JPS60143359A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS60143359A
JPS60143359A JP19513884A JP19513884A JPS60143359A JP S60143359 A JPS60143359 A JP S60143359A JP 19513884 A JP19513884 A JP 19513884A JP 19513884 A JP19513884 A JP 19513884A JP S60143359 A JPS60143359 A JP S60143359A
Authority
JP
Japan
Prior art keywords
barrier layer
oxygen
layer
substrate
residual potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19513884A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Masazumi Yoshida
吉田 昌純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Minolta Co Ltd
Original Assignee
Kyocera Corp
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Minolta Co Ltd filed Critical Kyocera Corp
Priority to JP19513884A priority Critical patent/JPS60143359A/en
Publication of JPS60143359A publication Critical patent/JPS60143359A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To increase electric charge receptive power to the extent of making practicable the image formation by Carlson system and to decrease residual potential by forming an a-Si barrier layer contg. oxygen and a specific amt. of the IIIb group impurity between a photoconductive substrate and an a-Si photoconductive layer. CONSTITUTION:An a-Si barrier layer contg. oxygen and about 10-20,000ppm the group IIIb impurity is formed between a conductive substrate and an a-Si photoconductor layer. The insulating characteristic of the barrier layer is improved and the excellent barrier effect is obtd. by the incorporation of an adequate amt. of oxygen into the barrier layer formed in the above-mentioned way. The dark resistant required at the least for the barrier layer can be assured without increasing the oxygen content as the IIIb group impurity is added together with the above-mentioned oxygen to the barrier layer. The adhesion to the a-Si barrier layer is good when Al is used for the substrate. Generation of exfoliation and crack is thus obviated even after reiterative use for a long period of time. The implantation of the electric charge from the conductive substrate is effectively prohibited by providing the barrier layer in the above-mentioned way, by which the surface charge receptive power of the a-Si photoconductive layer is increased and the photosensitive body is usable for image formation by Carlson system.

Description

【発明の詳細な説明】 本発明はグロー放電分解法により生成されるアモルファ
スシリコン光導電体層を有する電子写真感光体に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor having an amorphous silicon photoconductor layer produced by glow discharge decomposition.

電子写真感光体としては既に様々な形態のものか提案さ
れているか、この中でも近年、半導体分野Cその研究開
発か進められっ一つあるグロー放電分解法により生成さ
れるアモルファスシリコン(3口1orpbous 5
ilicon 以下3−81と略す)の感光体への応用
が注目されてきている。これはa −8iが従来のセレ
ンやCdS感光体等と比して環境汚染性、耐熱性、摩耗
性、光感度特性等において一段と優れているためて、a
−8iを光導電体層とした感光体としては特開昭54−
86341号公報C提案されているところである。
Various types of electrophotographic photoreceptors have already been proposed, and among them, amorphous silicon (3-hole, 1-orpbous 5
The application of ilicon (hereinafter abbreviated as 3-81) to photoreceptors has been attracting attention. This is because a-8i is far superior to conventional selenium and CdS photoreceptors in terms of environmental pollution resistance, heat resistance, abrasion resistance, photosensitivity, etc.
-8i as a photoconductor layer is JP-A-54-
Publication No. 86341 C has been proposed.

そして実際に本願発明者がa−8iの電子写真用光導電
体としての応用を研究した結果、従来の感光体が欠如し
ていた無公害性、耐熱性、表面硬度摩耗性等に対し理想
的な特性を有することを見い出した。しかしなから、そ
の反面、a−8i光導電体層は通常のグロー放電分解法
ではその暗体積抵抗か最大゛Cも約10100・crn
N上にならす、カールソン方式による作像に最低限妻妾
する所定の表面電位にまで帯電できず、結局、そのまま
では帯電−画像露光−現像−転写一清掃一除電の工程に
よるカールソン方式に適する感光体としては使用できな
いという問題に遭遇した。
As a result of actually researching the application of a-8i as a photoconductor for electrophotography, the present inventor found that it is ideal for non-polluting properties, heat resistance, surface hardness, and abrasion resistance, which conventional photoconductors lacked. It was discovered that it has the following characteristics. However, on the other hand, the dark volume resistance or maximum temperature of the A-8I photoconductor layer is approximately 10100 crm when the normal glow discharge decomposition method is used.
The photoreceptor cannot be charged to a predetermined surface potential that is at least suitable for image formation using the Carlson method, and is suitable for the Carlson method due to the steps of charging, image exposure, development, transfer, cleaning, and static elimination. I ran into a problem where I couldn't use it.

