JPS60144159A - Controlling method of induction motor - Google Patents

Controlling method of induction motor

Info

Publication number
JPS60144159A
JPS60144159A JP58247277A JP24727783A JPS60144159A JP S60144159 A JPS60144159 A JP S60144159A JP 58247277 A JP58247277 A JP 58247277A JP 24727783 A JP24727783 A JP 24727783A JP S60144159 A JPS60144159 A JP S60144159A
Authority
JP
Japan
Prior art keywords
command
signal
current
primary frequency
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58247277A
Other languages
Japanese (ja)
Inventor
Koji Miki
孝司 三木
Toshiaki Okuyama
俊昭 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58247277A priority Critical patent/JPS60144159A/en
Publication of JPS60144159A publication Critical patent/JPS60144159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To maintain the response of control systems irrespective of the primary frequency by associating a compensating element relating to the primary frequency and current control system. CONSTITUTION:Components eq of phase difference of 90 deg. to and components ed of the same phase as an exciting current phase reference signal are respectively detected by voltage detectors 19, 20. A d-axis voltage signal ed is compensating for the gain corresponding to the primary frequency command by a gain compensator 8, thereby obtaining an equivalent signal to the magnetic flux phiq of the q-axis component. The primary frequency is controlled by this signal. On the other hand, the component eq is subtracted by an adder 5 from the q-axis voltage command. This deviation can detect a signal equivalent to the deviation between the command of the magnetic flux of the d-axis component and the detected value by compensating the gain corresponding to the primary frequency command by the gain compensator 6. The torque current it* is altered in response to the deviation to control the rotating speed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の一次電流をトルク電流と励磁電流
に分けてそれぞれ独立に制御するのを速度検出器を用い
ることなく行なう誘導電動機の制御方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a method for controlling an induction motor in which the primary current of the induction motor is divided into a torque current and an excitation current and each is controlled independently without using a speed detector. Regarding.

〔発明の背景〕[Background of the invention]

IPEC(((1terHatiO(Ial powe
r ElectroHicsCoHfere4ce )
の論文集(1983,Vot 1 pp720〜731
)に、誘導機の二次抵抗等の誤差。
IPEC(((1terHatiO(Ial powe
r ElectroHicsCoHfere4ce)
Collection of papers (1983, Vot 1 pp720-731
), errors in the secondary resistance of the induction machine, etc.

