JPS60143625A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60143625A
JPS60143625A JP24821583A JP24821583A JPS60143625A JP S60143625 A JPS60143625 A JP S60143625A JP 24821583 A JP24821583 A JP 24821583A JP 24821583 A JP24821583 A JP 24821583A JP S60143625 A JPS60143625 A JP S60143625A
Authority
JP
Japan
Prior art keywords
coil
reaction tube
tube
film thickness
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24821583A
Other languages
Japanese (ja)
Other versions
JPH0475650B2 (en
Inventor
Ichiro Kato
一郎 加藤
Takashi Ito
隆司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24821583A priority Critical patent/JPS60143625A/en
Publication of JPS60143625A publication Critical patent/JPS60143625A/en
Publication of JPH0475650B2 publication Critical patent/JPH0475650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/32779Continuous moving of batches of workpieces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To unify film thickness of thin films to be grown on semiconductor substrates by unifying distribution of plasma by a method wherein low-frequency electric power is applied to a coil on the side near the exhaust tube of a reaction tube, and high-frequency electric power is applied to a coil on the side near a gas feed tube. CONSTITUTION:A coil 7 to be applied with low-frequency electric power is provided on the side near an exhaust tube 3, and moreover, a coil 8 to be applied with high-frequency electric power is provided on the side near a gas feed tube 2 respectively. Accordingly, even when batch processing is performed arranging wafers of a large number in a reaction tube, film thickness of the wafers arranged at any place in the reaction tube excluding the part being especially close to the exhaust tube are nearly unified, and moreover, in-plane distribution of film thickness is not generated at the respective wafers.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、半導体基板上に薄膜を形成する場合、その薄
膜の膜厚を全面に亙り均一化するのに好適な半導体装置
の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device suitable for making the thickness of a thin film uniform over the entire surface when a thin film is formed on a semiconductor substrate.

従来技痢と問題点 近年、反応管に高周波コイルを巻回し、その中に半導体
基板を設置して反応ガスを供給し、前記高周波コイルに
高周波電流を流すことに依って発生する電磁場で前記反
応管内の反応ガスを励起してグロー放電させ、それに依
り生成されるプラズマを利用し、反応ガスと半導体基板
とを直接反応させて薄膜を形成することが行われている
Conventional Techniques and Problems In recent years, a high-frequency coil is wound around a reaction tube, a semiconductor substrate is placed inside the coil, a reaction gas is supplied, and the reaction is performed using an electromagnetic field generated by passing a high-frequency current through the high-frequency coil. 2. Description of the Related Art A thin film is formed by exciting a reactive gas in a tube to cause a glow discharge, and using plasma generated thereby to cause a direct reaction between the reactive gas and a semiconductor substrate.

第1図は前記プラズマ直接成長方法を実施する成長装置
の従来例を表す要部説明図である。
FIG. 1 is an explanatory view of the main parts of a conventional example of a growth apparatus for carrying out the plasma direct growth method.

図に於いて、1は例えば石英を材料とする反応管、2は
ガス供給管、3は排気管、4はウェハやサセプタ(図示
せず)等を挿脱する為の開口を覆うキャップ、5は高周
波コイル、6はウェハをそれぞれ示している。
In the figure, 1 is a reaction tube made of, for example, quartz, 2 is a gas supply pipe, 3 is an exhaust pipe, 4 is a cap that covers an opening for inserting and removing a wafer or susceptor (not shown), etc.; 6 indicates a high frequency coil, and 6 indicates a wafer.

この装置では、反応管l内にプラズマを発生させた場合
、サセプタ等の存在や反応ガスの流れに依って反応管l
内に真空度の不均一が生じている為、前記プラズマの分
布も不均一になり、排気管3の近傍に強力なプラズマが
発生し、そこでは、ガス励起が盛んになる為、薄膜の成
長が促進される。
In this device, when plasma is generated in the reaction tube, the reaction tube may
Since the degree of vacuum is not uniform within the interior, the distribution of the plasma is also not uniform, and strong plasma is generated near the exhaust pipe 3, where gas excitation is active and thin film growth is prevented. is promoted.