このため、従来Cは例えは特開昭54−1]、6930
号公報に示されるように、a−8I光導電体層を薄層と
してその上に電荷の保持、:a−8i層中C発生したキ
ャリア担体を運搬する機能を兼ね備えた有機化合物層を
積層した構成が提案されているか、これCは製造方法が
複雑となるはかりか、a −8i光導電体層を表面層と
して用いていないのびそれ自体か有する前述の優れた特
性か全く生かされないこととなる。このことより導電性
基板上に数10ミクロンの厚さに形成したa−8i光導
電体層を表面層とする構成を維持して、a−8i光導電
体層自体に約01乃至30atomic%の多情の酸素
又は窒素を含有せしめて暗抵抗の向上を図ることが特開
昭54−1.45539号公報で提案されている。しか
しながら本願発明者か実際に0.1atomic%思」
二の酸素をa−8iに含有させ電子写真特性全般に一つ
いて調へたところ、暗抵抗はカールソン方式に充分以−
」二に向上するものの、酸素含有量か大となれはljる
ほと光感度特性か著しく低下し、最低01atomic
%の酸素含有でも光感度は可視光領域において従来の感
光体よりやや劣ることか確認さ机た。
For this reason, conventional C is, for example, JP-A-54-1], 6930
As shown in the publication, an a-8I photoconductor layer was formed as a thin layer, and an organic compound layer was laminated on top of the thin a-8I photoconductor layer, which had the functions of holding charge and transporting carriers generated in the a-8i layer. Is this structure proposed? Either the manufacturing method for C is complicated, or the a-8i photoconductor layer is not used as a surface layer, and the above-mentioned excellent properties are not utilized at all. . Therefore, while maintaining the structure in which the A-8I photoconductor layer formed to a thickness of several tens of microns on the conductive substrate is used as the surface layer, the A-8I photoconductor layer itself contains about 0.1 to 30 atomic%. Japanese Unexamined Patent Publication No. 54-1.45539 proposes that the dark resistance be improved by incorporating oxygen or nitrogen. However, the inventor of the present application actually thinks that 0.1 atomic%
When we investigated the overall electrophotographic properties by adding oxygen to a-8i, we found that the dark resistance was more than sufficient for the Carlson method.
However, as the oxygen content increases, the photosensitivity characteristics decrease significantly, and the lowest atomic
It was confirmed that the photosensitivity was slightly inferior to that of conventional photoreceptors in the visible light region even with % oxygen content.

本発明は以上の事実に鑑みて成されたもので、a−8i
光導電体層が有する環境汚染性、耐熱性、表面硬度、摩
耗性等の優れた特性を損うことfj<、カールソン方式
による作像を実用可能ならしめる程度に電荷受容能力を
著しく向上し残留電位も低いλ−3i光導電体層を作像
表面層とする電子写真感光体を提供することを目的とす
る。
The present invention has been made in view of the above facts, and a-8i
Impairing the excellent properties of the photoconductor layer, such as environmental pollution resistance, heat resistance, surface hardness, and abrasion resistance; An object of the present invention is to provide an electrophotographic photoreceptor having a λ-3i photoconductor layer having a low potential as an image forming surface layer.

本発明の要旨は導電性基板とa−8i光辞電体層間に、
酸素と約10乃至20000 PPmの周期律表第1I
I b族不純物を含むアモルファスシリコン障壁層を形
成したことを特徴とする電子写真感光体にある 以下、発明につき詳細に説明する。
The gist of the present invention is that between the conductive substrate and the A-8I photodiode layer,
Periodic Table 1I of Oxygen and about 10 to 20,000 PPm
The present invention, which is an electrophotographic photoreceptor characterized by forming an amorphous silicon barrier layer containing Ib group impurities, will be described in detail below.

