JPS6014443A - Annealing method of semiconductor wafer - Google Patents

Annealing method of semiconductor wafer

Info

Publication number
JPS6014443A
JPS6014443A JP58121312A JP12131283A JPS6014443A JP S6014443 A JPS6014443 A JP S6014443A JP 58121312 A JP58121312 A JP 58121312A JP 12131283 A JP12131283 A JP 12131283A JP S6014443 A JPS6014443 A JP S6014443A
Authority
JP
Japan
Prior art keywords
film
impedance
ion implantation
lambda
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121312A
Other languages
Japanese (ja)
Other versions
JPH0340937B2 (en
Inventor
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58121312A priority Critical patent/JPS6014443A/en
Publication of JPS6014443A publication Critical patent/JPS6014443A/en
Publication of JPH0340937B2 publication Critical patent/JPH0340937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE:To activate a selective ion implantation layer as a metal having no heat resistance such as Al is left as it adheres by forming a film having specific relative permittivity and thickness on the ion implantation layer and annealing the film. CONSTITUTION:A film, relative permittivity thereof is 120pi/Zl and thickness thereof is lambda/4, is formed on the surface of a GaAs substrate 11. When planar electromagnetic waves 16 are projected, the energy of electromagnetic waves is transmitted efficiently over the lower section of the film 14, and an n<+> region 13 is heated and activated. Since the impedance of a section on which the film 14 is not attached is extremely low, impedance mismatching between said section and 120piOMEGA spatial impedance is large, the greater part of incident energy are reflected, and the temperatures of a gate metal 15 and the substrate surface 18 slightly rise. Zl represents the electromagnetic wave impedance of a semiconductor to which ions are implanted selectively and lambda a wavelength. The film 14 is effective when its relative permittivity epsilonr is kept within a range of the formula, and thickness may also be effective when it satisfies the formula of (2n+1)lambda/ 4(n=0,1...) without being limited to lambda/4.

Description

【発明の詳細な説明】 本発明は半導体ウェハーのアニール方法に13”コする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a 13" method of annealing semiconductor wafers.

近年G a A s等の化合物半導体を用いたディスク
IJ −) FET 、ディジタル集積回路、アナログ
集積回路の研究開発が活発に行なわれている。この揚台
、アクティブ素子として通常用いられているショットキ
ー障壁ゲート型電界効果トランジスタ(RlEESFE
T )が有するゲート・ソース間寄生抵抗およびグー)
−ドレイン寄生抵抗を低減することが研究の重要な課題
の一つである。この寄生抵抗を低減するだめのアプロー
チとしていくつかの方法があるが、一般には製造プロセ
スが比較的容易な、耐熱性ゲート金ス・1をマスクとし
てn”Fv、1をセルファラインでイオン注入する方法
が広く用いられている。この方法ではn+層をイオン注
入した後にゲート金属を付けたままで800℃前後の高
温でア二一ルを行い、イオン注入層の活性化を行う必丑
がちる。したがって、ゲート全屈には耐熱性が要求され
1.TxW + TxW シリサイド、 WAd 、 
W等(7)耐?A性金属がゲート金属として採用されて
いる。しかしながら、これらの金属の耐FA fJ=は
必ずしも十分でないという問題があった。さらに、これ
らのいわゆる耐熱性金属は、ゲート金属として広く用い
られているAlに比べて(Alには耐熱性はない)、抵
抗が大きく、信頼性も劣るという問題があった。
In recent years, research and development has been actively conducted on disk IJ-FETs, digital integrated circuits, and analog integrated circuits using compound semiconductors such as GaAs. This platform is connected to a Schottky barrier gate field effect transistor (RlEESFE), which is normally used as an active element.
The gate-source parasitic resistance and goo possessed by T)
-Reducing drain parasitic resistance is one of the important research topics. There are several approaches to reduce this parasitic resistance, but in general, the manufacturing process is relatively easy, and n"Fv, 1 is ion-implanted using a heat-resistant gate gold film as a mask using a self-alignment line. This method is widely used. In this method, after ion-implanting the n+ layer, it is necessary to perform annealing at a high temperature of around 800° C. with the gate metal attached to activate the ion-implanted layer. Therefore, heat resistance is required for full gate bending, and 1.TxW + TxW silicide, WAd,
W etc. (7) Endurance? A metal is used as the gate metal. However, there is a problem in that the FA resistance fJ= of these metals is not necessarily sufficient. Furthermore, these so-called heat-resistant metals have a problem in that they have higher resistance and lower reliability than Al, which is widely used as a gate metal (Al has no heat resistance).

