JPS60143769A - Particle size and second phase fraction measuring apparatus - Google Patents

Particle size and second phase fraction measuring apparatus

Info

Publication number
JPS60143769A
JPS60143769A JP58250301A JP25030183A JPS60143769A JP S60143769 A JPS60143769 A JP S60143769A JP 58250301 A JP58250301 A JP 58250301A JP 25030183 A JP25030183 A JP 25030183A JP S60143769 A JPS60143769 A JP S60143769A
Authority
JP
Japan
Prior art keywords
image
image information
particle size
grain boundary
phase fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58250301A
Other languages
Japanese (ja)
Other versions
JPH0380258B2 (en
Inventor
Makoto Imanaka
誠 今中
Osamu Furukimi
修 古君
Osamu Usui
臼井 修
Katsuyasu Aikawa
相川 勝保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
JFE Steel Corp
Original Assignee
NIREKO KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK, Kawasaki Steel Corp filed Critical NIREKO KK
Priority to JP58250301A priority Critical patent/JPS60143769A/en
Publication of JPS60143769A publication Critical patent/JPS60143769A/en
Publication of JPH0380258B2 publication Critical patent/JPH0380258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To enable the measurement of crystal particle size and the second phase fraction at a high accuracy with a better reproducibility by accentuating the gray tone of linear elements in an image obtained from a microscope in the measurement of ferrite particle size, austenite particle size and the second phase fraction. CONSTITUTION:After a nital etching process of metal, an optical image is taken on the surface of the sample with a camera 2 connected to a microscope 1 and is digitized withan A/D conversion section 3. Then, one picture is divided into numerous pixels with a linear element accentuation processing section 4 and the gray tone of each pixel is compared with the mean of neighbors thereof to accentuate linear elements. Then, the grain boundary portion and the second phase portion are extracted with a binary coding section 5. Then, small regions with linear images independent are eliminated as noise with a grain boundary information supplementary processing section 6 while lines yet to be closed are corrected by connection and finally, the results are displayed quantitatively with a particle size/second phase fraction measuring section 7. Thus, the removal of noise and others can be accomplished by accentuating the linear elements thereby enabling the measurement at a high accuracy in a short time with a better reproducibility making the metal texture free from effect of grinding flaws and rust.

Description

【発明の詳細な説明】 従来、フェライト粒径、オーステナイト粒径。[Detailed description of the invention] Conventional, ferrite grain size, austenite grain size.

第2相分率などを測定づるには、粒度番号が既知の標準
試料と対象金属組織とを比較する比較法が広く使用され
ていた。しかしながら上述した比較法においては、被測
定試料と標準試料との形状の相異や分布の相異などから
概略の測定はできるが精度よい測定は不可能であった。
To measure the second phase fraction, etc., a comparison method has been widely used in which a standard sample with a known grain size number is compared with the target metal structure. However, in the above-mentioned comparative method, rough measurements can be made due to differences in shape and distribution between the sample to be measured and the standard sample, but accurate measurements are not possible.

また、被測定試料の顕微鏡写真をとり、粒界を人為的に
トレースしたりプラニメータを利用したりして個々の粒
および第2相成分部分の面積を測定すれば正確な値がめ
られるが、これらの方法は多くの労力を要するねりには
得られる結果が少なく非能率的であった。
In addition, accurate values can be obtained by taking a micrograph of the sample to be measured and measuring the area of individual grains and second phase components by manually tracing the grain boundaries or using a planimeter. This method was inefficient as it yielded few results for kneading, which required a lot of labor.

第1図は従来の粒径および第2相分率を測定可能な自動
画像解析装置の構成を示す線図である。
FIG. 1 is a diagram showing the configuration of a conventional automatic image analysis device capable of measuring particle size and second phase fraction.

