JPS6014407B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6014407B2
JPS6014407B2 JP8336578A JP8336578A JPS6014407B2 JP S6014407 B2 JPS6014407 B2 JP S6014407B2 JP 8336578 A JP8336578 A JP 8336578A JP 8336578 A JP8336578 A JP 8336578A JP S6014407 B2 JPS6014407 B2 JP S6014407B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
evaporation
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8336578A
Other languages
Japanese (ja)
Other versions
JPS5512517A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8336578A priority Critical patent/JPS6014407B2/en
Publication of JPS5512517A publication Critical patent/JPS5512517A/en
Publication of JPS6014407B2 publication Critical patent/JPS6014407B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は、金属薄膜形磁気記録媒体の製造方法の改良に
関し、磁気録音、録画に用いられる長尺の磁気テープと
してすぐれた特性を有する磁気記録媒体を得んとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the manufacturing method of a metal thin film type magnetic recording medium, and an object thereof is to obtain a magnetic recording medium having excellent characteristics as a long magnetic tape used for magnetic recording. It is something.

従来、y −Fe203、Cr02等の強磁性粉末を結
合剤と共に混合、塗布、硬化させたいわゆる塗布形テー
プにおいては、結合剤中に強磁性粉末を分散させるとい
う原理的に結合剤を除けないことから記録密度の向上に
限界が見えてきている。
Conventionally, in so-called coated tapes in which ferromagnetic powder such as y-Fe203, Cr02, etc. is mixed with a binder, applied, and cured, the binder cannot be removed due to the principle that the ferromagnetic powder is dispersed in the binder. Since then, there has been a limit to the improvement of recording density.

このことは磁性粉末として合金微粒子を用いた改良品に
ついてもいえることで、本質的に結合剤を必要としない
強磁性金属薄膜形の優位性が注目されてきた。強磁性金
属薄膜を長尺の基材上に連続して形成する方法には、湿
式メッキ法、真空蒸着法、スパッタリング法、イオンプ
レーティング法等があり、各方面で試作検討が進められ
ているのが実状であり、いまだ充分満足しうるものを得
るには至っていない。
This also applies to improved products using fine alloy particles as magnetic powder, and the superiority of ferromagnetic metal thin film types, which essentially do not require a binder, has been attracting attention. Methods for continuously forming ferromagnetic metal thin films on long substrates include wet plating, vacuum evaporation, sputtering, and ion plating, and trials are currently underway in various fields. The reality is that we have not yet achieved something that is fully satisfactory.

本発明は、真空蒸着法、イオンプレーテイング法、スパ
ッタリング法のいずれかの方法により、高分子成形物ま
たは非磁性金属材料からなる基材の上に非磁性層と強磁
性層を交互に積層し、所要の磁気特性を得んとするもの
である。
The present invention involves laminating nonmagnetic layers and ferromagnetic layers alternately on a base material made of a polymer molded material or a nonmagnetic metal material by any one of the vacuum evaporation method, ion plating method, and sputtering method. , in order to obtain the required magnetic properties.

湿式メッキ法で上述の多層構造をうる場合に、下地材料
として銅がそのえられる平滑性により、低ノイズ化の特
長が注目されていた。
When the above-mentioned multilayer structure is obtained by wet plating, the smoothness of copper as a base material has attracted attention for its ability to reduce noise.

しかし、湿式メッキ法で得られる銅の薄膜は基材との付
着性に難点があった。この銅を真空蒸着法等で基材上に
薄膜化した場合、付着強度において改善が認められるが
、従来の蒸着法、スパッタリング法、イオンプレーテイ
ング法では高密度記録に必要不可欠な保磁力の大きさで
満足するものが得られなかった。
However, the copper thin film obtained by wet plating has a problem in adhesion to the substrate. When this copper is made into a thin film on a substrate using vacuum evaporation, etc., an improvement in adhesion strength is observed, but conventional evaporation, sputtering, and ion plating methods require a large coercive force, which is essential for high-density recording. I couldn't find anything that satisfied me.

本発明は、この点に鑑み、高保磁力を達成すると共に低
ノイズの磁気テープを得るための真空蒸着法、スパッタ
リング法、イオンプレーティング法の改良検討を基礎に
なされたもので、代表的な磁気記録媒体の断面構造例を
第1図に、また本発明を実施するための装置の一例を第
2図に示し、以下実施例にそって説明する。
In view of this point, the present invention is based on an investigation into improvements to the vacuum evaporation method, sputtering method, and ion plating method in order to achieve high coercive force and obtain a low-noise magnetic tape. An example of the cross-sectional structure of a recording medium is shown in FIG. 1, and an example of an apparatus for carrying out the present invention is shown in FIG. 2, and will be described below along with examples.

