JPS59204741A - Automatic hardness measuring device - Google Patents

Automatic hardness measuring device

Info

Publication number
JPS59204741A
JPS59204741A JP8063283A JP8063283A JPS59204741A JP S59204741 A JPS59204741 A JP S59204741A JP 8063283 A JP8063283 A JP 8063283A JP 8063283 A JP8063283 A JP 8063283A JP S59204741 A JPS59204741 A JP S59204741A
Authority
JP
Japan
Prior art keywords
indentation
hardness
size
digital
testing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8063283A
Other languages
Japanese (ja)
Other versions
JPS6310379B2 (en
Inventor
Osamu Furukimi
修 古君
Makoto Imanaka
誠 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8063283A priority Critical patent/JPS59204741A/en
Publication of JPS59204741A publication Critical patent/JPS59204741A/en
Publication of JPS6310379B2 publication Critical patent/JPS6310379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To avoid personal errors and accidental erros and to enhance the number of measurements per unit time to a large extent, by providing a testing machine, which can form an indentation, an image sensor connected to a microscope, a digital image processing part, an indentation-size measuring part, and a hardness operating part, thereby implementing automation. CONSTITUTION:A testing machine 14 is provided with a specified indentor 12 for Vickers hardness, Brinell hardness, or the like. An indentation 13, is formed in the surface of a test piece 10 with a specified load. The image of the indentation 13 is magnified by a microscope 16 and picked up by an image sensor 18. An optical image data 19 of the indentation 13 is converted from analog to digital data by an AD converter part 20 at a gray gradation level (b). A digital image processing part 26 processes and analyzes a digital imge signal 22, locates points P1 and P2 where a gray gradation level curve 26' changes steeoly, and extracts the points as the edge of the indentation 13. A indentation-size measuring part 28 measures the size of the diagonal line of the indentation 13. A hardness operating part 30 divides the compressing load of the indentor 12 by the surface area of the indentation based on the size of the indentation 13 and outpts the result to a printer 31 as a Vickers or Brinell hardness.

Description

【発明の詳細な説明】 本発明は、硬度の自動測定装置に係り、特に、ビッカー
ス硬度、ブリネル硬度の如く、試験片の表面を圧子で押
付けて圧痕を形成し、この圧痕の表面積ど圧子の押付荷
重とから硬度値を換算する型式の、硬度を自動的に測定
部る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic measuring device for hardness, and in particular, for measuring hardness such as Vickers hardness and Brinell hardness, an indentation is formed by pressing the surface of a test piece with an indenter, and the surface area of the indentation is measured by measuring the hardness of the indenter. The present invention relates to a device for automatically measuring hardness, which converts a hardness value from a pressing load.

ビッカース硬度やブリネル硬度は、手軽に測定できる特
性として金属8料の機械的性質の判定に非常に多く用い
られている。例えばビッカース硬度は、対面角136°
のダイヤモンド製の四角錐から成る圧子を試験片の表面
に押付け、この押付荷重を、押付けてできた圧痕の表面
積で削った値とするとされている。この測定の為には、
所定の荷重C試験片の表面に圧子を押付けて圧痕を形成
する作業、圧痕のサイズを測定Jる作業、及び測定値と
押付荷重とにより硬度を演算する作業を行う必要がある
Vickers hardness and Brinell hardness are often used to determine the mechanical properties of metal 8 materials as they are easily measurable properties. For example, Vickers hardness has a facing angle of 136°.
An indenter made of a square pyramid made of diamond is pressed against the surface of a test piece, and this pressing load is considered to be the value calculated by the surface area of the indentation made by pressing. For this measurement,
It is necessary to perform the work of pressing an indenter against the surface of the test piece under a predetermined load to form an indentation, the work of measuring the size of the indentation, and the work of calculating the hardness based on the measured value and the pressing load.