第1図にJ3いて、試料の顕微鏡写真または試料の顕微
鏡像をテレビカメラ等の面走査型画像入力装置を用いC
解析装置にとりこみ、そのまま二値化処理をした後、自
動的に粒径および第2相分率を測定している。しかしな
がら、上述した自動解析装置では、ナイタール腐食など
で試料の粒界を現出させる際に腐食が薄かった粒界や′
研摩1nなどを正しく判別することができず、測定精度
や信頼性の点で問題があった。これは、原画像をそのま
ま二値化している点に最大の原因があった。すなわち、
画像を解析装置へ入力する際、すでにかなりの粒界情報
が失われたりノイズが混入したりするので、そのまま画
像を二値化して解析しICのでは測定値に問題が残るた
めである。
In Figure 1, J3 is using a microscopic photograph of the sample or a microscopic image of the sample using a surface scanning image input device such as a television camera.
After the sample is loaded into an analyzer and subjected to binarization processing, the particle size and second phase fraction are automatically measured. However, when using the above-mentioned automatic analysis device to reveal the grain boundaries of a sample due to nital corrosion, it is difficult to
It was not possible to correctly distinguish polishing 1n, etc., and there was a problem in terms of measurement accuracy and reliability. The main reason for this is that the original image is binarized as is. That is,
This is because when inputting an image to an analysis device, a considerable amount of grain boundary information is already lost or noise is mixed in, so if the image is simply binarized and analyzed using IC, problems remain in the measured values.

本発明の目的は上述した不具合を解決し、線要素の強調
2粒界の連結などの画像処理を行うことにより、高い精
度と再現性をもって結晶の粒径および第2相分率を測定
可能な粒径および第2相分率の測定装置を提供しようと
するものである。
The purpose of the present invention is to solve the above-mentioned problems and make it possible to measure crystal grain size and second phase fraction with high accuracy and reproducibility by performing image processing such as highlighting line elements and connecting two grain boundaries. It is an object of the present invention to provide a device for measuring particle size and second phase fraction.

本発明の粒径および第2相分率の測定装置は、金属組織
を観察覆る顕微鏡と、この顕微鏡に接続され、金属組織
像をR像してアナログ画像情報を出ノjする撮像機と、
この撮像機からのアナログ画像情報を法制レベルのデジ
タル画像情報に変換づるアナログ/デジタル変換部と、
このアナ1」グ/デジタル変換部で変換されたデジタル
画像情報に線要素抽出フィルター処理を施すことにより
粒界部分を強調する画像処理部と、画像処理部から得ら
れた画像を予め設定されたしきい値と比較することによ
り金属組織画像中から第2相部分および粒界部分を抽出
する二値化処理部と、抽出された粒界部分を完全な状態
に補正した画像情報をめる演算処理部ど、演算処理部で
得られた画像情報中の粒界位置および第2相位置の座標
から粒径おにび第2相分率などを測定する定量処理部と
からなることを特徴とするものである。
The particle size and second phase fraction measuring device of the present invention includes a microscope for observing a metal structure, an imager connected to the microscope, and outputting analog image information by converting the metal structure image into an R image.
an analog/digital conversion unit that converts analog image information from the image pickup device into legal-level digital image information;
An image processing section that emphasizes grain boundary areas by applying line element extraction filter processing to the digital image information converted by the analog/digital conversion section and an image obtained from the image processing section are preset. A binarization processing unit that extracts the second phase portion and grain boundary portion from the metallographic image by comparing it with a threshold value, and a calculation that stores image information in which the extracted grain boundary portion is corrected to a perfect state. The processing unit is characterized by comprising a quantitative processing unit that measures the grain size, second phase fraction, etc. from the coordinates of the grain boundary position and second phase position in the image information obtained by the arithmetic processing unit. It is something to do.