速度検出器の検出誤差等のベクトル制御における補償法
が述べられている。この原理によると、誘導機の一次電
流指令のうち励磁電流を指令する成分と同位相成分IA
dと90度位相成分e、に応じて一次電流と一次周波を
制御することにより、ベクトル制御の各種演算誤差が補
償可能であシ、演算誤差の補償itを100俤とするこ
とによシ、速度検出器を必要としないで、ベクトル制御
できることが示されている。しかし、速度検出器をもた
ずにベクトル制御するには、e、、e、に応じて一次電
流と一次周波数を制御する必要があるが、−次周波数が
変化するとed、eqが変化するため、−次電流及び−
次周波数の制御系の応答が変化し、高精度な誘導機の速
度制御ができなくなる。
A method of compensating for vector control such as detection errors of speed detectors is described. According to this principle, out of the primary current command of the induction machine, the component that commands the excitation current and the same phase component IA
By controlling the primary current and primary frequency according to d and the 90-degree phase component e, various calculation errors in vector control can be compensated, and by setting the calculation error compensation it to 100 yen, It has been shown that vector control is possible without the need for a speed detector. However, in order to perform vector control without a speed detector, it is necessary to control the primary current and primary frequency according to e, , e, but when the -order frequency changes, ed and eq change. , - next current and -
The response of the control system for the next frequency changes, making it impossible to control the speed of the induction machine with high precision.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、速度検出器を用いることなく、高速、
高応答な速度制御が行なえる制御方法を提供するにある
The object of the present invention is to provide high speed,
The object of the present invention is to provide a control method that can perform high-response speed control.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、ベクトル制御の条件が、励磁電流指令
と同方向の二次磁束成分φ2dが一定で、かつ、90°
位相の成分φ2.が零であり、それぞれの磁束成分φ2
.及びφ2dと一次周波数の積がea及びe、であるこ
とに着目し、−次周波数に関係する補償要素を一次周波
数及び−次電流の制御系に組込むことにより一次周波数
(誘導電動機の回転数)にかからず、それぞれの制御系
の応答を一定とし一次電流及び−次周波数を制御する方
法を提供するにある。
The feature of the present invention is that the vector control conditions are such that the secondary magnetic flux component φ2d in the same direction as the excitation current command is constant and 90°
Phase component φ2. is zero, and each magnetic flux component φ2
.. By focusing on the fact that the product of φ2d and the primary frequency is ea and e, and incorporating the compensation element related to the -order frequency into the control system of the primary frequency and -order current, the primary frequency (rotational speed of the induction motor) Regardless, the present invention provides a method for controlling the primary current and the -order frequency while keeping the response of each control system constant.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例のPWMインバータ装置の回
路構成図を示す。1はGTO(GateTurn−of
f Thyristor )及びダイオードなどで構成
されるPWMインバータ、2は誘導電動機、3は速度指
令回路、4は速度変化率制限器、5は速度変化率制限器
4と制御系で決める励磁電流成分(励磁電流位相基準信
号)に対して90度の位相差成分を検出する基本波電圧
検出器19の出力との偏差を検出する加算器、6は加算
器5の出力を一次周波数指令に応じて変化させる利得補
償器、7は、利得補償器6の出力ψ幅器である。8は制
御系で決める励磁電流成分(励磁電流位相基準信号)に
対して、同位相の成分を検出する基本波電圧検出器20
の出力を一次周波数指令に応じて変化させる利得補償器
、9は利得補償器8の出力を増幅する増幅器、10は速
度変化率レート制限器の出力と増幅器9の出力を加算し
、−次周波数指令を出力する加算器である。11は加算
器10の出力に比例した周波数をもつ二相正弦波信号を
出力する発振器、12は電動機2の励磁電流を指令する
励磁電流指令回路、13は励磁電流指令i、、* 及び
増幅器7からのトルク電流指令i−と発振器10の出力
信号を乗算し、二相の電流指令パターン信号i耀* 及
びiρ* を出力する座標変換器、14は信号ia*及
びip*に基づいて三相の電流指令パターン信号i、+
k 〜tv” k出力する相数変換器、15はインバー
タ1の出力電流の瞬時値を検出する電流検出器、16は
電流指令パターン信号i1.l* と電流検出信号を比
較し、インバータ1のスイッチング素子をオン、オフ制
御するためのPWM伯号を出力する比較器、17はスイ
ッチング素子にゲート信号を与えるためのゲート回路で
ある。また、18は電動機の端子電圧を検出するための
電圧検出器である。なお、電流検出器15、比較器16
、ゲート回路17、電圧検出器18、インバータ1は、
U相分のみを示し、■相及びW相分については図示を省
略する。
FIG. 1 shows a circuit configuration diagram of a PWM inverter device according to an embodiment of the present invention. 1 is GTO (Gate Turn-of
2 is an induction motor, 3 is a speed command circuit, 4 is a speed change rate limiter, 5 is an excitation current component (excitation current component) determined by the speed change rate limiter 4 and the control system. An adder 6 detects the deviation from the output of the fundamental wave voltage detector 19 which detects a phase difference component of 90 degrees with respect to the current phase reference signal), and 6 changes the output of the adder 5 according to the primary frequency command. A gain compensator 7 is an output ψ width amplifier of the gain compensator 6. Reference numeral 8 denotes a fundamental wave voltage detector 20 that detects a component in the same phase as the excitation current component (excitation current phase reference signal) determined by the control system.
9 is an amplifier that amplifies the output of the gain compensator 8 according to the primary frequency command. 10 is an amplifier that adds the output of the speed change rate limiter and the output of the amplifier 9, and calculates the −th order frequency. This is an adder that outputs a command. 11 is an oscillator that outputs a two-phase sine wave signal with a frequency proportional to the output of the adder 10, 12 is an excitation current command circuit that commands the excitation current of the motor 2, 13 is an excitation current command i, *, and an amplifier 7 A coordinate converter 14 multiplies the torque current command i- from the oscillator 10 by the output signal of the oscillator 10, and outputs two-phase current command pattern signals i* and iρ*. Current command pattern signal i, +
15 is a current detector that detects the instantaneous value of the output current of inverter 1; 16 is a current detector that compares the current command pattern signal i1.l* with the current detection signal; A comparator outputs a PWM signal for controlling the switching element on and off, 17 is a gate circuit for providing a gate signal to the switching element, and 18 is a voltage detector for detecting the terminal voltage of the motor. In addition, the current detector 15 and the comparator 16
, the gate circuit 17, the voltage detector 18, and the inverter 1 are as follows:
Only the U-phase component is shown, and illustration of the ■-phase and W-phase components is omitted.