本発明に係る構成の電子写真感光体は、導電性基板上に
、グロー放電分解法により生成されその厚さか約02乃
至5ミクロンC約005乃至05atomic%の酸素
を、但し膜厚か約02乃至04ミクロンと薄層のときは
最大約1atomic%まCの酸素を含有するa−8i
障壁層と、やはり同様にグロー放電分解法により生成さ
れ厚さが約5乃至60ミクロンのa−3i光導電体層を
順次積層してなるか、該a −Si障壁層は導電性基板
からの電荷の注入を有効に阻止してλ−8i光導電体層
の表面電荷受容ft1g力を著しく向上し、カールソン
方式による作像を可能ならしめたものである。
The electrophotographic photoreceptor having the structure according to the present invention is produced by a glow discharge decomposition method on a conductive substrate, and has a thickness of about 0.02 to 5 microns and about 0.05 to 0.5 atomic% of oxygen, provided that the film thickness is about 0.2 to 0.5 atomic%. When the layer is as thin as 0.04 microns, a-8i contains up to about 1 atomic% of oxygen.
The barrier layer and the a-3i photoconductor layer, also produced by the glow discharge decomposition process and having a thickness of about 5 to 60 microns, are laminated sequentially, or the a-Si barrier layer is formed from a conductive substrate. This effectively prevents charge injection, significantly improves the surface charge acceptance ft1g force of the λ-8i photoconductor layer, and enables image formation by the Carlson method.

即ち、a −Si障壁層はそれ自体不純物を含有しない
純粋な形態のa−8iであれは、その体積抵抗は10Ω
・an程度と低く基板からの電荷の注入の阻止に有効C
はないが、酸素を約0.05乃至Q、5atomic%
含有ぜしめることによりその絶縁性か著しく向」ニし、
優れた障壁作用を示す。酸素の含有量を約0.05 a
Lomic%以上とするのは、それ以下ではa 8+の
抵抗がさほど向上せず障壁作用を果さないためC1また
0、5acomic%以下とするのはそれり」二〇は残
留電位が高くなりコントラストの優れた画像か得られな
くなるためCある。この残留電位の」二昇は、a−8i
光導電体層中C発生するキャリア担体がa−8i障壁層
との界面あるいは障壁層中に多数トラップされることに
より生じるのびあるが、酸素含有量を0.05乃至0.
5atomic%とすることにより、また更には層の厚
さを後述する通り約02乃至5ミクロンとすることによ
り、残留電位は実用−に問題ない程度となる。
That is, if the a-Si barrier layer itself is pure a-8i containing no impurities, its volume resistance is 10Ω.
・C effective for blocking charge injection from the substrate as low as an
Although there is no oxygen, about 0.05 to Q, 5 atomic%
Its insulation properties are significantly improved by adding more
Shows excellent barrier action. Oxygen content approximately 0.05 a
The reason for setting it above Lomic% is that if it is lower than that, the resistance of a8+ will not improve much and it will not function as a barrier, so it is better to set it below 0.5acomic%. It is C because it becomes impossible to obtain an excellent image. This residual potential's rise is a-8i
This is caused by a large number of carrier carriers generated in the photoconductor layer being trapped at the interface with the a-8i barrier layer or in the barrier layer, but when the oxygen content is adjusted to 0.05 to 0.
By setting the residual potential to 5 atomic %, and further by setting the layer thickness to about 0.2 to 5 microns as described later, the residual potential is at a level that poses no problem for practical use.

尚、上述において酸素の含有量は最大05 atom 
ic%と説明したか、a−8i障壁層の膜厚を約02乃
至04ミクロンと薄層とするときに限って酸素は最大約
1atomic%まて含有することかでき、残留電位も
一定値以下に維持されることか確認された。
In addition, in the above, the oxygen content is at most 0.5 atoms.
ic%, oxygen can be contained up to about 1 atomic% only when the thickness of the a-8i barrier layer is as thin as about 0.2 to 0.04 microns, and the residual potential is also below a certain value. It has been confirmed that it will be maintained.

a−8i障壁層の厚さは約02乃至5ミクロン程度であ
ることか望ましく、これは02ミクロン以下Cは最早、
障壁層として働かす表面電位か向」ニしないためC1ま
た5ミクロン以上Cは残留電位か一定値以」二となり整
流作用を持たなくなるためCある。尚、a−81障壁層
は酸素に加えそ周期律表第1II b族不純物(好まし
くは靜1素)を最大20000PPm程度まて添加して
もよい。これはその添加により3−81障壁層の暗体積
抵抗か幾分ながらも向上するためで酸素含有量を増大さ
せること’A < 障壁層に最低限必要な暗抵抗が確保
てきる。また、導電性基板としてはアルミニウム、ステ
ンレス等が使用゛Cきるが、生地のアルミニウムを用い
れはa Sl障壁層との付着性か良好で長期に渡る反復
使用にも剥離やクラックか生じないことか確°誌された
The thickness of the a-8i barrier layer is preferably about 0.2 to 5 microns, which is less than 0.02 microns.
C1 because the surface potential acting as a barrier layer does not change, and C1 because the residual potential of 5 microns or more exceeds a certain value and does not have a rectifying effect. In addition to oxygen, the a-81 barrier layer may be doped with an impurity of group 1IIb of the periodic table (preferably 1 element) at a maximum of about 20,000 PPm. This is because its addition improves the dark volume resistance of the 3-81 barrier layer, albeit to some extent, and increasing the oxygen content ensures the minimum required dark resistance for the barrier layer. In addition, aluminum, stainless steel, etc. can be used as the conductive substrate, but it is important to use raw aluminum because it has good adhesion to the Sl barrier layer and does not peel or crack even after repeated use over a long period of time. It was confirmed.