第2図は本発明の粒径および第2相分率の測定装置の一
実施例を示す線図である。第2図において、ナイタール
腐食液あるいはピクリン酸腐食液などで現出させた測定
試料の組織は、顕微鏡1に接続された撮像機2により光
学画像情報として読み出され、A/D変換器3に供給さ
れる。A/D変換器3に供給された光学画像情報は、1
画面が例えば512x 512画素よりなり、各画素か
64灰調以上好ましくは256灰調をもつデジタル画像
情報に変換される。ここで法制レベルとは画像の黒から
白に到る灰色の色調を絶対値化したもので、256灰調
とは黒ど白の間の色調を黒をO1白を255として25
6等分したものである。デジタル画像情報は線要素強調
処理部4中に設けられtこフレームメモリよりなる法制
画像メモリへ記憶される。
FIG. 2 is a diagram showing an embodiment of the particle size and second phase fraction measuring device of the present invention. In FIG. 2, the structure of the measurement sample revealed with a nital corrosive solution or a picric acid corrosive solution is read out as optical image information by an imager 2 connected to a microscope 1, and sent to an A/D converter 3. Supplied. The optical image information supplied to the A/D converter 3 is 1
If the screen is made up of, for example, 512 x 512 pixels, each pixel is converted into digital image information having 64 or more gray tones, preferably 256 gray tones. Here, the legal level is the absolute value of the gray tone from black to white in the image, and 256 gray tone refers to the tone between black and white, where black is O1 and white is 255.
It is divided into 6 equal parts. The digital image information is stored in a modal image memory provided in the line element emphasis processing section 4 and consisting of a frame memory.

次に、線要素強調処理部4においては、法制画像メモリ
に記憶された画像に対し゛C以−トの原理に基づいて線
要素強調処理を行なう。まず、法制画像メモリに記憶さ
れた画像の各画素に対して、その画素を中心とした近傍
の例えば5×5画素よりなる第3図に示す線要素強調フ
ィルターを作り、以下に示すような中心画素を通る4方
向の直線上に位置づる画素の灰調レベル値の平均A1−
八4とフィルター内の画素の総平均値Aaを搾出する。
Next, the line element emphasizing processing section 4 performs line element emphasizing processing on the image stored in the legal image memory based on the principle shown below. First, for each pixel of the image stored in the modal image memory, create a line element emphasis filter shown in Figure 3 consisting of, for example, 5 x 5 pixels in the vicinity of that pixel, and set the center as shown below. Average A1- of gray tone level values of pixels located on straight lines in four directions passing through the pixels
84 and extract the total average value Aa of the pixels within the filter.

なお、第3図中aijは各画素の法制レベルを表わして
いる。
Note that aij in FIG. 3 represents the legal system level of each pixel.

Al−5(a31+a32+a33+a84+a35 
)A2−丁(a13+a284−a38+a48+a5
8)A8” 5 (a11+a22+a33+a44+
a55 )A4−5 (a51+a42+a、+3+a
24”15 )次に請求めl=A+〜△5の中から最小
値A minを抽出し、この最小値A minと総平均
値Aaを比較してその差が予め設定したしきい値よりも
大きいときは最小値A minを2小さいときは総平均
値Aaを対象画素の新しい法制レベルとして与える。
Al-5 (a31+a32+a33+a84+a35
) A2-cho (a13+a284-a38+a48+a5
8) A8” 5 (a11+a22+a33+a44+
a55 ) A4-5 (a51+a42+a, +3+a
24"15) Next, extract the minimum value A min from the request l = A + ~ △5, compare this minimum value A min and the total average value Aa, and determine if the difference is greater than the preset threshold value. When it is large, the minimum value A min is given by 2, and when it is small, the total average value Aa is given as the new modal level of the target pixel.

上述した操作を法制画像メモリの全画素に対して行えば
、線要素を強調した画像情報を臂ることができる。なお
、この処理はデジタル値の加算と除紳および大小比較で
あり、処理速度の点および同様な処理の繰り返しである
点からいって、専用の電子回路で構成するのが望ましい
If the above-described operation is performed on all pixels in the modal image memory, image information with line elements emphasized can be obtained. Note that this processing involves adding and subtracting digital values and comparing their magnitudes, and from the viewpoint of processing speed and the fact that similar processing is repeated, it is desirable to configure it with a dedicated electronic circuit.

上述した方法で線要素を強調した画像情報は二値化処理
部5に供給され、予め設定しであるしきい値によって二
値化処理を行い、粒界部分および第2相部分のみを抽出
する。]値化処理後の画像情報は演算処理部6中に設け
られたフレームメモリよりなる二値化画像メモリに記憶
される。二値化画像メモリ中の各画素は、粒界部分およ
び第2相部分が1.結晶の他の部分がOどして記憶され
ている。
The image information with line elements emphasized using the method described above is supplied to the binarization processing unit 5, where it is binarized using a preset threshold value and extracts only the grain boundary portion and the second phase portion. . ] The image information after the digitization process is stored in a binarized image memory consisting of a frame memory provided in the arithmetic processing section 6. Each pixel in the binarized image memory has a grain boundary portion and a second phase portion of 1. Other parts of the crystal are stored as O.