従って、バッチ処理した場合に、各ウェハ間での膜厚不
均一は勿論のこと、一枚のウェハに於いても、面内不均
一を生ずる。
Therefore, when batch processing is performed, not only film thickness non-uniformity occurs between each wafer, but also in-plane non-uniformity occurs within a single wafer.

従来技術に於いては、前記のような欠点を少しでも軽減
する為、長大な反応管を用いると共に同じく長大な高周
波コイルを設置してプラズマ分布及び熱分布が均一であ
る部分が長くなるようにしている。
In the conventional technology, in order to alleviate the above-mentioned drawbacks as much as possible, a long reaction tube is used and a similarly long high-frequency coil is installed so that the part where the plasma distribution and heat distribution are uniform becomes long. ing.

然しなから、前記のような従来技術に依った場合、経済
上或いは取り扱い操作」二に問題があることば明らかで
ある。
However, it is clear that there are problems in terms of economy and handling when relying on the prior art as described above.

発明の目的 本発明は、長大な反応管や高周波コイルを必要とするこ
となく、反応管内のプラズマ分布を均一化し、半導体基
板−ヒに成長される薄膜の膜厚を均一に維持できるよう
にする。
Purpose of the Invention The present invention makes it possible to make the plasma distribution in the reaction tube uniform without requiring a long reaction tube or a high-frequency coil, and to maintain a uniform thickness of a thin film grown on a semiconductor substrate. .

発明の構成 本発明の半導体装置の製造方法に於いては、複数に分設
されたコイルを有する反応管内に半導体ウェハを配設す
ると共に反応ガスを供給し、前記反応管の排気管に近い
側のコイルには低周波電力を印加すると共に該反応管の
ガス供給管に近い側のコイルには高周波電力を印加して
該反応管の略全長に互り均一なプラズマを現出させて前
記半導体ウェハ上に薄膜を成長させる1程が含まれてな
っているので、ウェハをハツチ処理しても、各ウェハに
成長された薄膜の厚みはかなり均一にすることができ、
また、ウェハ面内の薄膜の厚み分布も解消することがで
きる。
Structure of the Invention In the method for manufacturing a semiconductor device of the present invention, a semiconductor wafer is disposed in a reaction tube having a plurality of divided coils, a reaction gas is supplied, and a side of the reaction tube near an exhaust pipe is provided. A low frequency power is applied to the coil on the side of the reaction tube near the gas supply pipe, and a high frequency power is applied to the coil on the side of the reaction tube near the gas supply tube to generate a uniform plasma over substantially the entire length of the reaction tube. Since it contains about 1 to grow a thin film on the wafer, even if the wafers are subjected to hatch processing, the thickness of the thin film grown on each wafer can be made fairly uniform.
Moreover, the thickness distribution of the thin film within the wafer surface can also be eliminated.

発明の実施例 第2図は本発明一実施例を説明する為のものであり、(
a)は本発明を実施する際に適用する成長装置の一例を
表す要部説明図であり、第1図に関して説明した部分と
同部分は同記号で指示してあり、(b)は第2図(a)
に示した成長装置を用いて薄膜を成長させた場合の各ウ
ェハに於ける平均面内膜厚を該成長装置と対応させて表
した線図である。
Embodiment of the Invention FIG. 2 is for explaining an embodiment of the present invention.
(a) is an explanatory diagram of main parts showing an example of a growth apparatus applied when carrying out the present invention, and the same parts as those explained in connection with FIG. Diagram (a)
FIG. 3 is a diagram showing the average in-plane film thickness of each wafer when a thin film is grown using the growth apparatus shown in FIG.

第2図(a)に於いて、7及び8はコイルであり、コイ
ル7が低周波−1イル(LFC)、コイル8が高周波コ
イル(HFC)になっている。
In FIG. 2(a), 7 and 8 are coils, where the coil 7 is a low frequency coil (LFC) and the coil 8 is a high frequency coil (HFC).

この実施例では、L F Cであるコイル7に4゜O(
Kllz) 、HF Cであるコイル8に13.56(
M Ilz )の各高周波電力を印加した。
In this example, the coil 7, which is LFC, has a temperature of 4°O(
Kllz), 13.56 (
Each high frequency power of M Ilz ) was applied.