本発明の目的は前記問題を解決し、Aiのよりに1Ii
1熱性のない金属を付けたままでもイオン注入層の活性
化を図ることができる半導体ウェハーのアニール方法を
提供することにある。
The purpose of the present invention is to solve the above problems and to improve 1Ii by Ai.
1. An object of the present invention is to provide a method for annealing a semiconductor wafer, which can activate an ion-implanted layer even when a non-thermal metal is attached.

すなわち、本発明は、単色光を用いた選択イオン注入層
のアニール時に、予じめ該j:択イオン注120π 六層の上に1〈εrくτ(ただしzlは選択イオン注入
された半導体の電磁波インピーダンス)の関係で表わさ
れる比誘電率ε・厚さμ”Uλ。(ただしn=0 + 
112−・・、λ。は波長)なる膜が設けるξとを特も
;(とする半導体ウェハーのアニール方法および、単色
光を用いた)3択イオン注入層のアニール時に、ただし
z7は選択イオン注入された半導体の電磁波インピーダ
ンス)の13’l保で表わされる比誘電率ε1゜厚さく
2n”l ) 2. (ただしn=0 、1 、2 、
・・・、λ。は波長)なる第一の肪および前記第一の膜
の上に誘電率は任意で厚さが独2゜(n=o 、 i 
12 +−)なる第二の膜を設け、さらに選択イオン注
入層以外の部分には前記ts二の願のみを設けることを
特徴とする半導体ウェハーのアニール方法である。
That is, in the present invention, when annealing the selective ion implantation layer using monochromatic light, the j: selective ion injection 120 (electromagnetic wave impedance), relative permittivity ε and thickness μ”Uλ (where n=0 +
112-..., λ. (where z7 is the electromagnetic wave impedance of the semiconductor into which selective ions are implanted) ) 13'l constant ε1° thickness 2n"l) 2. (However, n=0, 1, 2,
..., λ. is the wavelength) and the first film has an arbitrary dielectric constant and a thickness of 2° (n=o, i
12 +-) is provided, and furthermore, only the above-mentioned ts2 film is provided in a portion other than the selective ion implantation layer.

以下本発明の実施例を図面を用いて詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図および第2図は本発明の詳細な説明するだめの図
である。第1図において、電磁波インピーダンスが各々
Z0+ Z + ZJであるような媒質1,2゜3が互
いに接して配列されている。媒質2の厚さは媒質1f!
8から入射する電磁波の波長の1/4になっている。−
力筒2図において、電磁波インピーダンスが各々2o、
2,2.であるような媒質6,7.8が互いに接して配
列されている。媒質2の厚さは入射波長の1/2になっ
ている。第1図において、媒質1および2の界面4から
F7; ll:j 2側を児込んブどインピーダンスZ
′は、 と表わせる。ただしl(・す媒質2の長さ、λは媒質2
中の波長である。(1)式から明らかなようにIJ==
となる。とこでもし Zo=Zl(3) すなわち 2=へ1(4) なる関係が成立するとき、いわゆるインピーダンス整合
が起こると、媒質1に入射したエネルギーは全て媒質3
伝送される。媒質2の比誘電率をε1、〕j〔空中の誘
電率をε。、媒質2の比透磁率をμm、真空中の透磁率
をμ。とすると、 となる。μm)大通″′8↑マ1でちる。(4)式にお
いてZoを真空中の電17”−FLi’−インピーダン
スとすると、であるから、(4) e (5) 、 (
G)式よりのときにインピーダンス整合が起こることが
分る。
1 and 2 are detailed illustrations of the present invention. In FIG. 1, media 1, 2.degree. 3, each having an electromagnetic wave impedance of Z0+Z+ZJ, are arranged in contact with each other. The thickness of medium 2 is medium 1f!
It is 1/4 of the wavelength of the electromagnetic wave incident from 8. −
In the power tube 2 diagram, the electromagnetic wave impedance is 2o,
2,2. The media 6, 7.8 are arranged in contact with each other. The thickness of the medium 2 is 1/2 of the incident wavelength. In Figure 1, the interface 4 to F7 between media 1 and 2;
′ can be expressed as . However, l(・S is the length of medium 2, λ is the length of medium 2
It is a medium wavelength. As is clear from equation (1), IJ==
becomes. If the relationship Zo=Zl(3), that is, 2=to1(4) holds, and so-called impedance matching occurs, all the energy incident on medium 1 will be transferred to medium 3.
transmitted. The relative permittivity of medium 2 is ε1,]j[the permittivity of air is ε. , the relative magnetic permeability of medium 2 is μm, and the magnetic permeability in vacuum is μ. Then, it becomes . μm) Ohdori'''8↑M1.In equation (4), if Zo is the electric 17''-FLi'-impedance in vacuum, then (4) e (5), (
It can be seen that impedance matching occurs when Equation G) is obtained.