二値化処理された画像情報は、演算処理部6において粒
界情報の補充処理を行われる。すなわち、二値化画像メ
モリ中の画像に対して、1)他ど連結していない独立の
線状でない小領域は信号ノイズとして除去する。2)線
状の領域で閉じ−Cいないものは、その先端の近傍点に
おいて距離の2乗に反比例し、線の方向への方向余弦に
比例1−る評価関数が最大となる一点まで線を延長Jる
。という2つの処理を行うことによりすべての結晶粒界
が閉じた線状領域で表現できる。
The binarized image information is subjected to grain boundary information supplementation processing in the arithmetic processing section 6. That is, for the image in the binarized image memory, 1) independent, non-linear small areas that are not connected to others are removed as signal noise; 2) For a linear region that is not closed, extend the line to a point where the evaluation function, which is inversely proportional to the square of the distance at points near its tip and proportional to the direction cosine in the direction of the line, is maximum. Extended J. By performing these two processes, all grain boundaries can be expressed as closed linear regions.

以下、上述した処理で使用する結合点の検出と結合点の
連結方法について詳述する。まず、補充すべき粒界の端
点を検出するために、第4図(Δ)(B)に示す2通り
の場合について結合点を定義づる。図中白丸が結合点と
なる。第4図(A>に示す例では連結画素を追跡したと
きの端点を結合点ど定義している。第4図(B)に示す
例では、連結する画素が2方向または1方向で途中で分
枝している場合に各方向の連結画素を追跡したときの突
起部を、図中乙ABCが一定の角度以下であるどきに結
合点と定義する。次に結合点の連結方法は、第5図(A
)、(B)に示すように各結合点△に対しである領域内
に存在する結合点Bまたは粒界点Cに対して以下に述べ
る評価関数F1またはF2をめる。
Hereinafter, the method for detecting connection points and connecting the connection points used in the above-described processing will be described in detail. First, in order to detect the end points of grain boundaries to be replenished, bonding points are defined for the two cases shown in FIG. 4(Δ) and (B). The white circles in the figure are the connection points. In the example shown in Figure 4 (A), the end point when tracing connected pixels is defined as a joining point. In the example shown in Figure 4 (B), connected pixels are connected in two directions or in one direction. In the case of branching, the protrusion when tracing connected pixels in each direction is defined as a joining point when O ABC in the figure is less than a certain angle.Next, the method for connecting joining points is as follows. Figure 5 (A
), as shown in (B), for each bond point Δ, an evaluation function F1 or F2 described below is calculated for a bond point B or a grain boundary point C existing in a certain region.

(1)結合点A、B間の評価関数(第5図(A))Fl
=cO3θ1・COSθ2/Lま ただし線分△、Bが他の粒界と交わるときはFl−0ど
する。
(1) Evaluation function between connection points A and B (Figure 5 (A)) Fl
=cO3θ1・COSθ2/L When the straight line segment Δ, B intersects with another grain boundary, it is set as Fl-0.

(2)結合点Aと粒界点Cの評価関数 (第5図(B)) F2=a −(cos 2θ3)2/Lまただし−π/
4≦θ≦π/’4.a=1/2゜ここで、その評価関数
Fl、F2が最大となる結合点B1粒界点Cをめ、F+
≧F2ならばその最大となる結合点13と結合点Aを結
び、F+ <12ならばその最大となる粒界点Cと結合
点Aを結ぶ。以上述べた方法により、画像を1へての領
域が閉した線状領域で表現てぎる。
(2) Evaluation function of bonding point A and grain boundary point C (Fig. 5 (B))
4≦θ≦π/'4. a=1/2゜Here, find the bonding point B1 grain boundary point C where the evaluation functions Fl and F2 are maximum, and F+
If ≧F2, the maximum bonding point 13 is connected to the bonding point A, and if F+<12, the maximum grain boundary point C and the bonding point A are connected. By the method described above, an image can be expressed as a linear region in which the first region is closed.