L F Cであるコイル7に400(KHz)を印加し
たの番よ、成る実験を行う為、ウェハ6を保持している
カーボン類のサセプタを誘導加熱し、その熱を利用する
ことが必要とされたからであり、そのようなことが不要
であれば、L F Cであるコイル7に13. 56 
CMllz)の高周波電力を印加し、HF Cであるコ
イル8にはそれよりも周波数が高い高周波電力を印加す
るようにしても良いことは勿論である。尚、周波数が高
くなると、反応ガスを効率良くプラズマ化することがで
きるので、所要電力は少なくて済み、また、カーボン類
のサセプタに対する誘導加熱の効率は低下するので該サ
セプタの温度上昇が少なくなることは良く知られている
In order to carry out the experiment in which 400 (KHz) was applied to the coil 7, which is an LFC, it was necessary to inductively heat the carbon susceptor holding the wafer 6 and use that heat. If such a thing is unnecessary, 13. 56
It is of course possible to apply high frequency power of CMllz) and apply high frequency power of a higher frequency to the coil 8 which is HF C. Incidentally, as the frequency becomes higher, the reaction gas can be efficiently turned into plasma, so less power is required, and the efficiency of induction heating for the carbon susceptor is reduced, so the temperature rise of the susceptor is reduced. This is well known.

第2図(b)では、○印が本発明一実施例に関する各ウ
ェハに於ける平均面内膜厚、また、×印が低周波電力の
み印加した場合のそれを示すものであり、本発明一実施
例に於いては、反応管1内の略全長に亙り、何処にウェ
ハを配置しても、成長される薄膜の厚みは均一であるこ
とが理解されよう。但し、排気管3のごく近傍では不均
一になっているが、それでも、低周波電力のみ印加した
場合に比較すると良好であることが看取される。
In FIG. 2(b), the circle mark indicates the average in-plane film thickness of each wafer in accordance with one embodiment of the present invention, and the cross mark indicates the average in-plane film thickness in the case where only low frequency power is applied. It will be appreciated that in one embodiment, the thickness of the grown thin film is uniform no matter where the wafer is placed throughout the entire length of the reaction tube 1. However, although it is non-uniform in the vicinity of the exhaust pipe 3, it can still be seen that it is better compared to the case where only low frequency power is applied.

さて、本発明に於いては、低周波電力を印加するコイル
を排気管に近い側に、また、高周波電力を印加するコイ
ルをガス供給管に近い側にそれぞれ配設すると良いとし
ているものであるが、これは、次ぎの実験に依り確認す
ることができる。
According to the present invention, it is preferable to arrange the coil for applying low frequency power on the side closer to the exhaust pipe, and the coil for applying high frequency power on the side closer to the gas supply pipe. However, this can be confirmed by the following experiment.

第3図は本発明の構成が最良であることを確認する実験
を説明する為のものであり、(a)は成長装置の一例を
表す要部説明図、(b)は第3図(a)に示した成長装
置を用いて薄膜を成長させた場合の各ウェハに於ける平
均面内膜厚を該成長装置と対応させて表した線図である
。尚、第3図では、第2図に関して説明した部分と同部
分は同記号で指示しである。
FIG. 3 is for explaining an experiment to confirm that the configuration of the present invention is the best. ) is a diagram showing the average in-plane film thickness of each wafer when a thin film is grown using the growth apparatus shown in FIG. In FIG. 3, the same parts as those explained with reference to FIG. 2 are indicated by the same symbols.

第3図(a)に見られる成長装置では、LFCであるコ
イル7とHFCであるコイル8とは同心状に重なるよう
に設置しである。
In the growth apparatus shown in FIG. 3(a), the LFC coil 7 and the HFC coil 8 are installed so as to overlap concentrically.

第3図(b)に見られる特性線と第2図(、b)の低周
波コイルのみの場合に於ける特性線とを比較するとウェ
ハ間膜厚分布が一定である範囲が狭くなっていて、そし
て、コイルの端或いは排気管に近くなるにつれて膜厚が
急激に増大していることが判る。
Comparing the characteristic line shown in Figure 3 (b) with the characteristic line in the case of only the low frequency coil in Figure 2 (, b), the range in which the inter-wafer film thickness distribution is constant is narrower. , and it can be seen that the film thickness increases rapidly as it approaches the end of the coil or the exhaust pipe.

これ等は全てコイル7及びコイル8が重なっていること
に起因するものである。即ち、そのような構成を採った
為、反応管1の中央部分と排気管3付近とに高周波に依
る強いプラズマが発生するようになり、均一な分布の範
囲を狭くしている為である。
All of these are caused by the fact that the coils 7 and 8 overlap. That is, because such a configuration is adopted, strong plasma due to high frequency is generated in the central portion of the reaction tube 1 and near the exhaust pipe 3, thereby narrowing the range of uniform distribution.

第2図並びに第3図に関する説明から判るように、HF
 Cであるコイル8は、排気管3から離れた側に於いて
、1、FCであるコイル7に隣接して設けることに依り
、均一なウェハ間膜厚分布を広く採ることができるもの
である。また、その位置としては、低周波コイルのみの
場合の膜厚が殆ど得られなくなる位置付近に高周波コイ
ルを設置すると良い。
As can be seen from the explanation regarding FIGS. 2 and 3, HF
By providing the coil 8, which is C, adjacent to the coil 7, which is 1, FC, on the side away from the exhaust pipe 3, it is possible to achieve a wide uniform film thickness distribution between wafers. . Moreover, as for the position, it is preferable to install the high frequency coil in the vicinity of a position where almost no film thickness can be obtained when only the low frequency coil is used.

発明の効果 本発明の半導体装置の製造方法では、複数に分設された
コイルを有する反応管内に半導体ウェハを配設すると共
に反応ガスを供給し、前記反応管の排気管に近い側のコ
イルには低周波電力を印加すると共に該反応管のガス供
給管に近い側のコイルには高周波電力を印加して該反応
管の略全長に亙り均一なプラズマを現出させて前記半導
体ウェハ上に薄膜を成長させるようにしているので、反
応管内に多数のウェハを配置してバッチ処理した場合で
あっても、反応管内の特に排気管に近接した部分を除く
如何なる場所に配置したウェハの膜厚も略均−であり、
また、各ウェハとも膜厚の面内分布を生ずることはない
Effects of the Invention In the method for manufacturing a semiconductor device of the present invention, a semiconductor wafer is placed in a reaction tube having a plurality of divided coils, and a reaction gas is supplied to the coil on the side of the reaction tube near the exhaust pipe. applies low-frequency power and high-frequency power to the coil on the side of the reaction tube near the gas supply tube to generate a uniform plasma over substantially the entire length of the reaction tube to form a thin film on the semiconductor wafer. Even if a large number of wafers are placed in the reaction tube for batch processing, the film thickness of the wafers placed anywhere in the reaction tube, except for the parts particularly close to the exhaust pipe, will be reduced. approximately average,
Moreover, no in-plane distribution of film thickness occurs on each wafer.

前記した効果に加え、本発明の半導体装置の製造方法を
実施するに際して用いる成長装置としては、反応管を長
大にしたり、コイルを長大にしてプラズマ分布の均一化
を図る必要はないから、経済的にも、携り扱い操作上か
らも、その実施は極めて容易になる効果が得られる。
In addition to the above-mentioned effects, the growth apparatus used to carry out the semiconductor device manufacturing method of the present invention is economical because there is no need to make the reaction tube or coil long to make the plasma distribution uniform. Moreover, it has the effect of being extremely easy to implement in terms of carrying and handling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を実施する成長装置の要部説明図、第
2図は本発明一実施例を説明する為のもので(a)は成
長装置の要部説明図、(b)は成長装置に対応させた各
ウェハに於ける平均面内膜厚を示す線図、第3図は本発
明に於けるコイルの配置が最良であることの実験を説明
する為のもので(a)は成長装置の要部説明図、(b)
は成長装置に対応させた各ウェハに於ける平均面内膜厚
を示す線図をそれぞれ表している。 図に於いて、1は反応管、2はガス供給管、3は排気管
、4はキャップ、6はウェハ、7は低周波コイル(L 
F C)であるコイル、8は高周波コイル(RFC)で
あるコイルをそれぞれ示している。 第1図 第2図 第3図
Fig. 1 is an explanatory diagram of the main parts of a growth apparatus implementing the conventional technique, and Fig. 2 is for explaining one embodiment of the present invention. (a) is an explanatory diagram of the main parts of the growth apparatus, and (b) is a Figure 3 is a diagram showing the average in-plane film thickness of each wafer corresponding to the device, and is for explaining an experiment to determine the best coil arrangement in the present invention. Explanatory diagram of the main parts of the growth device, (b)
1 and 2 respectively represent diagrams showing the average in-plane film thickness of each wafer corresponding to the growth apparatus. In the figure, 1 is a reaction tube, 2 is a gas supply tube, 3 is an exhaust tube, 4 is a cap, 6 is a wafer, and 7 is a low frequency coil (L
FC), and 8 indicates a radio frequency coil (RFC). Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 複数に分設されたコイルを有する反応管内に半導体ウェ
ハを配設すると共に反応ガスを供給し、前記反応管の排
気管に近い側のコイルには低周波電力を印加すると共に
該反応管のガス供給管に近い側のコイルには高周波電力
を印加して該反応管の略全長に亙り均一なプラズマを現
出させて前記半導体ウェハ上に薄膜を成長させる工程が
含まれてなることを特徴とする半導体装置の製造方法。
A semiconductor wafer is placed in a reaction tube having a plurality of divided coils, and a reaction gas is supplied thereto.Low frequency power is applied to the coil on the side of the reaction tube closer to the exhaust tube, and the gas in the reaction tube is The method includes the step of growing a thin film on the semiconductor wafer by applying high-frequency power to the coil near the supply tube to generate uniform plasma over substantially the entire length of the reaction tube. A method for manufacturing a semiconductor device.
JP24821583A 1983-12-30 1983-12-30 Manufacture of semiconductor device Granted JPS60143625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24821583A JPS60143625A (en) 1983-12-30 1983-12-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24821583A JPS60143625A (en) 1983-12-30 1983-12-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60143625A true JPS60143625A (en) 1985-07-29
JPH0475650B2 JPH0475650B2 (en) 1992-12-01

Family

ID=17174890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24821583A Granted JPS60143625A (en) 1983-12-30 1983-12-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60143625A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683025A (en) * 1979-12-10 1981-07-07 Shunpei Yamazaki Formation of single crystal semiconductor film
JPS5719034A (en) * 1980-07-09 1982-02-01 Fujitsu Ltd Vapor growth apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683025A (en) * 1979-12-10 1981-07-07 Shunpei Yamazaki Formation of single crystal semiconductor film
JPS5719034A (en) * 1980-07-09 1982-02-01 Fujitsu Ltd Vapor growth apparatus

Also Published As

Publication number Publication date
JPH0475650B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
TWI469238B (en) Plasma etching treatment device and plasma etching treatment method
KR100349064B1 (en) Plasma Treatment Equipment
US5015330A (en) Film forming method and film forming device
US5211825A (en) Plasma processing apparatus and the method of the same
KR100272189B1 (en) Plasma treatment appatatus
US5858100A (en) Substrate holder and reaction apparatus
WO2015178222A1 (en) Heater power feeding mechanism
US20100006543A1 (en) Plasma processing apparatus, plasma processing method and storage medium
US20070224364A1 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
KR20100006009A (en) Apparatus for manufacturing semiconductor
TWI713414B (en) Substrate processing device, semiconductor device manufacturing method and recording medium
US20240063000A1 (en) Method of cleaning plasma processing apparatus and plasma processing apparatus
US20220122820A1 (en) Substrate processing apparatus
JP2004047695A (en) Method and apparatus for plasma doping
US20040163595A1 (en) Plasma processing apparatus
JPS60143625A (en) Manufacture of semiconductor device
JPH0610140A (en) Thin film deposition device
JP3955351B2 (en) Plasma processing equipment
US20030037879A1 (en) Top gas feed lid for semiconductor processing chamber
JP3797975B2 (en) Plasma processing equipment
JP2717185B2 (en) Cleaning method for heat treatment equipment
JPH06177058A (en) Plasma generator
JP2000144422A (en) Silicon film forming method and silicon film forming device
KR20080030713A (en) Apparatus for processing a substrate
JP2000049100A (en) Plasma treating device and method for reducing occurrence of particles therein