高分子成形物または非磁性金属材料からなる基材1の上
に後述する銅を主材とする非磁性層2を配し、それを下
地層として強磁性層3を形成し、同様に非磁性層4、強
磁性層5を多層化し、最上層に保護層6を配して磁気記
録媒体を構成したものである。
A non-magnetic layer 2 mainly made of copper, which will be described later, is placed on a base material 1 made of a polymer molded product or a non-magnetic metal material, and a ferromagnetic layer 3 is formed using this as an underlayer. A magnetic recording medium is constructed by forming a multilayer layer 4 and a ferromagnetic layer 5, and disposing a protective layer 6 on the top layer.

勿論この構成にこだわるものでないことは、本発明の目
的から明らかであり、説明の便宜上、第1図の構成を例
にあげて説明することとする。
Of course, it is clear from the purpose of the present invention that this configuration is not critical, and for convenience of explanation, the configuration shown in FIG. 1 will be described as an example.

第2図は、第1図の構成をうるための装贋の一例であり
、下地層(非磁性層)の形成にイオンプレーティング法
、強磁性層の形成に真空蒸着法を適用する場合を示した
が、他のスパッタリング法を含め、これらの組み合わせ
は自由であり、本発明を限定するものではない。なお、
保護層6の形成は真空蒸着法に限るものではなく、高分
子材料の塗布であっても良いし、本発明を左右する重要
な要素ではないので詳細説明を省略する。真空槽7内は
真空排気系8により連続排気され、可変り−ク弁9の調
節で、適当な圧力に保持される。
Figure 2 shows an example of fabrication to obtain the configuration shown in Figure 1, in which the ion plating method is applied to form the underlayer (non-magnetic layer) and the vacuum evaporation method is applied to form the ferromagnetic layer. However, combinations of these methods, including other sputtering methods, are free and do not limit the present invention. In addition,
The formation of the protective layer 6 is not limited to the vacuum deposition method, but may also be formed by coating a polymeric material, and since it is not an important element that affects the present invention, detailed explanation will be omitted. The inside of the vacuum chamber 7 is continuously evacuated by a vacuum exhaust system 8, and is maintained at an appropriate pressure by adjusting a variable leak valve 9.

槽7内には冷却、加熱可能な円筒状のキャン10,11
と、蒸発源12,13,14が対向配設される。蒸発源
は抵抗加熱式を模式的に示したが、工業的には高周波譲
導加熱式または電子ビーム加熱式が優れている。12′
,13′,14′は蒸発源12,13,14の加熱源で
ある。
Inside the tank 7 are cylindrical cans 10 and 11 that can be cooled and heated.
The evaporation sources 12, 13, and 14 are arranged to face each other. Although a resistance heating type is schematically shown as the evaporation source, a high frequency conductive heating type or an electron beam heating type is industrially superior. 12'
, 13', 14' are heating sources for the evaporation sources 12, 13, 14.

蒸発源12,13は隣接して配置され、一方は銅の蒸発
源であり、もう一方はTi、Si、AI、W、Mo等の
酸素親和性の高い(または高温での酸化反応速度の早い
)材料の蒸発源である。必要に応じて、二元蒸発源によ
らず、蒸発材料を銅との合金で出発しても良いが、安定
に成膜するには、二元蒸着法の方が適している。キャン
10と蒸発源12,13の間に放電電極15を配し、イ
オンプレーティングを実施できるように構成される。放
電電極15は絶縁導入端子16を介して高周波電源17
に接続される。キャン10の前面には接地電位にあるメ
ッシュ電極18が配設されるが、これらの構成は一例で
、イオンプレーテイング技術分野で公知の他の構成のい
ずれを用いてもよいのは勿論である。
The evaporation sources 12 and 13 are arranged adjacent to each other, one is a copper evaporation source, and the other is a copper evaporation source with high oxygen affinity (or a fast oxidation reaction rate at high temperature) such as Ti, Si, AI, W, Mo, etc. ) is the source of evaporation of the material. If necessary, an alloy with copper may be used as the evaporation material instead of using a binary evaporation source, but a binary evaporation method is more suitable for stable film formation. A discharge electrode 15 is disposed between the can 10 and the evaporation sources 12 and 13, and is configured to perform ion plating. The discharge electrode 15 is connected to a high frequency power source 17 via an insulation introduction terminal 16.
connected to. A mesh electrode 18 at ground potential is disposed on the front surface of the can 10, but these configurations are merely examples, and it goes without saying that any other configuration known in the ion plating art may be used. .