9から磁質2側を見たインピーダンスZ”はZ’=Z、
(Fl) となる。この場合インピーダンス整合(徒起らず。
The impedance Z'' when looking at the magnetic material 2 side from 9 is Z'=Z,
(Fl) becomes. In this case, impedance matching (no fuss).

昇面9において反射係敬F をもって電磁波は光源側へ反射する、。Reflection on the ascending plane 9 F The electromagnetic waves are reflected towards the light source.

第3図は本発明の第1の実施例を示す図である。FIG. 3 is a diagram showing a first embodiment of the present invention.

図において、GaAs基板11はあらかじめイオン注入
により活性化されたn層12を有する。寸だGaA31
4が設けられ一〇いる。寸たG a A e基板11中
にはゲート金J’=315 kマスクとして膜14全通
して注入されたn十領域が存在する。GaAs基板11
表面には単色光による光源からの平面電磁波16が入射
17される。
In the figure, a GaAs substrate 11 has an n-layer 12 activated in advance by ion implantation. Sunda GaA31
There are 4 and 10. In the G a A e substrate 11 of small size, there is an n0 region in which gate gold J'=315 k is implanted throughout the film 14 as a mask. GaAs substrate 11
Planar electromagnetic waves 16 from a light source of monochromatic light are incident 17 on the surface.

膜14の下部には電磁波のエネルギーが効率よく伝送さ
れ、n+領領域加熱しn+領領域活性化する。一方、膜
14が付けられてない部分、すなわちゲート金属15お
よびGaAs基板表面18のインピーダンスは非常に低
いため、基板表面18と、空間インピーダンス120π
Ωとの間のインピーダンス不整合が大きく、入射エネル
ギーの大半は反射してしまい、ゲート金属15およびG
aAs基板表面18の温度は余り上昇しない。
The energy of electromagnetic waves is efficiently transmitted to the lower part of the film 14, heating the n+ region and activating the n+ region. On the other hand, since the impedance of the portion where the film 14 is not attached, that is, the gate metal 15 and the GaAs substrate surface 18 is very low, the substrate surface 18 and the spatial impedance 120π
Ω is large, most of the incident energy is reflected, and the gate metal 15 and G
The temperature of the aAs substrate surface 18 does not rise much.

第4図は本発明の第2の実施例を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

図において、GaAs基板21はあらかじめイオン注入
、活性化されたn層22を有する。またGaAs基−の
膜24が設けられている。またGaAs基板21中には
ゲート金属25をマスクとしてイオン注入された♂領域
が存在する。膜24およびゲート金属25全体を覆うよ
うに厚さλ/2の第二の膜29が付けられている。第2
図で説明したように、λ/2の厚さの辰を通して見込ん
だインピーダンスは、膜を辿さずに児込んだインピーダ
ンスと等しい。したがって、第一のJi’、!2ziが
付けられた部分はその上に第二の膜29があってもイン
ピーダンス整合条件は満足しているため、電磁波エネル
ギーは効率よ< n”I5に吸収27される。一方、第
一の715τ24が付けられてないゲート金属25およ
びGaAs表面30は第二の膜29のみで非常に低いイ
ンピーダンスであるが、これは第二の膜29を通して見
込んでもインピーダンスは非常に低い。このため、入射
される電磁波エネルギーの大半は第二の膜29の表面で
反射28されて光源側にもどるため、ゲート金属25の
部分の温度上昇は極めて小さいものとなる。
In the figure, a GaAs substrate 21 has an n-layer 22 that has been ion-implanted and activated in advance. A GaAs-based film 24 is also provided. Further, there is a male region in the GaAs substrate 21 into which ions are implanted using the gate metal 25 as a mask. A second film 29 having a thickness of λ/2 is attached to cover the entire film 24 and gate metal 25. Second
As explained in the figure, the impedance seen through the λ/2 thick dragon is equal to the impedance seen without tracing the membrane. Therefore, the first Ji',! Since the impedance matching condition is satisfied in the part where 2zi is attached even if there is a second film 29 thereon, the electromagnetic wave energy is absorbed 27 with an efficiency of <n''I5.On the other hand, the first 715τ24 The impedance of the gate metal 25 and the GaAs surface 30, which are not attached, is only the second film 29 and has a very low impedance, but even when viewed through the second film 29, the impedance is very low. Since most of the electromagnetic wave energy is reflected 28 on the surface of the second film 29 and returns to the light source side, the temperature rise in the gate metal 25 portion is extremely small.

なお、813図および第4図に示しだ実施例では、選択
イオン注入層の上にf」けられた膜14および24b0
これは(1)式からも明らかである。
In addition, in the embodiment shown in FIG. 813 and FIG.
This is also clear from equation (1).

以上のように本発明によれば、光源から発せられる電磁
波エネルギー7i7 ’XA択イオン注入層のみに効率
よく吸収さぜることかできるため、光源から発せられる
エネルギーは小さくて済むという利点がある。さらに本
発明によれば、光源から発せられる電磁波エネルギーを
選択イオン注入層のみに効率よく吸収さぜ、かつ選択イ
オン注入層以外の部分では、1a磁波エネルギーをゲー
ト金属等の半溝体ウェハー上の構成物に達する前に反射
して光源側にもどすことができ、このため】=択イオン
注入1・所以外の部分での69度上昇が小さく、耐熱性
のないゲート金属を負けたままでもイオン注入層のアニ
ールができる効果を有するものである。
As described above, according to the present invention, since the electromagnetic wave energy emitted from the light source can be efficiently absorbed only by the 7i7'XA selective ion implantation layer, there is an advantage that the energy emitted from the light source can be small. Further, according to the present invention, the electromagnetic wave energy emitted from the light source is efficiently absorbed only in the selective ion implantation layer, and the 1a magnetic wave energy is transferred to the semi-grooved wafer such as the gate metal in a portion other than the selective ion implantation layer. It can be reflected back to the light source before it reaches the component, and therefore] = Selective ion implantation 1. The 69 degree rise in other parts is small, and even if the gate metal, which is not heat resistant, is left exposed, the ions can be absorbed. This has the effect of annealing the injection layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第20は本発明の原l’jliを音、明す
るだめの1であり、第3図および第4図はそれぞれ本発
明の実施例を1説明する半4体ウェハーの1リテ面図で
ある。 1.6,7,3.8は各々電磁波インピーダンス2..
2゜Z、の媒質、11.21はQaAs基板、14,2
4,29はn層 電体膜、12.22はn層、13.2
3はn層、15.25はゲート金属、16および2Gは
単色光でちる。 特許出願人 日本電気株式会社
FIGS. 1 and 20 are illustrations of the principles of the invention, and FIGS. 3 and 4 are illustrations of a semi-quadruple wafer, respectively, illustrating an embodiment of the invention. It is a front view. 1.6, 7, and 3.8 are the electromagnetic wave impedances 2. ..
2°Z, medium, 11.21 is QaAs substrate, 14,2
4, 29 are n-layer electric films, 12.22 are n-layers, 13.2
3 is an n layer, 15.25 is a gate metal, and 16 and 2G are illuminated with monochromatic light. Patent applicant: NEC Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)半導体ウェハーの、’T7d択イオン注入届の上
に、半導体の電磁波インピーダンス)の関係で表わさ・
・・、λは波長)なる膜を設け、その上方より単色光源
から発せられる電磁波エネルギーを照射して選択イオン
注入層のアニール7行うこと′fFc特徴とする半導体
ウェハーのアニール方法。
(1) On the 'T7d selective ion implantation report for semiconductor wafers, it is expressed in terms of the electromagnetic wave impedance of the semiconductor).
.
(2)半導体ウェハーの選択イオン注入層の上に1導体
の電磁波インピーダンス)の関係で表わされλは波長)
なる第一の膜および前記第一の膜の上に任意の誘電率で
厚さが当許λ(n−0+ 1 + 2’・・)なる第二
の膜を設け、さらに選択イオン注入層以外の部分に前記
第二の膜のみを設け、その上方よシ単色光源から発せら
れた電磁エネルギーを照射して選択イオン注入房のアニ
ールを行うことを特Cλとする半に3体ウェハーのアニ
ール方法。
(2) The electromagnetic wave impedance of one conductor on the selective ion implantation layer of the semiconductor wafer is expressed by the relationship (λ is the wavelength).
A second film having an arbitrary dielectric constant and a thickness of λ(n-0+1+2'...) is provided on the first film, and a second film other than the selective ion implantation layer is provided. A method of annealing half three-body wafers in which the selective ion implantation chamber is annealed by providing only the second film in the area above and irradiating the upper part with electromagnetic energy emitted from a monochromatic light source. .
JP58121312A 1983-07-04 1983-07-04 Annealing method of semiconductor wafer Granted JPS6014443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121312A JPS6014443A (en) 1983-07-04 1983-07-04 Annealing method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121312A JPS6014443A (en) 1983-07-04 1983-07-04 Annealing method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPS6014443A true JPS6014443A (en) 1985-01-25
JPH0340937B2 JPH0340937B2 (en) 1991-06-20

Family

ID=14808121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121312A Granted JPS6014443A (en) 1983-07-04 1983-07-04 Annealing method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS6014443A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548926A (en) * 1978-10-02 1980-04-08 Hitachi Ltd Preparation of semiconductor device
JPS5779624A (en) * 1980-11-05 1982-05-18 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548926A (en) * 1978-10-02 1980-04-08 Hitachi Ltd Preparation of semiconductor device
JPS5779624A (en) * 1980-11-05 1982-05-18 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0340937B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
US7507667B2 (en) Selective heating using flash anneal
US6645786B2 (en) Integrated circuit device having a built-in thermoelectric cooling mechanism
JPS6259896B2 (en)
WO2005083341A1 (en) Silicon layer for uniformizing temperature during photo-annealing
TW200913064A (en) Method for curing a dielectric film
CN111373508B (en) Method and assembly for ohmic contacts in thinned silicon carbide devices
US4500365A (en) Laser treating implanted semiconductor surface through photo-resist layer
US20040023504A1 (en) Hot plate annealing
US4284659A (en) Insulation layer reflow
JPS58170037A (en) Method and device for cutting wirings
JPS6014443A (en) Annealing method of semiconductor wafer
JPH0511655B2 (en)
US6862404B1 (en) Focused photon energy heating chamber
US20070022623A1 (en) Laser surface drying
JPS6014444A (en) Selective annealing method of semiconductor wafer
US20060009018A1 (en) Method for manufacturing semiconductor device
JPH0434823B2 (en)
JP2798792B2 (en) Resist processing equipment
JP2007508705A (en) Semiconductor device and method of manufacturing this type of semiconductor device
JP2005085961A (en) Method for forming gate structure of field effect transistor
US4496608A (en) P-Glass reflow technique
JP3269982B2 (en) Semiconductor device
JP2643406B2 (en) Method of forming oxide film and oxidation device
CN118053829A (en) Wafer and manufacturing method thereof, packaging structure and packaging method
JPH01287964A (en) Manufacture of semiconductor device