障壁層上に形成されるa−3i光導電体層はその厚さか
約5乃至60ミクロンであることが望ましく、また光導
電体層自体、不純物を含有しない形態でもよいか、必要
に応じて周期律表第ill l)族不純物(好ましくは
硼素)を最大20000PPmまて含有させてもよく、
また微量の酸素を含有させてもよい。
The thickness of the a-3i photoconductor layer formed on the barrier layer is preferably about 5 to 60 microns, and the photoconductor layer itself may be in an impurity-free form or may have a periodicity as necessary. It may contain up to 20,000 PPm of impurity (preferably boron) of Group Ill I) of the Table of Contents,
Further, a trace amount of oxygen may be contained.

以下、本発明に係る電子写真感光体を製造するためのグ
ロー放電分解法について説明するか、上述の通り本発明
では障位層、光導電体層ともグロー放電分解法により生
成されるのC単一の製造装置゛C1しかも簡単な製造条
件の下に迅速に感光体を製造Cきるという優れた製造上
のメリットを有する。
Hereinafter, the glow discharge decomposition method for producing the electrophotographic photoreceptor according to the present invention will be explained. This manufacturing apparatus has an excellent manufacturing advantage in that photoreceptors can be quickly manufactured under simple manufacturing conditions.

第1図はa−8i障壁層及び光導電体層を生成するため
のグロー放電分解装置を示し、図中の第1、第2、第3
タンク(1)、(2)、(3)には夫々SiH4、B2
H6,02ガヌか密封されている。また5iJ(4、B
2H6ガス何れもギヤリアーガスは水素である。これら
ガスは対応する第]、第2、第3調整弁(4)、(5)
、(6)を開放することにより放出され、その流量かマ
スフローコントロラー(7)、(8)、(9)により規
制され、第1と第2タンク(1)、(2)からのガスは
第1生管Cl0)へと、また第3タンク(3)からの酸
素ガスはそれらとは別に第2生管(11)へと送られる
。尚、(12)、(13)、(14)は流量計、(15
)、(16)は止め弁である。第1、第2主管(10)
、(11)を通して流れるガスは反応管(17)へと送
り込まれるが、この反応管の周囲には共振振動コイル(
18)が巻回されておりそれ自体の高周波電力はiQQ
watls乃至数k i l owa t t sか、
また周波数は1MHz乃至数IQMHzか適当°Cある
。反応管(17)内部にはその上にa−8i障壁層が形
成される例えばアルミニウムのようなh(板(19)が
モータ(20)により回動可能であるターンテーブル(
21)上に載置されており、該基板(19)自体は適当
な加熱手段により約50乃至300℃、 好ましくは約
150乃至250℃の温度に均一加熱されている。また
反応管(17)の内部はλ−8i膜形成時に高度の真空
状態(放電圧:05乃至2. Q Torr)を必要と
することにより回転ポンプ(22)と拡散ポンプ(23
)に連結されている。
FIG. 1 shows a glow discharge decomposition apparatus for producing an a-8i barrier layer and a photoconductor layer;
Tanks (1), (2), and (3) contain SiH4 and B2, respectively.
H6.02 Ganu is sealed. Also 5iJ (4, B
The gear gas for both 2H6 gases is hydrogen. These gases are connected to the corresponding first, second and third regulating valves (4) and (5).
, (6), and its flow rate is regulated by mass flow controllers (7), (8), (9), and the gas from the first and second tanks (1), (2) is Oxygen gas from the first raw tube Cl0) and the third tank (3) is separately sent to the second raw tube (11). In addition, (12), (13), and (14) are flowmeters, (15
), (16) are stop valves. 1st and 2nd supervisor (10)
, (11) is sent into the reaction tube (17), which is surrounded by a resonant vibration coil (
18) is wound and its own high frequency power is iQQ
watls to number k i l o w a t t s,
The frequency ranges from 1 MHz to several IQ MHz or an appropriate degree Celsius. Inside the reaction tube (17) is a turntable (for example made of aluminum) on which an A-8I barrier layer is formed (a turntable (19) whose plate (19) is rotatable by a motor (20)).
21), and the substrate (19) itself is uniformly heated to a temperature of about 50 to 300°C, preferably about 150 to 250°C, by suitable heating means. In addition, the interior of the reaction tube (17) requires a high vacuum state (discharge voltage: 05 to 2.0 Torr) when forming the λ-8i film, so the rotary pump (22) and the diffusion pump (23)
) is connected to.