高分子成形物等の基材1は、捲き軸19,20(回転方
向A,Bいずれでも回転する)とローフ系21,キャン
10,11等によって構成される搬送系により移動出来
るように配設される。22は防看板である。
The base material 1, such as a polymer molded product, is arranged so that it can be moved by a conveyance system consisting of winding shafts 19, 20 (rotating in either rotation direction A or B), a loaf system 21, cans 10, 11, etc. be done. 22 is a security signboard.

第1図の磁気記録媒体をうるには、A方向に基材1を移
動しながら、蒸発源12,13を作動させて非磁性層2
を形成し、続いて強磁性層3を蒸発源14を作動させて
形成する。そののち、B方向に移動し捲きあげたのち再
度A方向で蒸着すればよい。以下本発明の具体的実施例
について説明する。
To obtain the magnetic recording medium shown in FIG.
Then, the ferromagnetic layer 3 is formed by operating the evaporation source 14. Thereafter, the film may be moved in the B direction, rolled up, and then deposited again in the A direction. Specific examples of the present invention will be described below.

実施例 1o基村:ポリエチレンテレフタレートフィル
ム(5r厚)o基村移動速度:low′min〜30m
/minoイオンプレーテイング法による条件:酸素分
圧8×lo−5Ton高周波電力13.58 M比35
0W〜600Wo非磁性材料:Cu(99.99%)7
0%電子ビーム10KV、10KWTi(99.99%
)30%電子ビーム10KV、10KWo磁性材料:C
o(99.9%)90%電子ビーム10KV、1舷WN
i(99.9%)10%電子ビーム10KV、1舵W上
記条件にて得られた磁気記録媒体の磁気特性は、保磁力
520〜70のeであり、Cu単体の場合は300〜3
30だのものしか得られなかった。
Example 1 o Motomura: polyethylene terephthalate film (5R thickness) o Motomura moving speed: low'min ~ 30 m
/mino ion plating method conditions: oxygen partial pressure 8 x lo-5Ton high frequency power 13.58 M ratio 35
0W~600Wo Nonmagnetic material: Cu (99.99%) 7
0% electron beam 10KV, 10KWTi (99.99%
) 30% electron beam 10KV, 10KWo magnetic material: C
o (99.9%) 90% electron beam 10KV, 1 ship WN
i (99.9%) 10% electron beam 10KV, 1 rudder W The magnetic properties of the magnetic recording medium obtained under the above conditions are coercive force e of 520-70, and in the case of Cu alone, e of 300-3
I could only get something worth 30.

実施例 2o基材:N箔(1坪厚) o基材移動速度:15m/min〜20m/mjnoイ
オンプレーティング法による条件:酸素分圧lxlo‐
4Ton高周波電力:13.巡MHz500Wo非磁性
材料:Cu(99.99%)80%電子ビーム側V、1
巡WN(99.99%)20%電子ビーム10KV、1
2KWo磁性材料:Co(99.9%)90%電子ビー
ムloKV、18KWNi(99.9%)10%電子ビ
ーム10KV、1磯W上記条件にて得られた磁気記録媒
体の磁気特性は、保磁力500〜80のeで、Cu単体
の場合は280〜36K史であった。
Example 2o Base material: N foil (1 tsubo thickness) o Base material moving speed: 15 m/min ~ 20 m/mjno Conditions by ion plating method: Oxygen partial pressure lxlo-
4Ton high frequency power: 13. Circulating MHz 500Wo Non-magnetic material: Cu (99.99%) 80% electron beam side V, 1
Circular WN (99.99%) 20% electron beam 10KV, 1
2KWo magnetic material: Co (99.9%) 90% electron beam loKV, 18KWNi (99.9%) 10% electron beam 10KV, 1isoW The magnetic properties of the magnetic recording medium obtained under the above conditions are coercive force With an e of 500 to 80, the history of Cu alone was 280 to 36K.

この他基材として、チタン箔、ポリィミドフィルム、ポ
リエチレン2−6ナフタレートフイルムなと1を用い本
発明の効果を確認した。
In addition, titanium foil, polyimide film, and polyethylene 2-6 naphthalate film were used as base materials to confirm the effects of the present invention.