次に動作を説明する。Next, the operation will be explained.

電圧検出器19及び20において、次式に従い電動機電
圧の二軸成分、すなわち、励磁電流位相基準信号に対し
て90度位相差の成分eq及び同位相の成分eaを各々
検出する。
The voltage detectors 19 and 20 detect biaxial components of the motor voltage, that is, a component eq with a 90 degree phase difference and a component ea with the same phase as the excitation current phase reference signal, according to the following equations.

ここに、V、=V、 e6 :検出器20の出力信号 e、:検出器19の出力信号 V、〜vW:電動機各相の電圧 この演算は、例えば、乗算器及び加算器を用いて容易に
実現できる。
Here, V, = V, e6: Output signal of the detector 20 e,: Output signal of the detector 19 V, ~vW: Voltage of each phase of the motor This calculation can be easily performed using, for example, a multiplier and an adder. can be realized.

電圧検出信号e4.e、は電動機2のもれインピーダン
ス降下の影響を無視すれば磁束成分φd。
Voltage detection signal e4. e is the magnetic flux component φd if the influence of leakage impedance drop of the motor 2 is ignored.

φ、と次の関係がある。There is the following relationship with φ.

従って、d軸電圧信号e、を利得補償器8にょシー次周
波数指令に対応させて利得を補償することによシ、q軸
成分の磁束φ、に等価な信号を得ることができ、この信
号によシー次周波数が制御される。
Therefore, by compensating the gain of the d-axis voltage signal e in accordance with the frequency command of the gain compensator 8, a signal equivalent to the magnetic flux φ of the q-axis component can be obtained, and this signal The next frequency is controlled accordingly.

一方、q軸電圧成分e、は、(2)式に示すようにd軸
磁束成分φd及び角周波数ω!に比例する。
On the other hand, the q-axis voltage component e, is the d-axis magnetic flux component φd and the angular frequency ω!, as shown in equation (2). is proportional to.

従つそ、加算器5の出力は・q軸の電圧指令と検出電圧
の偏差になるが、利得補償器6によp−次周波数指令に
対応させて利得を補償することにょシ、d軸成分の磁束
の指令と検出値の偏差に等価な信号を検出することがで
きる。この偏差に応じてトルク電流it* を変えるこ
とにより、回転速度を指令値に応じて制御することがで
きる。
Therefore, the output of the adder 5 is the deviation between the voltage command on the q-axis and the detected voltage, but the gain is compensated by the gain compensator 6 in accordance with the p-th frequency command, A signal equivalent to the deviation between the component magnetic flux command and the detected value can be detected. By changing the torque current it* according to this deviation, the rotational speed can be controlled according to the command value.

従って、本発明によると、−欠周波数にかかわらず一定
の周波数制御応答及び速度制御応答が得られ、高速応答
の速度制御が行なえる。
Therefore, according to the present invention, a constant frequency control response and constant speed control response can be obtained regardless of the missing frequency, and speed control with high speed response can be performed.

第2図は本発明の他の実施例を示す。第2図では速度変
化率制限器4の出力がゆつくシ変化する場合、−欠周波
数指令と速度変化率制限器4の出力がほぼ等しいとみな
すことができるため、利得補償器8の出力を速度変化率
制限器4の出力で補償する。
FIG. 2 shows another embodiment of the invention. In FIG. 2, when the output of the speed change rate limiter 4 changes slowly, the -missing frequency command and the output of the speed change rate limiter 4 can be considered to be approximately equal, so the output of the gain compensator 8 Compensation is performed using the output of the speed change rate limiter 4.