以上の構成のグロー放電分解装置において、まずa −
Si障壁層の形成に際しては拡散ポンプ(23)゛C反
応管(17)内を10−4がら1O−6Torr程度(
D u 空に引き、続いて回転ポンプ(22)に切換え
て真空度を約10 乃至10 Toreとして第3タン
ク(3)より酸素を導入し、゛7スフローコントロラー
(9)ヲ調節してその分圧を所定値に保つ。これに続い
て第1タンク(1)よりS iH4ガスを、また必要に
応じて第2タンク(2)より82H6ガスを導入する。
In the glow discharge decomposition apparatus with the above configuration, first a -
When forming the Si barrier layer, the temperature of the diffusion pump (23) in the C reaction tube (17) is set at about 10-4 to 10-6 Torr (
D u Empty the tank, then switch to the rotary pump (22) to bring the degree of vacuum to about 10 to 10 Torre, introduce oxygen from the third tank (3), and adjust the flow controller (9). The partial pressure is maintained at a predetermined value. Subsequently, SiH4 gas is introduced from the first tank (1), and 82H6 gas is introduced from the second tank (2) as needed.

そして反応管(17)の内部か0.5乃至2. Q T
orr程度(D K ’2 状M、基板温度か50乃至
3oo℃、共振振動コイルの高周波電力か100w乃至
数kw、また周波数が1乃至数IQMHzに設定されて
いることに相俟ってグロー放電か起こり、ガスか分解し
て基板上に所定■の酸素を含有したλ−8l障壁層ある
いはそれに加えて適量の硼素を含有したa−81障壁層
が約0.5乃至155ミフロン/6分の早さで形成され
る。
And the inside of the reaction tube (17) is 0.5 to 2. QT
orr (D K'2 state M, the substrate temperature is 50 to 300°C, the high frequency power of the resonant vibration coil is 100W to several kW, and the frequency is set to 1 to several IQMHz). This occurs, the gas decomposes, and a λ-8L barrier layer containing a predetermined amount of oxygen or an A-81 barrier layer containing an appropriate amount of boron is deposited on the substrate at a rate of approximately 0.5 to 155 microfron/6 min. formed quickly.

a−8i障壁層か形成されると、グロー放電を一旦中断
し続いてλ−51光導電体層の形成を開始する。この際
、a−5i光導電体層に酸素、更には硼素を含有せしめ
るときは夫々のマスフローコントロラー(7)、(8)
を調節して分圧を所定値に設定し、上記と同様の方法に
よりグロー放電してa−5i 光導電体層を形成する。
Once the a-8i barrier layer is formed, the glow discharge is temporarily interrupted and then the formation of the λ-51 photoconductor layer begins. At this time, when the a-5i photoconductor layer contains oxygen and further boron, the respective mass flow controllers (7) and (8)
is adjusted to set the partial pressure to a predetermined value, and glow discharge is performed in the same manner as above to form an a-5i photoconductor layer.

以下、実験例について説明する。An experimental example will be explained below.

実験例1 この実験例では基板とa−51光導電体層間にa−5i
障壁層を形成するとともに、その酸素含有量を変えて感
光体の初期表面電位と残留電位を測定した。
Experimental Example 1 In this experimental example, an a-5i
While forming a barrier layer, the initial surface potential and residual potential of the photoreceptor were measured while changing the oxygen content.