上述した方法によって粒界情報の補充処理を行った画1
り:情報は、定M化処理部7に供給され、イの粒界位n
および第2相位置の座標から粒径および第2相分率をめ
ている。このとき第2相分率をめるには線の連結処理は
不要であり、線要素強調後の二値化によって抽出された
第2相部分を、予め設定した面積より大きいといった判
定条件のもとに測定覆ることによって、第2相部分のみ
の面積測定を行い全面積との比をめることによって第2
相分率をめている。
Image 1 where grain boundary information has been supplemented using the method described above.
R: Information is supplied to the M constant processing unit 7, and the information is supplied to the constant M processing unit 7, and the grain boundary position n of
The particle size and second phase fraction are determined from the coordinates of the second phase position. At this time, line connection processing is not necessary to calculate the second phase fraction, and the judgment condition that the second phase portion extracted by binarization after line element emphasis is larger than a preset area is also used. The area of only the second phase portion is measured by covering the measurement area, and the ratio of the area to the total area is calculated.
The phase fraction is calculated.

以下実際の処理結果について説明する。第6図は鉄鋼材
料をナイタール腐食液で腐食したフェライト・パーライ
ト組織の金属組織像を示す図である。第7図は、第6図
に示した金属組織像を従来法の二値化のみによって粒界
を抽出した処理結果を示す図Cある。第7図に示す例で
は、粒界の不連続や傷、錆などに基づくノイズが見られ
る。第8図は第6図に示した金属組織像を本発明装置を
用いて線要素強調後二値化処理および線連結処理を行っ
た結果を示J図である。第8図に示す例では第7図に示
す従来の装置による例に比べて結晶粒径をより正確にめ
ることができることが明らかである。
The actual processing results will be explained below. FIG. 6 is a diagram showing a metallographic image of a ferrite-pearlite structure obtained by corroding a steel material with a nital corrosive solution. FIG. 7 is a diagram C showing the processing result of extracting grain boundaries from the metallographic image shown in FIG. 6 by only binarizing using the conventional method. In the example shown in FIG. 7, noise due to grain boundary discontinuities, scratches, rust, etc. can be seen. FIG. 8 is a J diagram showing the result of the metallographic image shown in FIG. 6 being subjected to line element enhancement, binarization processing and line connection processing using the apparatus of the present invention. It is clear that in the example shown in FIG. 8, the crystal grain size can be determined more accurately than in the example shown in FIG. 7 using the conventional apparatus.

上jホした実施例においては顕微鏡像を撮像機により撮
像して画像情報をめていたが、他の画像入力装置を使用
づ−ることも可能であるし、さらにデータ処理装置など
を本発明装置に連結することも可能である。
In the embodiment described above, the image information was collected by capturing a microscope image with an imaging device, but it is also possible to use other image input devices, and the data processing device etc. can be adapted to the present invention. It is also possible to connect to a device.