以上の実施例では、PWMインバータへの適用例につい
て述べたが、他の種類のインバータであっても、その出
力周波数及び出力電圧(電流)が制御可能なものであれ
ば本発明を適用することができる。
In the above embodiments, an example of application to a PWM inverter was described, but the present invention can be applied to other types of inverters as long as their output frequency and output voltage (current) can be controlled. I can do it.

マタ、マイクロプロセッサなど用いてディジタル制御を
行なうものであっても、不発明を採用できるのは勿論で
ある。
Of course, even if digital control is performed using a computer, microprocessor, etc., the invention can be adopted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば一次周波数にかかわらず一定の速度制御
応答を得ることがで、き、速度検出器を用いることなく
トルク電流と励磁電流を独立に制御するベクトル制御を
実現できる。
According to the present invention, a constant speed control response can be obtained regardless of the primary frequency, and vector control that independently controls the torque current and excitation current can be realized without using a speed detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の一実施例の系統図、第2図は本発明の
他の実施例の系統図である。
FIG. 1 is a system diagram of one embodiment of the invention, and FIG. 2 is a system diagram of another embodiment of the invention.

Claims (1)

【特許請求の範囲】 1、誘導電動機の一次電流の大きさと周波数を制御して
トルク電流と励磁電流を独立に制御する誘導電動機の制
御方法において、 前記誘導電動機の電圧を検出する制御系で決定する励磁
電流成分と同位相の成分を検出する第一の手法と、90
度位相差成分を検出する第2の手法と、前記検出信号と
速度指令の偏差を一次周波数指令に応じて変化させ、前
記トルク電流指令と一次周波数指令を制御することを%
徴とする誘導電動機の制御方法。
[Claims] 1. A method for controlling an induction motor in which torque current and excitation current are independently controlled by controlling the magnitude and frequency of the primary current of the induction motor, which is determined by a control system that detects the voltage of the induction motor. A first method of detecting a component in phase with the excitation current component, and 90
A second method of detecting a degree phase difference component, and controlling the torque current command and the primary frequency command by changing the deviation between the detection signal and the speed command according to the primary frequency command.
A method of controlling an induction motor based on the characteristics.
JP58247277A 1983-12-30 1983-12-30 Controlling method of induction motor Pending JPS60144159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247277A JPS60144159A (en) 1983-12-30 1983-12-30 Controlling method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247277A JPS60144159A (en) 1983-12-30 1983-12-30 Controlling method of induction motor

Publications (1)

Publication Number Publication Date
JPS60144159A true JPS60144159A (en) 1985-07-30

Family

ID=17161066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247277A Pending JPS60144159A (en) 1983-12-30 1983-12-30 Controlling method of induction motor

Country Status (1)

Country Link
JP (1) JPS60144159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350832A (en) * 2019-07-03 2019-10-18 东南大学 Memory electrical machine stator flux observer and method with error compensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350832A (en) * 2019-07-03 2019-10-18 东南大学 Memory electrical machine stator flux observer and method with error compensation

Similar Documents

Publication Publication Date Title
KR920000730B1 (en) Control method for induction motors
US6005365A (en) Motor control apparatus
US4503375A (en) Method for controlling induction motor and apparatus therefor
JP2004112898A (en) Control method and device for motor in position sensorless
KR940019052A (en) Vector control system for induction motor
EP1255348A1 (en) Method of controlling induction motor
JPH0923700A (en) Servo motor current control
JPS60144159A (en) Controlling method of induction motor
JPH11275900A (en) Controller of synchronous motor
JPS59156191A (en) Controlling method of induction motor
JP2000245163A (en) Voltage mode three-phase inverter
JP2008220069A (en) Control device of motor
JP2897373B2 (en) DC brushless motor controller
JP2654547B2 (en) Induction motor control device
JPH01136596A (en) Vector controller for induction motor
JPS63228992A (en) Inverter controller
JPH0561876B2 (en)
JPS6192186A (en) Controller of induction motor
JPH03135389A (en) Method and device for controlling voltage type inverter
JPH0789760B2 (en) Vector control method of induction motor
JPH0254039B2 (en)
JPH05146191A (en) Controller for synchronous motor
JPH11206200A (en) Induction motor control equipment
JP3227824B2 (en) Output voltage control method of voltage source inverter
JPH04127893A (en) Controller for synchronous motor