しかしながら、上記3つの作業のうち圧痕のサイズを測
定Jる作業というのは、測定者が顕微鏡で100倍〜4
00倍に拡大した圧痕を覗ぎ、祝野に入った略正方形の
圧痕の対角線上にある頂点にカーソルを合わせてその間
隔を測定するという所謂人間の目に頼つ1ζ極めて手作
業的なものであった。この為、測定者によってカーソル
の合わせ方に個人差があることから、一連の試験片の測
定については、同一人が行って、所謂系統的誤差の1つ
とされる個人誤差を避ける必要があるなどの不便があっ
た。そして、それでも尚、測定者の疲労や、一時的な感
覚の変動によって生じる偶然誤差の発生は避は難かった
。又、このように1個1個を手作業で測定することより
、1つの硬瓜値を測定するのに数分かかり、単位時間当
たりの測定数を多くとれず、非効率的であるという問題
点があった。
However, among the three tasks mentioned above, the task of measuring the size of the indentation is carried out by the measurer using a microscope at a magnification of 100 to 4
1ζ An extremely manual process that relies on the human eye by looking at the indentation magnified 00 times, placing the cursor on the diagonal vertices of the roughly square indentation in the field, and measuring the distance between them. Met. For this reason, since there are individual differences in the way the cursor is aligned by the measurer, it is necessary to have the same person measure a series of test pieces to avoid individual errors, which is one of the so-called systematic errors. There was an inconvenience. Even so, it was still difficult to avoid random errors caused by fatigue of the measurer or temporary fluctuations in sensation. In addition, it takes several minutes to measure the value of one melon compared to manually measuring each piece in this way, which is inefficient as it does not allow for a large number of measurements per unit time. There was a point.

本発明は、このような従来の問題点に鑑みて為されたも
のであって、従来、人間の目によって1個ずつ手作業で
測定していたものを自動化した装置を提供し、個人誤差
、或いは人間の疲労や不注意に起因する偶然誤差を排す
ると共に、単位時間当りの測定数を飛躍的に高めること
をその目的としている。
The present invention has been made in view of these conventional problems, and provides a device that automates what was conventionally measured manually one by one by human eyes, and eliminates individual errors, Alternatively, the purpose is to eliminate random errors caused by human fatigue or carelessness, and to dramatically increase the number of measurements per unit time.

本発明は、硬度の自動測定装置に於いて、所定の荷重で
試験片の表面に圧子を押付け、圧痕を形成可能な試験機
と、 該試験機に備えた顕微鏡に接続された撮像機と、該撮像
機に写し出された圧痕の光学画像情報を、反論レベルで
アナログ/デジタル変換づ゛るA/D変換部と、 該A/D変換部からのデジタル画像信号が急激に変化づ
る点を圧痕の端部として抽出するデジタル画像処理部と
、 該デジタル画像処理部で得られた圧痕端部の位置から圧
痕のサイズを測定する圧痕サイズ測定部と、 該圧痕サイズ測定部によって測定された圧痕のサイズと
上記圧子の押付荷重とにより、硬度を演算・出力する硬
度演算部と、 を備えることにより、上記目的を達成したものである。
The present invention provides an automatic hardness measurement device that includes: a testing machine capable of pressing an indenter against the surface of a test piece with a predetermined load to form an indentation; an imaging device connected to a microscope provided in the testing machine; An A/D converter converts the optical image information of the indentation captured by the imager into an analog/digital converter, and a point where the digital image signal from the A/D converter changes rapidly is detected as an indentation. an indentation size measuring unit that measures the size of the indentation from the position of the indentation end obtained by the digital image processing unit; The above object is achieved by comprising: a hardness calculation section that calculates and outputs hardness based on the size and the pressing load of the indenter.

以下、図面を参照して本発明の実施例を詳精に説明りる
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例は、第1図に示す如(、 所定の荷重で試験片10の表面に圧子12を押付(ブ、
圧痕13を形成可能な試験機14と、該試験114に備
えた顕微鏡16に接続された撮像機18と、 該撮像機18に写し出された圧痕13の光学画像情報1
9を、例えば256階調の反論レベルでアナログ/デジ
タル変換するA/D変換部20と、該A/D変換部20
からのデジタル画像信号22が急激に変化する点を圧痕
13の端部として抽出づるデジタル画像処理部26と、 該デジタル画像処理部26で得られた圧痕端部の位置か
ら圧痕のサイズを測定する圧痕サイズ測定部28と、 該圧痕サイズ測定部28によって測定された圧痕13の
サイズと圧子12の押付荷重とにより、fiJ!度を演
算して、プリンタ31等に出力づる硬度演算部30とよ
り主に構成される。
In this example, as shown in FIG.
A testing machine 14 capable of forming an indentation 13, an imaging device 18 connected to a microscope 16 provided for the test 114, and optical image information 1 of the indentation 13 imaged on the imaging device 18.
9 to analog/digital conversion at a counter level of 256 gradations, for example, and the A/D converter 20
A digital image processing unit 26 that extracts the point where the digital image signal 22 from the indentation 13 suddenly changes as the edge of the indentation 13, and measures the size of the indentation from the position of the indentation edge obtained by the digital image processing unit 26. The indentation size measurement unit 28 determines fiJ! based on the size of the indentation 13 measured by the indentation size measurement unit 28 and the pressing load of the indenter 12. The hardness calculation unit 30 mainly includes a hardness calculation unit 30 that calculates the hardness and outputs it to a printer 31 or the like.