以上詳細に説明したところから明らかなように、本発明
の粒径および第2相分率の測定装置によれば、画像情報
中の線要素を強調することにより研磨傷や錆等によるノ
イズを除去し、さらに線要素を強調した画像信号に対し
て粒界の連結処理を行なっているので、従来装置に比べ
て結晶粒径をより正確に測定できそのため高い精度と再
現性をもって結晶の粒径および第2相分率の測定を行う
ことができる。
As is clear from the detailed explanation above, according to the particle size and second phase fraction measuring device of the present invention, noise caused by polishing scratches, rust, etc. is removed by emphasizing line elements in image information. Furthermore, since grain boundary connection processing is performed on the image signal with emphasis on line elements, it is possible to measure crystal grain size more accurately than with conventional equipment. Measurements of the second phase fraction can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粒径および第2相分率を測定可能な自動
両像解析装置の構成を承り線図、第2図は本発明の粒径
および第2相分率の測定装置の一実施例を示ず線図、 第3図は線強調フィルターを示す線図、第4図(A)お
よび(B)は境界情報の補充処理で使用する結合点を説
明するための線図、第5図(△)および(B)は結合点
の連結方法を説明J゛るための線図、 第6図はフェライト・パーライト組織の金属相m像を示
す図、 第7図は第6図に示した金属組織像を従来法の二値化の
みにJ:って粒界を抽出した処理結果を示づ図、 第8図は第6図に示した金属組織像を本発明装置を用い
て線要素強調後二値化処理および線連結処理を行った結
果を示す図である。 1・・・顕微鏡 2・・・撮像機 3・・・A/D変換部 4・・・画像処理部5・・・二
値化処理部 6・・・演粋処理部1・・・定量処理部。 特許出願人 川崎製鉄株式会社 同 出願人 日本レギコレーター株式会社第4 第3図 (A) (A) 図 (B) (B)
Fig. 1 is a diagram showing the configuration of a conventional automatic double-image analyzer capable of measuring particle size and second phase fraction, and Fig. 2 is a diagram of the configuration of a conventional automatic double-image analyzer capable of measuring particle size and second phase fraction. Figure 3 is a diagram showing a line emphasis filter; Figures 4 (A) and (B) are diagrams for explaining connection points used in boundary information replenishment processing; Figures 5 (△) and (B) are diagrams for explaining the connection method of bonding points, Figure 6 is a diagram showing the metallic phase m image of the ferrite-pearlite structure, and Figure 7 is the same as Figure 6. Figure 8 shows the result of processing the metallographic image shown in Figure 6 by extracting grain boundaries only by binarizing it using the conventional method. FIG. 7 is a diagram showing the results of binarization processing and line connection processing after line element emphasis. 1...Microscope 2...Imaging device 3...A/D conversion unit 4...Image processing unit 5...Binarization processing unit 6...Essential processing unit 1...Quantitative processing Department. Patent applicant: Kawasaki Steel Corporation Applicant: Japan Regicolator Co., Ltd. No. 4 Figure 3 (A) (A) Figure (B) (B)

Claims (1)

【特許請求の範囲】[Claims] 1、金属組織を観察する顕微鏡と、この顕微鏡に接続さ
れ、金属組織像を搬像してアナログ画像情報を出力する
撮像機と、この撮像機からのアナログ画像情報を法制レ
ベルのデジタル画像情報に変換するアナログ/デジタル
変換部と、このアナログ/デジタル変換部で変換された
デジタル画像情報に線要素抽出フィルター処理を施すこ
とにより粒界部分を強調する画像処理部と、画像処理部
から得られIc画像を予め設定されたしぎい値と比較す
ることにより金属組織画像中から第2相部分および粒界
部分を抽出する二値化処理部と、抽出れた粒界部分を完
全な状態に補正した画像情報をめる演算処理部と、演算
処理部で得られた画像情報中の粒界位置および第2相位
置の座標から粒径および第2相分率などを測定する定量
処理部とからなることを特徴とする粒径および第2相分
率の測定装置。
1. A microscope for observing metal structures, an imaging device connected to this microscope that conveys images of metal structures and outputs analog image information, and converting the analog image information from this imaging device into legal-level digital image information. An analog/digital converter converts the data, an image processor performs line element extraction filter processing on the digital image information converted by the analog/digital converter to emphasize grain boundary areas, and an image processing unit performs line element extraction filter processing on the digital image information converted by the analog/digital converter. A binarization processing unit extracts the second phase part and grain boundary part from the metallographic image by comparing the image with a preset threshold value, and the extracted grain boundary part is corrected to a perfect state. Consists of an arithmetic processing section that stores image information, and a quantitative processing section that measures grain size, second phase fraction, etc. from the coordinates of grain boundary positions and second phase positions in the image information obtained by the arithmetic processing section. A measuring device for particle size and second phase fraction, characterized in that:
JP58250301A 1983-12-29 1983-12-29 Particle size and second phase fraction measuring apparatus Granted JPS60143769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250301A JPS60143769A (en) 1983-12-29 1983-12-29 Particle size and second phase fraction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250301A JPS60143769A (en) 1983-12-29 1983-12-29 Particle size and second phase fraction measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60143769A true JPS60143769A (en) 1985-07-30
JPH0380258B2 JPH0380258B2 (en) 1991-12-24