また非磁性材料の添加材料としては、Si、Mn、W、
Mo、Crについて確認した。ノイズ特性から銅の平滑
性を維持するために、添加剤の好ましい添加範囲は重量
%にして10%〜20%であったが、高保磁力をうる上
での効果は30%まで確認できた。また磁性層について
は、Co、Fe、Njの単体とこれらの合金、および非
磁性材料との合金についても調べたが、いずれについて
も本発明の効果は確認された。以上のように本発明の製
造方法によれば、磁性層の下地となる非磁性層の形成を
銅を主材とし酸素親和性の大きい材料より選ばれた添加
剤を同時に蒸気化して行うことにより、保磁力の高い磁
気記録媒体を得ることができたものである。
Additionally, additive materials for non-magnetic materials include Si, Mn, W,
Mo and Cr were confirmed. In order to maintain the smoothness of copper from the viewpoint of noise characteristics, the preferable addition range of the additive was 10% to 20% by weight, but the effect in obtaining high coercive force was confirmed up to 30%. Regarding the magnetic layer, we also investigated simple substances such as Co, Fe, and Nj, their alloys, and alloys with nonmagnetic materials, and the effects of the present invention were confirmed in all cases. As described above, according to the manufacturing method of the present invention, the non-magnetic layer serving as the base of the magnetic layer is formed by simultaneously vaporizing additives selected from materials that are mainly made of copper and have a high oxygen affinity. , it was possible to obtain a magnetic recording medium with high coercive force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法によって得られた磁気記録媒
体の一実施例の断面図、第2図は本発明の製造方法を実
施するための装置の一実施例の断面正面図である。 1・・…・基村、2,4・・・・・・非磁性層、3,5
・・・・・・磁性層、12,13,14・・・・・・蒸
発源。 第1図第2図
FIG. 1 is a sectional view of an embodiment of a magnetic recording medium obtained by the manufacturing method of the present invention, and FIG. 2 is a sectional front view of an embodiment of an apparatus for carrying out the manufacturing method of the invention. 1...Motomura, 2,4...Nonmagnetic layer, 3,5
...Magnetic layer, 12, 13, 14... Evaporation source. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 高分子成形物または非磁性金属材料を基材とし、酸
化性雰囲気で磁性材料の蒸気流を差し向けて磁性層を形
成する磁気記録媒体の製造方法にあって、下地となる非
磁性層の形成を銅を主材とし酸素親和性の大きい材料よ
り選ばれた添加剤を同時に蒸気化して行うことを特徴と
する磁気記録媒体の製造方法。
1. In a method of manufacturing a magnetic recording medium in which a magnetic layer is formed by directing a vapor flow of a magnetic material in an oxidizing atmosphere using a polymer molded product or a non-magnetic metal material as a base material, A method for manufacturing a magnetic recording medium, characterized in that the formation is carried out by simultaneously vaporizing additives selected from a material mainly made of copper and having a high affinity for oxygen.
JP8336578A 1978-07-07 1978-07-07 Method for manufacturing magnetic recording media Expired JPS6014407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8336578A JPS6014407B2 (en) 1978-07-07 1978-07-07 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8336578A JPS6014407B2 (en) 1978-07-07 1978-07-07 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5512517A JPS5512517A (en) 1980-01-29
JPS6014407B2 true JPS6014407B2 (en) 1985-04-13

Family

ID=13800391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8336578A Expired JPS6014407B2 (en) 1978-07-07 1978-07-07 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6014407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215729A (en) * 1982-06-10 1983-12-15 Hitachi Condenser Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPS5512517A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
JPH11250437A (en) Magnetic recording medium and magnetic recording and reproducing system
JPS6014407B2 (en) Method for manufacturing magnetic recording media
JPH044649B2 (en)
JPH0532807B2 (en)
US4546725A (en) Apparatus for manufacturing magnetic recording media
JPS6014408B2 (en) Method for manufacturing magnetic recording media
US4526131A (en) Magnetic recording medium manufacturing apparatus
JPS6048045B2 (en) magnetic recording medium
JPS5836411B2 (en) magnetic recording medium
JPS6043915B2 (en) Vacuum deposition method
JPH08129748A (en) Magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPH0341898B2 (en)
JPH04188432A (en) Manufacture of magnetic recording medium
JPS5968818A (en) Magnetic recording medium
JPS608305B2 (en) Vacuum deposition method
JPS61139919A (en) Magnetic recording medium
JPH09231544A (en) Magnetic recording medium
JPS608304B2 (en) vacuum evaporation method
JPH103639A (en) Magnetic recording medium
JPH09128751A (en) Production of magnetic recording medium
JPS60167122A (en) Production of thin metallic film type magnetic recording medium
JPH0341896B2 (en)
JPS60140542A (en) Production of magnetic recording medium
JPH0963033A (en) Magnetic recording medium