尚、第1図に於いて、11はオートステージ、15は、
撮像機18とオートステージ11とを制御する」ントロ
ールユニットである。
In addition, in Fig. 1, 11 is an auto stage, 15 is
This is a control unit that controls the image pickup device 18 and the autostage 11.

上記試験機14は、ごッカース、ブリネル等、求めよう
とする硬度の種類の応じて定められている圧子12を備
え、試験片1oの表面に所定の荷重で圧痕13を形成す
るものであり、従来と同様なものが採用できる。
The testing machine 14 is equipped with an indenter 12 such as Gockers or Brinell, which is determined according to the type of hardness to be determined, and forms an indentation 13 on the surface of the test piece 1o with a predetermined load, The same thing as before can be used.

上記撮像11118は、顕微鏡16にて100倍〜40
0倍に拡大された圧痕13の像を、第2図の写真に示す
如く2次元的に撮像するもので、ITV(工業用テレビ
ジョンカメラ)等が採用できる。
The above imaging 11118 was taken at a magnification of 100 to 40 times using a microscope 16.
The image of the indentation 13 magnified 0 times is captured two-dimensionally as shown in the photograph in FIG. 2, and an ITV (industrial television camera) or the like can be used.

尚、第2図は、ナイタール溶液で腐食した鉄鋼材料に、
ビッカース試験機14で荷重10kgの圧子12を打刻
した。ときの圧痕13をモニター上に撮像した原画像で
ある。
In addition, Fig. 2 shows that the steel material corroded by nital solution,
An indenter 12 with a load of 10 kg was stamped using a Vickers testing machine 14. This is an original image of the impression 13 taken on a monitor.

上記A/D変換部2oは、撮像機18にて写し出された
圧痕13の光学画像情報19を反論レベルでアナログ/
デジタル変換する。ここで「反論レベル」とは、各画素
での黒から白へ到る灰色の明るさを微小段階ごとに数値
に置き換え絶対値化したものを指り。この法制レベルは
、具体的には黒から白までを、例えば64階調以上、好
ましくは、256階調程度に等分するとよい。これはマ
トリックス組織がエツチングによって表われている場合
や、傷或いは腐食部が存在でる場合に、これらと圧痕1
3とを正しく識別させることを考慮したものである。従
来ならば測定者が自分の目で正確にこれらを識別できた
のであるが、自動化の際にはこの対処が必要である。即
ち、振像機18に写し出されlC圧痕13の光学画像情
報19を、単に直接明暗のスレッシュホールドを設定し
、2値化処理した上で明るい(或いは暗い)圧痕部分を
抽出しようとづると、標準試料のようなノイズの少ない
試験片は問題ないが、第2図のように、マトリックス組
織−vJ傷、腐食部に於いて圧痕13と同程度の明るさ
の部分があると、第3図のように、圧痕13の端部が不
明瞭となってしまうという不都合が生じる。このことは
その分が誤差となって測定されるだ番プでなく、場合に
よっては第3図の圧痕13の上部頂点の如く、これが閉
じておらず測定が℃゛ぎないという事態も生じで来る。
The A/D converter 2o converts the optical image information 19 of the impression 13 captured by the image pickup device 18 into analog/digital data at a rebuttal level.
Convert to digital. Here, the "rebuttal level" refers to the gray brightness from black to white at each pixel, which is converted into a numerical value in minute steps and converted into an absolute value. Specifically, this legal system level is preferably divided equally into 64 or more gradations, preferably about 256 gradations, from black to white. This occurs when the matrix structure is exposed by etching, or when there are scratches or corroded areas.
This is done in consideration of correctly identifying 3 and 3. In the past, the measurer could accurately identify these items with his or her own eyes, but this is necessary when automation is used. That is, if we simply set the brightness and darkness thresholds directly on the optical image information 19 of the IC indentation 13 projected on the imager 18, binarize it, and then extract the bright (or dark) indentation part, There is no problem with a test piece with low noise such as a standard sample, but as shown in Fig. 2, if there is a part of the matrix structure-vJ scratch or corrosion area that is as bright as the indentation 13, as shown in Fig. 3. As shown in FIG. This causes an error in the measurement, and in some cases, as in the case of the upper vertex of the indentation 13 in Figure 3, it may not be closed and the measurement may not be too high. .

従って、本発明では、これを防止するために、法制レベ
ルでアナログ/デジタル変換し、各画素eの明るさを数
値に置き換えたデジタル画像と、して処理j″るものC
ある3゜ 上記デジタル画像処理部26は、こうじで法制レベルで
アナログ/デジタル変FAされたデジタル画像信号22
を処理・解析し、得られる法制レベル曲線26′が急激
に変化する点P1、P2を第4図に示づ如く測定’ii
l!IAに沿って探索し圧痕13の端部としで抽出する
。第4図(B’)は同図(A)を概略トレースしたーし
のであるが、同図中の線図の縦軸が法制レベル、横軸が
位置である。尚、この際、圧痕13の端部以外の要素、
例えばqトリックス組織や傷などによる雑音の影舌は、
圧痕13の端部を直線近似づる等の方法でこれを極力排
除するのが望ましい。具体的には、「急激に変化した」
という識別をより確実ならしめる為に例えば、法制レベ
ル曲線26″の変曲点を含む部分の曲線に接づ”る包絡
線を求めl〔す、同曲線26′を「1−バスフィルタに
か(プで高周波雑音成分をカットしたり、或いは同曲線
26′の一定区間内の平均変化率を求めて結果的に雑音
成分を平滑化する手法等が考えられる。尚、この場合、
更にもう一歩進め′C1例えば測定軸Aに沿ってb単位
間の平均変化率が10以上であり、且つ、同じ<20単
位間の平均変化率が8以上である“ことをもって1急激
に変化した」と判断4るというようにするなど、試験ハ
の性質によって雑音が最も効率的に除去されるように工
夫すると一層良好である。第5図に、急激に変化したJ
ユP1、P2を抽出し、連結したしのを示づ。
Therefore, in the present invention, in order to prevent this, the digital image is converted from analog to digital at the legal level and the brightness of each pixel e is replaced with a numerical value.
3゜The digital image processing unit 26 converts the digital image signal 22 into an analog/digital converted FA at the legal system level.
Process and analyze the points P1 and P2 where the resulting legal level curve 26' changes rapidly, as shown in Figure 4.
l! Search along IA and extract the edge of the indentation 13. FIG. 4(B') is a schematic trace of FIG. 4(A), in which the vertical axis of the diagram represents the legal system level and the horizontal axis represents the position. In addition, at this time, elements other than the end of the indentation 13,
For example, noise caused by Q-trix tissues or wounds can cause
It is desirable to eliminate this as much as possible by approximating the end of the impression 13 to a straight line. Specifically, "changed rapidly."
In order to make this identification more reliable, for example, find the envelope that touches the curve of the part of the legal level curve 26'' that includes the inflection point, and apply the same curve 26' to a 1-bus filter. (Conceivable methods include cutting the high-frequency noise component with a filter, or finding the average rate of change within a certain section of the curve 26' and smoothing the noise component as a result.In this case,
Taking it one step further, for example, the average rate of change between b units along measurement axis A is 10 or more, and the average rate of change between the same <20 units is 8 or more. It would be even better if the noise could be removed most efficiently depending on the nature of the test, such as by making a judgment such as 4. Figure 5 shows that J
Extract U P1 and P2 and show how they are connected.

上記圧痕サイズ測定部28は、このようにして求められ
た、第6図に示4ような圧痕13の端部の位置から圧痕
のサイズ、例えばその対角線のサイズを測定Jる。
The indentation size measuring section 28 measures the size of the indentation, for example, the size of its diagonal line, from the position of the end of the indentation 13 as shown in FIG. 6, thus determined.

上記硬度製篩部30は、この求められた圧痕13のサイ
ズを基に、圧子12の押付荷重を圧痕の表面積で割り、
ビッカース、或いはブリネル硬度としくプリンタ31等
に出力づる。尚、このように対角線のサイズを測定した
場合のビッカース硬度1−1vは、押付荷重をP1圧痕
の表面積をS、圧痕の対角線の長さをぷとづると、次式
で求められる。
The hardness sieve part 30 divides the pressing load of the indenter 12 by the surface area of the indentation based on the determined size of the indentation 13.
The hardness is outputted to a printer 31 or the like as Vickers or Brinell hardness. The Vickers hardness of 1-1v when the size of the diagonal line is measured in this way can be obtained by the following formula, where the pressing load is P1, the surface area of the indentation is S, and the length of the diagonal line of the indentation is put.

Nv=P/5 =2Psin68°/β2 =1.854P/J221kg/mm2]ところC本発
明にあ−)Cは、圧痕13の)Iイズを測定づる場合に
、1llil定+1’lll Aを順に上から下へ移動
させ、圧痕13の全体の端部の位置から、積算しこよっ
て直接的に表面積Sを求めることが可能である。このよ
うに4ることにより、従来対角線のサイズから計算によ
−)で推定せざるを得なかった表面積Sを実測Cきるこ
とになり、それだけ信頼性のある硬度を得ることができ
る。
Nv=P/5 =2Psin68°/β2 =1.854P/J221kg/mm2] However, in the present invention, C is 1llil constant + 1'llll A in order when measuring the I is of the indentation 13. It is possible to directly determine the surface area S by moving from the top to the bottom and integrating from the position of the entire end of the indentation 13. By doing this, the surface area S, which conventionally had to be estimated by calculation from the size of the diagonal, can be actually measured, and a more reliable hardness can be obtained.

尚、約60kg「/−の強度を有づる調質鋼について押
付前m 10kg r /′vjの条件で、本発明に係
る装置を用いて20回測定したビッカース硬度と、同じ
〈従来の手法で20回測定したビッカース硬度とを比較
したグラフを第7図に示や。同図に示φ如くばらつきの
少ない高信頼性が錐認eぎた。
It should be noted that the Vickers hardness of tempered steel having a strength of approximately 60 kg/- was measured 20 times using the device according to the present invention under conditions of m 10 kg r/'vj before pressing, which is the same as the Vickers hardness measured using the conventional method. A graph comparing the Vickers hardness measured 20 times is shown in Fig. 7. As shown in the figure, high reliability with little variation was observed.

以上説明して来た如く、本説明によれば、従来人間の口
に頼つで1個1個カーソルを動かしく測定しCいたもの
の自動化が可能となり、人的−]ス!〜や緊張労勧の低
減が図れると共に、i(i位時間当たりの測定数を飛躍
的に高めることができる。そしくこの結果、従来避(〕
難かった個人のカーソル合わ往の不備やく住に伴う個人
誤差や、疲労、不注意に起因する偶然誤差等を排除でき
るようになるものである。更には、′&1像機に写し出
された圧痕の光学画像情報を、法制レベルで処理するこ
とと、したため、このように自動化したに−bかかわら
ず、従来人間の経験的な観察力によって判断していたマ
トリックス組織及び傷などの雑音要素と圧痕の端部との
識別が、誤J:りなく行われ正確な硬痘値を得ることが
でさるという効果−すある。
As explained above, according to this explanation, it is now possible to automate what was conventionally done by relying on the human's mouth and measuring by moving the cursor one by one. In addition to reducing stress and stress, it is also possible to dramatically increase the number of measurements per hour.
This makes it possible to eliminate personal errors caused by improper cursor movement, accidental errors caused by fatigue, or carelessness. Furthermore, the optical image information of the indentation imaged by the '&1 image machine must be processed at the legal level. This has the advantage that the discrimination between noise elements such as matrix tissue and scars that have been present and the edges of the impression can be made without errors and accurate Sclerosis values can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示ヅ、一部に装置の概略
正面図を含むブ[1ツク線図、第2図〜第4図(A>及
び第5図、第6図は、試験片の金属組織を示”づ写真(
゛、 第2図はナーrタール溶波(゛腐食した鉄鋼試験片にピ
ンカース試験機で荷重10kgの圧子を押付(プたとき
の圧痕を撮像したもの1 .713図は第2図の撮像を2値化処理1ノたもの、第
4図(A)は圧痕と試験片の正調レベルを、測定軸Aに
沿って256段階でアナ[1グ/デジタル変換したもの
、同図<B)はその概略トレース図、 第す図は灰調レベル処理で測定づべきQん部を抽出し、
連結させたとどのしの、 第6図は抽出された圧痕の全体図、 第7図は、本発明に係る装置を用いてごツカース硬度を
測定したとさ・のばらつきを従来のそれと比較した分孔
図【ある。 10・・・試験片、      12・・・圧子、13
・・・圧痕、       14・・・試験機、16・
・・顕微鏡、      18・・・振像機、1つ・・
・光′i−画像情報、  20・・・A/D斐模部、2
2・・・デジタルi!iil自信号、26・・・デジタ
ル画像処理部、 28・・・圧痕サイズ測定部、 3o・・・硬1哀演豆
部。 代理人  高  矢   論 (ばか1名) 第1図 16   18 第2図 第3図 第4図 (A) 第4図 (B) 八 第5図 第6図
FIG. 1 shows an embodiment of the present invention; a block diagram partially including a schematic front view of the apparatus, FIGS. 2 to 4 (A>, and FIGS. 5 and 6). is a photograph showing the metallographic structure of the test piece (
Figure 2 is an image of the indentation when an indenter with a load of 10 kg was pressed on a corroded steel specimen using a Pinkers tester. Figure 4 (A) shows the normal level of the indentation and test piece after 1 bit of the binarization process. The schematic trace diagram, Figure 2, extracts the Q part to be measured by gray level processing,
Figure 6 is an overall view of the extracted indentation, and Figure 7 is a comparison of the variation in hardness measured using the device according to the present invention with that of the conventional method. There is a hole diagram. 10... Test piece, 12... Indenter, 13
...Indentation, 14...Testing machine, 16.
...Microscope, 18...Image machine, one...
・Light'i-image information, 20...A/D Himobe, 2
2...Digital i! iii self-issue number, 26...digital image processing section, 28...indentation size measuring section, 3o...hard 1 sad bean section. Agent Takaya Theory (1 idiot) Figure 1 16 18 Figure 2 Figure 3 Figure 4 (A) Figure 4 (B) 8 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)所定の荷重で試験片の表面に圧子を押付け、圧痕
を形成可能な試験機と、 該試験機に備えた顕微鏡に接続された1最像機と、該m
l像機に写し出された圧痕の光学画像1h報を、法制し
ベルC゛アナログ/デジタル変換するA/D変換部と、 該A/D変換部からのデジタル画像信号が急激に変化す
る点を圧痕の端部として抽出するデジタル画像処理部と
、 該デジタル画像処理部で得られた圧痕端部の位置から圧
痕のサイズを測定する圧痕サイズ測定部と、 該圧痕サイズ視り足部によつ゛C測定された圧痕のサイ
ズと上記圧子の押付荷重とより、硬度を演算・出力づる
硬度演算部と、 を備えl二ことを特徴とづる硬度の自、動測定装置。
(1) A testing machine capable of pressing an indenter onto the surface of a test piece with a predetermined load to form an indentation; an imaging machine connected to a microscope equipped with the testing machine;
An A/D converter converts the 1-hour optical image of the impression produced by the imager into an analog/digital converter, and the digital image signal from the A/D converter rapidly changes. a digital image processing section that extracts the end of the indentation; an indentation size measuring section that measures the size of the indentation from the position of the end of the indentation obtained by the digital image processing section; An automatic or dynamic hardness measuring device comprising: a hardness calculation unit that calculates and outputs hardness based on the size of the measured indentation and the pressing load of the indenter;
JP8063283A 1983-05-09 1983-05-09 Automatic hardness measuring device Granted JPS59204741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8063283A JPS59204741A (en) 1983-05-09 1983-05-09 Automatic hardness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8063283A JPS59204741A (en) 1983-05-09 1983-05-09 Automatic hardness measuring device

Publications (2)

Publication Number Publication Date
JPS59204741A true JPS59204741A (en) 1984-11-20
JPS6310379B2 JPS6310379B2 (en) 1988-03-07

Family

ID=13723734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063283A Granted JPS59204741A (en) 1983-05-09 1983-05-09 Automatic hardness measuring device

Country Status (1)

Country Link
JP (1) JPS59204741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167836A (en) * 1985-01-16 1986-07-29 ヘルム−ト・フイツシヤ−・ゲ−エムベ−ハ−・ウント・コンパニ・インステイテユ−ト・フユア・エレクトロニク・ウント・メステクニク Device for measuring characteristic of solid substance and operating method thereof
JPH01267437A (en) * 1988-04-19 1989-10-25 Nippon Steel Corp Indentation type hardness meter
JPH0392745A (en) * 1989-09-05 1991-04-17 Nippon Steel Corp Indentation type hardness meter
WO2007049839A1 (en) * 2005-10-27 2007-05-03 Korea Research Institute Of Standards And Science A multi-functional calibration device for brinell hardness tester and a calibration method by the said device
CN104075954A (en) * 2013-03-28 2014-10-01 株式会社三丰 Hardness tester and hardness test method
CN104964890A (en) * 2015-05-14 2015-10-07 东莞市中旺精密仪器有限公司 One-piece terminal application-based hardness detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289368A (en) * 1976-01-21 1977-07-26 Nippon Steel Corp Automatic hardness measuring apparatus
JPS5956148A (en) * 1982-09-25 1984-03-31 Matsuzawa Seiki Kk Indentation hardness tester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289368A (en) * 1976-01-21 1977-07-26 Nippon Steel Corp Automatic hardness measuring apparatus
JPS5956148A (en) * 1982-09-25 1984-03-31 Matsuzawa Seiki Kk Indentation hardness tester

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167836A (en) * 1985-01-16 1986-07-29 ヘルム−ト・フイツシヤ−・ゲ−エムベ−ハ−・ウント・コンパニ・インステイテユ−ト・フユア・エレクトロニク・ウント・メステクニク Device for measuring characteristic of solid substance and operating method thereof
JPH0313539B2 (en) * 1985-01-16 1991-02-22 Fischer Gmbh & Co Helmut
JPH01267437A (en) * 1988-04-19 1989-10-25 Nippon Steel Corp Indentation type hardness meter
JPH0392745A (en) * 1989-09-05 1991-04-17 Nippon Steel Corp Indentation type hardness meter
WO2007049839A1 (en) * 2005-10-27 2007-05-03 Korea Research Institute Of Standards And Science A multi-functional calibration device for brinell hardness tester and a calibration method by the said device
CN104075954A (en) * 2013-03-28 2014-10-01 株式会社三丰 Hardness tester and hardness test method
CN104964890A (en) * 2015-05-14 2015-10-07 东莞市中旺精密仪器有限公司 One-piece terminal application-based hardness detection method

Also Published As

Publication number Publication date
JPS6310379B2 (en) 1988-03-07

Similar Documents

Publication Publication Date Title
JPS60204080A (en) Method and device for automatic quantitative measurement of tissue using picture analysis
US20040247171A1 (en) Image processing method for appearance inspection
US8094922B2 (en) Crack measuring method and apparatus
JP3361768B2 (en) X-ray fluorescence analyzer and X-ray irradiation position confirmation method
CN101207834A (en) Method for checking digital camera articulation
JPS59204741A (en) Automatic hardness measuring device
JPH09131323A (en) Skin surface analyzer and skin surface evaluating method
JP2541735B2 (en) Method and apparatus for diagnosing coating film deterioration
KR20020030674A (en) method of numerically analyzing growth degree of grains on a semiconductor wafer by using a SEM image and apparatus for realizing the same
JPH11160053A (en) Working surface inspection device and inspection method therefor
JP3071956B2 (en) Vickers hardness automatic reading device
JP2012026820A (en) Blast derusting grade inspection system
JPH0380258B2 (en)
CN109444150A (en) Contactless crackle measurement method and its device
JP2004170374A (en) Apparatus and method for detecting surface defect
JPH09210893A (en) Hardness measuring apparatus
JP2569543B2 (en) Hardness tester
JP3498120B2 (en) High-precision measuring method and apparatus for uneven gloss
JPS6024406A (en) Surface-irregularity analyzing device
JP3013524B2 (en) Method for measuring silicon crushing rate on high silicon aluminum bore surface
JPH0337564A (en) Automatic magnetic-particle examination apparatus
RU2712758C1 (en) Method of investigation of deformations and stresses by technical vision method
JPS6396536A (en) Measuring instrument for fracture rate of charpy test piece
JP2000278721A (en) Method and device for confirming picture quality of display device
JP2004347363A (en) Method for inspecting display quality of electronic display through degree of disorder of luminance distribution