Family

ID=17205867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250301A Granted JPS60143769A (en) 1983-12-29 1983-12-29 Particle size and second phase fraction measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60143769A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197656A (en) * 1988-02-03 1989-08-09 Kubota Ltd Discriminating method for matrix structure
JPH0252251A (en) * 1988-08-16 1990-02-21 Nippon Steel Corp Inspection device for nonmetallic inclusion
EP0505045A2 (en) * 1991-03-19 1992-09-23 Hitachi, Ltd. Method and apparatus for detecting stainless steel sensitization
FR2710154A1 (en) * 1993-09-14 1995-03-24 Ascometal Sa Method for analysis and quantification of perlite bands in ferrite-perlite steels
JPH08145984A (en) * 1994-11-21 1996-06-07 Sumitomo Metal Ind Ltd Inspection device of non-metal inclusion
CN100371762C (en) * 2005-02-25 2008-02-27 宝钢集团上海梅山有限公司 Digital metallurgical microscopic image enlarging multiplying power calibrating method
JP2013026914A (en) * 2011-07-22 2013-02-04 Fuji Xerox Co Ltd Image processing device, image formation device and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233467B2 (en) * 2008-07-22 2013-07-10 新日鐵住金株式会社 Crystal grain analysis apparatus, crystal grain analysis method, and computer program
JP5282519B2 (en) * 2008-10-10 2013-09-04 新日鐵住金株式会社 Crystal grain analysis apparatus, crystal grain analysis method, and computer program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197656A (en) * 1988-02-03 1989-08-09 Kubota Ltd Discriminating method for matrix structure
JPH0252251A (en) * 1988-08-16 1990-02-21 Nippon Steel Corp Inspection device for nonmetallic inclusion
EP0505045A2 (en) * 1991-03-19 1992-09-23 Hitachi, Ltd. Method and apparatus for detecting stainless steel sensitization
EP0505045A3 (en) * 1991-03-19 1995-02-15 Hitachi Ltd
FR2710154A1 (en) * 1993-09-14 1995-03-24 Ascometal Sa Method for analysis and quantification of perlite bands in ferrite-perlite steels
JPH08145984A (en) * 1994-11-21 1996-06-07 Sumitomo Metal Ind Ltd Inspection device of non-metal inclusion
CN100371762C (en) * 2005-02-25 2008-02-27 宝钢集团上海梅山有限公司 Digital metallurgical microscopic image enlarging multiplying power calibrating method
JP2013026914A (en) * 2011-07-22 2013-02-04 Fuji Xerox Co Ltd Image processing device, image formation device and program

Also Published As

Publication number Publication date
JPH0380258B2 (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US4876457A (en) Method and apparatus for differentiating a planar textured surface from a surrounding background
JP3597439B2 (en) Diagnosis method for paint deterioration of painted steel
US20080195330A1 (en) Concrete Structure Crack Inspection Device and Crack Inspection Method
JP3884834B2 (en) Defect inspection method and apparatus
JP2008139285A (en) Construct using picture processing technique, and crack width measuring method of product
JPS60143769A (en) Particle size and second phase fraction measuring apparatus
Barkavi et al. Processing digital image for measurement of crack dimensions in concrete
JPH03160349A (en) Device for detecting crack
JP3329767B2 (en) Deterioration / corrosion detection judgment method for steel materials
JPH01195351A (en) Measuring method for crack on surface of concrete
JP3557765B2 (en) Hardness measuring device
CN115496706A (en) Surface corrosion ratio measuring method based on digital image processing
JPH08145907A (en) Inspection equipment of defect
JP2004170374A (en) Apparatus and method for detecting surface defect
JPS59204741A (en) Automatic hardness measuring device
JP2638121B2 (en) Surface defect inspection equipment
JPH04145309A (en) Fruition section length measuring method for corn
JPH0337564A (en) Automatic magnetic-particle examination apparatus
JPH0319990B2 (en)
JP2682112B2 (en) Automatic magnetic particle flaw detector
JP2820030B2 (en) Image display device
JP3132931B2 (en) Scratch inspection device
Idris et al. Improving visual corrosion inspection accuracy with image enhancement filters
JPH048833B2 (en)
CN117495791A (en) Surface defect positioning method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees