピーダンスとすると 2゜−/]− J−0−120π (6) であるから、(’) 、(5) 、 (6)式よりCr
ぐ覇 (7) のとき、インピーダンス整合が起こることが分る。
FIG. 2f11 and FIG. 2 are diagrams for explaining the present invention in detail. In Figure @1, the '1' magnetic wave impedance is 7. , Z medium 1 and 2
are arranged in contact with each other, and a resistor thin film 3 is further placed on the aromatic layer 2.
is in contact with the resistor thin film 3, and the semi-d1 substrate 4 is in contact with the resistor thin film 3. If the electromagnetic wave impedance looking right from the interface 6 between the stratum 2, the resistor r, and the 71 rattan 3 is 2, then the electromagnetic wave impedance Z' looking right from the interface 5 can be expressed as. Tabishi l is 婬f! The length of 12 is Z'-'-(2) Zノ. Here, if the relationship zo = z' (3), that is, z = J ZoZ7 (4) holds, impedance 2', i > combination will occur, and all the energy incident on the medium Zj i, (c will be It is transmitted to the right.However, the loss of T is large, so most of the energy of the wave turns into heat in the thin resistor Il'1!3.Torode Satoshi: Hitt
2 relative permittivity〉(, ε1 is the permittivity, ε is the dielectric constant in vacuum,
The relative permeability of group 112 is it, and the permeability in vacuum is μ. Then, it becomes . μ is usually 1. In equation (4), 70 is J゛[2゜-/]-J-0-120π (6), so from equations ('), (5), and (6), Cr
It can be seen that impedance matching occurs when (7).

第2図において、電磁波インピーダンスがそれぞれ2.
.2,2.であるような3つの媒質11.12および1
3が接している。第2図において媒質12の長さをλ/
2とすると(F、)式より Z′=Z、(8) となる。この場合、インピーダンス整合は起こらず、媒
質12を通しても媒質13のインピーダンスがそのまま
見える。このときの界面14における反射係数F をもって電磁波は光汀側へ反射する。
In FIG. 2, the electromagnetic wave impedance is 2.
.. 2,2. Three media 11.12 and 1 such that
3 are in contact. In Fig. 2, the length of the medium 12 is λ/
2, then Z'=Z, (8) from equation (F,). In this case, impedance matching does not occur, and the impedance of the medium 13 is visible as it is even through the medium 12. At this time, the electromagnetic wave is reflected toward the light shore with the reflection coefficient F at the interface 14.

第3図は本発明の第1の実施例を示す図である。FIG. 3 is a diagram showing a first embodiment of the present invention.

図において、GaAs基板21はあらかじめイオン注入
した後アニールされ、活性化されたn層22を有する。
In the figure, a GaAs substrate 21 has an n-layer 22 which is annealed and activated after ion implantation.

才たGaAs基板21の表面には′ra薄膜24およら
れている。まだGaAs基板21中にはゲート金属26
をマスクとして膜24および25を通して注入されたn
+領領域n+層)23が存在する。GaAs基板21の
表面には平面電磁波26が入射される。ゲート金属26
ではインピーダンスが低いために電磁波は反射される。
The surface of the aged GaAs substrate 21 is covered with a RA thin film 24. There is still gate metal 26 in the GaAs substrate 21.
n implanted through films 24 and 25 using as a mask
+ area (n+ layer) 23 exists. Planar electromagnetic waves 26 are incident on the surface of the GaAs substrate 21 . gate metal 26
Since the impedance is low, electromagnetic waves are reflected.

まだ膜25が付けられた部分では効率よく電磁波は吸収
され、損失の大きいTa1BI 24中で熱に代わる。
In the portion where the film 25 is still attached, the electromagnetic waves are efficiently absorbed and converted into heat in the Ta1BI 24, which has a large loss.

この貼により’rT523を活性化する。This patch activates 'rT523.

第4図1は本発明の第2の実施例を示す図である。。FIG. 4 1 is a diagram showing a second embodiment of the present invention. .

図において、GaAs基板31はあらかじめイオン注入
した後アニールされ、活性化されたn層32を有する。
In the figure, a GaAs substrate 31 has an n-layer 32 which is annealed and activated after ion implantation.

またGaAs基板31の表面にはTa薄膜34およ12
0π び比誘電率が17 で厚さがλ/4の膜35が設けられ
ている。またGaAs基板31中にはゲート金属36を
マスクとし、12(34,35を通してイオン注入され
たn+領領域 n+居) 33が存在する。GaAs基
板31ノ表面には平面電磁波37が入射される。膜35
が付けられた部分では電磁波は反射されることなく主と
して圧・工34の中で熱に変わる。この1″!jシによ
りイオン注入n/’、’533がアニールされ活性化さ
れる。一方、ゲート金属のインピーダンスは非常に低い
だめ、厚さλ/2の膜38の表面から下部を見込んだイ
ンピーダンスも非常に低い。このだめゲート金k”5 
rtlsに入射した電磁波は膜38の表面で反射する。
Further, on the surface of the GaAs substrate 31, there are Ta thin films 34 and 12.
A film 35 having a dielectric constant of 0π and a relative dielectric constant of 17 and a thickness of λ/4 is provided. Further, in the GaAs substrate 31, using the gate metal 36 as a mask, there are 12 (n+ regions 33 into which ions are implanted through 34 and 35). Planar electromagnetic waves 37 are incident on the surface of the GaAs substrate 31 . membrane 35
At the portion marked with , the electromagnetic waves are not reflected and are mainly converted into heat within the pressure/workpiece 34. Due to this 1"!j, the ion implantation n/', '533 is annealed and activated. On the other hand, since the impedance of the gate metal is very low, the lower part is viewed from the surface of the film 38 with a thickness of λ/2. The impedance is also very low.Konodame gate gold k”5
The electromagnetic waves incident on the rtls are reflected by the surface of the membrane 38.

なお、実施例では抵抗体薄膜として’1’aNを用いた
が、Taに限らず抵抗体なら何でもよい。
In the embodiment, '1'aN was used as the resistor thin film, but the resistor is not limited to Ta, and any resistor may be used.

以上のように本発明によれば、光源から発せられる電磁
波エネルギーが選択イオン注入層の上の抵抗体薄膜に効
率よく吸収されて熱に変わるため、光源から発せられる
電磁波エネルギーが小さくても選択的にアニールを行う
ことができる。さらに光源から発せられる電磁波エネル
ギーは選択イオン注入層の上の抵抗体薄膜に効率よく吸
収され熱に変わる一方、選択イオン注入層以外の部分で
は電磁波エネルギーをゲート金属等の半尋体つエノ・−
上の宿成物に達する前に反射して光汀佃にもどすことが
できる。このだめ込択イオン注入層以外の部分での温度
上昇が小さく耐熱性のないゲート金属を付けたま1でも
イオン注入層のアニールを行うことができる効果を有す
るものである。
As described above, according to the present invention, the electromagnetic wave energy emitted from the light source is efficiently absorbed by the resistor thin film on the selective ion implantation layer and converted into heat, so even if the electromagnetic wave energy emitted from the light source is small, it can be selectively absorbed. can be annealed. Furthermore, the electromagnetic wave energy emitted from the light source is efficiently absorbed by the resistor thin film on the selective ion implantation layer and converted into heat, while the electromagnetic wave energy is transferred to the gate metal etc.
It is possible to reflect the light and return it to the light trap before it reaches the host above. This has the effect that the temperature rise in parts other than the selective ion implantation layer is small, and the ion implantation layer can be annealed even when a gate metal with no heat resistance is attached.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の詳細な説明する図、第3図、
第4図はそれぞれ本発明の実施例を示す半導体ウェハー
の断面図である。 図において、1,11は電磁波インピーダンス2゜の媒
質、2.12はtEa波インピーダンスZの媒質、3は
Ta薄lI;3.4は半導体基板、13は電イ1λ(波
インピーダンスZ、のJj%t 51.21 、31は
GaAs;S鈑、22 、32はn磨、23 、33は
n+層、26 、36はゲート金属、2・1゜34はT
affz 膜、25.35.30は誘1()体j虞であ
る。 !1S許出顕人 日本?、l気株式会社第1図 第2図 笠
Figures 1 and 2 are diagrams explaining the invention in detail, Figure 3,
FIG. 4 is a sectional view of a semiconductor wafer showing an embodiment of the present invention. In the figure, 1 and 11 are mediums with electromagnetic wave impedance 2°, 2.12 are mediums with tEa wave impedance Z, 3 is Ta thin lI; 3.4 is a semiconductor substrate, and 13 is Jj of electric wave impedance 1λ (wave impedance Z). %t 51.21, 31 is GaAs; S plate, 22, 32 is n-polished, 23, 33 is n+ layer, 26, 36 is gate metal, 2.1° 34 is T
affz film, 25.35.30 is an attractant. ! 1S Kento Akito Japan? , Lki Co., Ltd. Figure 1 Figure 2 Kasa

Claims (2)

【特許請求の範囲】[Claims] (1)半導体ウェハーの選択イオン注入層の上に、ただ
しZ、は抵抗体薄膜表面から下部を見込んだ電磁波イン
ピーダンス)の関係で表わされる比誘電率ε7、厚さ−
〈剋λ(ただしn==o、1,2.・・・、λは波長)
なる腹を設け、その上方より単色光源より発ぜられる電
磁波エネルギーを照射して選択イオン注入層のアニール
を行うことを特徴とする半導体ウェハーの選択アニール
方法〇
(1) Above the selective ion-implanted layer of the semiconductor wafer, where Z is the electromagnetic wave impedance looking down from the surface of the resistor thin film), the relative dielectric constant ε7, the thickness -
<剋λ (where n==o, 1, 2..., λ is the wavelength)
A selective annealing method for semiconductor wafers, which is characterized by providing an antinode and annealing the selective ion implantation layer by irradiating electromagnetic wave energy emitted from a monochromatic light source from above the antinode.
(2)半導体ウェハーの選択イオン注入層の上に抵だし
2.は抵抗体薄膜表面から下部を見込んだ電磁波インピ
ーダンス)の関係で表わされる比誘電率ε1.厚さ且λ
(ただしn=0 、1 、2 、・・・、λは波長)な
る第一の誘電体膜を設け、さらにその上に任意の誘電率
で厚さが可λ(ただしn==0 + 1 v 2 r・
・・)なる第二の誘電体膜を設け、選択イオン注入層以
外の部分には前記第二の誘電体膜のみを設け、その上方
より単色光源より発ぜられた電磁波エネルギーを照射し
て93択イオン注入層の7ニールを行うことを44p 
Qとする半導体ウェハーの選択アニール方法。
(2) resisting on the selective ion implantation layer of the semiconductor wafer; is the relative dielectric constant ε1. Thickness and λ
(where n = 0, 1, 2, ..., λ is the wavelength), and furthermore, a first dielectric film with an arbitrary dielectric constant and a thickness of λ (where n = 0 + 1) is provided. v 2 r・
) is provided, only the second dielectric film is provided in the area other than the selective ion implantation layer, and electromagnetic wave energy emitted from a monochromatic light source is irradiated from above. Performing 7 anneals of selective ion implantation layer 44p
Selective annealing method for semiconductor wafers with Q.
JP58121318A 1983-07-04 1983-07-04 Selective annealing method of semiconductor wafer Granted JPS6014444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121318A JPS6014444A (en) 1983-07-04 1983-07-04 Selective annealing method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121318A JPS6014444A (en) 1983-07-04 1983-07-04 Selective annealing method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPS6014444A true JPS6014444A (en) 1985-01-25
JPH0138368B2 JPH0138368B2 (en) 1989-08-14

Family

ID=14808274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121318A Granted JPS6014444A (en) 1983-07-04 1983-07-04 Selective annealing method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS6014444A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548926A (en) * 1978-10-02 1980-04-08 Hitachi Ltd Preparation of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548926A (en) * 1978-10-02 1980-04-08 Hitachi Ltd Preparation of semiconductor device

Also Published As

Publication number Publication date
JPH0138368B2 (en) 1989-08-14

Similar Documents

Publication Publication Date Title
EP0140965B1 (en) Method of making a nonvolatile semiconductor memory device
TWI311339B (en) A system and method for lithography in semiconductor manufacturing
JP2004235180A (en) Semiconductor device and its manufacturing method
JPS6129556B2 (en)
Lin et al. A versatile low-resistance ohmic contact process with ohmic recess and low-temperature annealing for GaN HEMTs
US8283702B2 (en) Process for manufacturing a large-scale integration MOS device and corresponding MOS device
US7145104B2 (en) Silicon layer for uniformizing temperature during photo-annealing
EP1100128A4 (en) Semiconductor device and method of manufacture thereof
US6780789B1 (en) Laser thermal oxidation to form ultra-thin gate oxide
US4500365A (en) Laser treating implanted semiconductor surface through photo-resist layer
EP1396881A4 (en) Conductive thin film for semiconductor device, semiconductor device, and methods for producing them
US6372584B1 (en) Method for making raised source/drain regions using laser
JPS6014444A (en) Selective annealing method of semiconductor wafer
US7666790B2 (en) Silicide gate field effect transistors and methods for fabrication thereof
US20070022623A1 (en) Laser surface drying
CN112701045B (en) Structure and manufacturing method of double-gate thin film transistor
KR950034516A (en) Semiconductor device and manufacturing method
JPS6014443A (en) Annealing method of semiconductor wafer
JPH0434823B2 (en)
Delfino et al. Laser activated flow of phosphosilicate glass in integrated circuit devices
US5550074A (en) Process for fabricating MOS transistors having anti-punchthrough implant regions formed by the use of a phase-shift mask
Hou et al. Source/Drain Activation for Flexible Poly-Si Nanoscale pFETs with a Laser-Buffer Layer by CO2 laser Annealing
JP2005085961A (en) Method for forming gate structure of field effect transistor
Yamamoto et al. Drive current enhancement in sub-50 nm CMOS by reduction of SDE resistance with laser thermal process
CN113764265A (en) Selective laser annealing method