上述した第1図に示すグロー放電分解装置でもって、ま
ず拡散ポンプ(23)iこより反応管(I7)の内部を
10 ”Torr程度の真空に引き、続いて回転ポンプ
(22)に切換え真空度を約IQ ”Torrとして、
このの状態でマスフローコントロラー(9)を調節しそ
の分圧をQ、Q3Torrとし第3タンク(3)より酸
素を導入した。これに伴って第1タンク(1)より水素
をキャリアーガスとする5iH4ガス(水素に5il−
1410%)を、また第2タンク(2)より5iI(4
に対しそのモル比か10 に相当するB2H6ガスを放
出した。尚、このときの反応琶の全圧は0.7 Tor
rに保つ。一方、基板温度は2ootに保ち、共振振動
コイル(18)の高周波電力を300watts1周波
数を4 MHziCL でグロー放電を行い、約1ミフ
ロン/60分の早さでa −S i膜を形成し、30分
経過時にグロー放電を中断した。これによりアルミニウ
ム基板上には厚さか05ミクロンで酸素を0.05 a
tomic%、また硼素を20PPmを含有するa−5
i障壁層か形成された。
Using the glow discharge decomposition apparatus shown in Fig. 1 described above, the interior of the reaction tube (I7) is first drawn to a vacuum of about 10" Torr by the diffusion pump (23), and then the rotary pump (22) is switched to increase the vacuum level. As approximately IQ ”Torr,
In this state, the mass flow controller (9) was adjusted to set its partial pressure to Q, Q3 Torr, and oxygen was introduced from the third tank (3). Along with this, 5iH4 gas (hydrogen with 5il-
1410%) and 5iI (4
B2H6 gas corresponding to a molar ratio of 10 was released. The total pressure of the reaction chamber at this time was 0.7 Torr.
Keep r. On the other hand, the substrate temperature was maintained at 2oot, and glow discharge was performed using the high frequency power of the resonant vibration coil (18) at 300 watts, 1 frequency, and 4 MHz, to form an a-Si film at a rate of about 1 microfron/60 minutes. The glow discharge was interrupted at the end of the minute. As a result, oxygen was deposited on the aluminum substrate at a thickness of about 0.05 μm.
a-5 containing tomic% and 20PPm of boron
An i barrier layer was formed.

続いて、マスフローコントロラー(9)を絞って酸素分
圧を約0.005TorrとするとともにSiH++ 
とB2H6ガスの分圧は同一のままとして再度クロー放
電を8時間行って厚さ8ミクロンのa −5i 光Q。
Next, the mass flow controller (9) is throttled to set the oxygen partial pressure to approximately 0.005 Torr, and the SiH++
Keeping the partial pressures of B2H6 and B2H6 gases the same, claw discharge was performed again for 8 hours to produce a -5i light Q with a thickness of 8 microns.

電体層を形成した。このa−5i光導電体層は約OO1
acomic%の酸素と20 PPmの硼素を含有する
An electric layer was formed. This a-5i photoconductor layer is about OO1
Contains acomic% oxygen and 20 PPm boron.

この感光体とは別に、同様の方法により3−51障壁層
の酸素含有量を変化させた以外は同一の構成の感光体を
6種類作成した。即ち、a−5i障壁層形成時に酸素用
マスフローコントロラー(9)を調節し、その分圧を夫
々005.0.09.022.035.050、Q、7
QTorrと変化させた以外は同一条件の下にグロー放
電を行って、基板上に厚さ05ミクロンで酸素含有量が
夫々008.0.16.03.0./I、05及びQ、
5aLomic%で硼素を20ppm含有するa−5i
障壁層と、その上にQ、Q1atomic%の酸素と2
0 P I) mの硼素を含有する厚さ8ミクロンのa
−5i光導電体層からなる5種類の感光体を作成した。
Separately from this photoreceptor, six types of photoreceptors having the same structure were prepared using the same method except that the oxygen content of the 3-51 barrier layer was changed. That is, when forming the a-5i barrier layer, the oxygen mass flow controller (9) was adjusted to adjust the partial pressure to 005.0.09.022.035.050, Q, and 7, respectively.
Glow discharge was performed under the same conditions except that QTorr was changed, and the oxygen content was 008.0.16.03.0. /I, 05 and Q,
a-5i containing 20 ppm boron at 5aLomic%
a barrier layer and on it Q, Q1 atomic% oxygen and 2
0 P I) 8 micron thick a containing m boron
Five types of photoreceptors were prepared comprising -5i photoconductor layers.

また、これらとは別に基板上に直接a−5i光導電体層
を形成した感光体を作成した。この感光体a−5i障壁
層に酸素か一切含有されていないものに相当する。尚、
各層の酸素含有量はスパークソース質量分析法により、
また硼素含有岱、はイオンマイクロアナライサーにより
測定した。
Separately from these, a photoreceptor was prepared in which an a-5i photoconductor layer was directly formed on a substrate. This photoconductor a-5i corresponds to a barrier layer containing no oxygen at all. still,
The oxygen content of each layer was determined by spark source mass spectrometry.
In addition, boron-containing particles were measured using an ion microanalyzer.

次に上記各感光体を±5.6 KVの電圧諒に接続され
たコロナチャージャて正及び負極性に均一帯電して初期
表面電位を測定し電荷受容能力を調へるとともに、続い
て0.3mw −s e c / 7の光量で均一照射
して減衰後の残留電位を測定した。これらの測定結果は
第2図に示す通りで、図中、横軸は3−5i障壁層の酸
素含有量を、左縦軸は初期表面電位を、右縦軸は残留電
位を示し、またカーフ(5)、(13)は夫々正帯電及
び負帯電時の初期表面電位と酸素含有量の関係を、カー
ブtq、(D+は夫々正及び負帯電時の残留電位と酸素
含有量の関係を示す。
Next, each of the photoreceptors was uniformly charged to positive and negative polarities using a corona charger connected to a voltage of ±5.6 KV, and the initial surface potential was measured to determine the charge acceptance ability. It was uniformly irradiated with a light intensity of 3 mw-sec/7 and the residual potential after decay was measured. These measurement results are shown in Figure 2, in which the horizontal axis represents the oxygen content of the 3-5i barrier layer, the left vertical axis represents the initial surface potential, and the right vertical axis represents the residual potential. (5) and (13) show the relationship between the initial surface potential and oxygen content during positive and negative charging, respectively, and the curves tq and (D+ show the relationship between the residual potential and oxygen content during positive and negative charging, respectively) .

第2図から明らかな様に、a−5i障壁層に酸素を一切
含有しない感光体、即ちa−5i障壁層が形成されてい
ない感光体は正、負帯電時とも残留電位がほとんど現わ
れないものの初期表面電位は正帯電時で4OOV、負帯
電時で一360vと低(a−5i光導電体層の電荷受容
能力か乏しいことを裏付けている。ところかa−5’l
l壁層に0.05 a L−omi、c%の酸素を含有
する感光体の場合、特に負帯電時にはカーブBて示され
る様に初期表面電位は著しく向」ニし実に一560vと
なり、また正帯電時にも幾分なからも向上しており、酸
素含有により初めてカールソン方式による作像を可能な
らしめる程度に高電位に帯電されることを保証している
。更に酸素含有量がQ、Q 3 atomic%となる
初期表面電位は負帯電時で一600V、正帯電時で+4
70vまで向上し、しかも残留電位は±]0乃至20V
と低(優れたコントラストの画像が得られることを保証
している。
As is clear from Fig. 2, the photoreceptor that does not contain any oxygen in the a-5i barrier layer, that is, the photoreceptor on which the a-5i barrier layer is not formed, shows almost no residual potential when charged positively or negatively. The initial surface potential is as low as 400 V when positively charged and -360 V when negatively charged (this confirms that the charge-accepting ability of the a-5i photoconductor layer is poor. However, the a-5'l
In the case of a photoconductor containing 0.05 a L-omi, c% of oxygen in the l-wall layer, the initial surface potential becomes significantly lower, as shown by curve B, especially when negatively charged, and reaches -560 V, and Even when positively charged, it is somewhat improved, and the inclusion of oxygen ensures that it is charged to a high potential to the extent that image formation by the Carlson method is made possible for the first time. Furthermore, the initial surface potential at which the oxygen content reaches Q, Q 3 atomic% is -600 V when negatively charged and +4 when positively charged.
Increased to 70V, and the residual potential is ±]0 to 20V
and low (which ensures that images with excellent contrast are obtained.

3−51障壁層の酸素含有量が夫々0.16、o3.0
4.05.0.6aLo−mic%の感光体の場合、負
帯電時で初期表面電位か約−620v乃至−670Vの
近辺で飽和しているのに対し、正帯電時には0.16a
Lαη1c%の酸素含有で+600■まで向上しそれ以
上の酸素含有で負帯電時と同様にほぼ+620V乃至+
675vで飽和傾向を示している。一方、残留電位は酸
素含有量か0.16 atomic%のときて一20V
及び+35v1Q、3aLomic%で一75V及び+
90■、0.4aLomic96て一110vと+12
5■、0.5aLomic%で一145v及び+160
V、そして0.6ato+nic%のときて一180■
と+205Vと酸素含有量の増大lこ伴って高くなる。
3-51 The oxygen content of the barrier layer is 0.16 and o3.0, respectively.
4.05. In the case of a 0.6aLo-mic% photoreceptor, when negatively charged, the initial surface potential is saturated around -620V to -670V, whereas when positively charged, it is 0.16a.
When the oxygen content is Lαη1c%, the voltage increases to +600V, and when the oxygen content is higher than that, it reaches approximately +620V to +620V, which is the same as when negatively charged.
It shows a tendency to saturate at 675v. On the other hand, the residual potential is -20V when the oxygen content is 0.16 atomic%.
and +35v1Q, -75V and + at 3aLomic%
90■, 0.4aLomic96 110v and +12
5■, 0.5aLomic% -145v and +160
V, and 0.6ato+nic% is -180■
and +205V, which increases as the oxygen content increases.

もっとも残留電位か±1.OOV以上の領域では初期表
面電位か±600v600vいこと、史lこは残留電位
が最高で±150V程度あっても充分にコントラストの
優れた画像が得られることか7面誌されたので、a−5
i障壁層に含有する酸素の情は約005乃至Q、5at
omic%とするのか好ましい。即ち、a−5i障壁層
に含有する酸素の渚が約0.05atomic%以下の
時は層時体が基板からの電荷の注入を充分に阻止する機
能を持たず、逆に酸素の量が約05a【omic%以上
の時は残留電位が±150V150Vってコントラスト
の優れた画像が得られな(なるこきにより、酸素含有量
は約005乃至Q、5atomic%とするのが好適で
ある。尚、正帯電時にa−5i障壁層の酸素含有量が約
0.OB atomic%以下では初期表面電位がさほ
ど向上しない理由は層目体の整流性によるものと考えら
れる。
However, the residual potential is ±1. It has been reported that in the region above OOV, the initial surface potential is ±600V600V, and that even with a maximum residual potential of ±150V, images with sufficiently excellent contrast can be obtained. 5
The content of oxygen contained in the i barrier layer is approximately 005 to Q, 5at.
It is preferable to use omic%. That is, when the amount of oxygen contained in the a-5i barrier layer is less than about 0.05 atomic%, the layer layer does not have the function of sufficiently blocking charge injection from the substrate; When the residual potential is above 05a [omic%], the residual potential is ±150V150V, and an image with excellent contrast cannot be obtained. The reason why the initial surface potential does not improve much when the oxygen content of the a-5i barrier layer is about 0.0B atomic % or less during positive charging is thought to be due to the rectification of the layer body.

実験例2 この実験例ではOQ8aLOmic%の酸素を含有する
a−5i障壁層の厚さを変えて、感光体の初期表面電位
及び残留電位との関係を測定した。即ち、実験例1て作
成した厚さ05ミクロンで酸素を0.08aromic
%を含有するa=5i障壁層を有する感光体以外に、a
−5i障壁層かな(基板上にa−5i光導電体層を直接
形成した感光体、酸素含有量が何れも0、OB ato
mic%てa−8i障壁層の厚さを1ミクロン、24ミ
クロン、3ミクロン、4ミクロン、5ミクロン及び6ミ
クロンとした感光体を作成した。
Experimental Example 2 In this experimental example, the thickness of the a-5i barrier layer containing OQ8aLOmic% oxygen was varied and the relationship between the initial surface potential and residual potential of the photoreceptor was measured. That is, the thickness of 0.05 microns prepared in Experimental Example 1 contains 0.08 aromatic oxygen.
In addition to photoreceptors with a = 5i barrier layer containing % a
-5i barrier layer (photoreceptor with a-5i photoconductor layer directly formed on the substrate, oxygen content is 0, OB ato
Photoreceptors were prepared in which the thickness of the a-8i barrier layer was 1 micron, 24 micron, 3 micron, 4 micron, 5 micron, and 6 micron in mic%.

次にこれら各感光体を実験例1と同一の条件のドに帯電
、露光して初期表面電位と残留電位を測定した。
Next, each of these photoreceptors was charged and exposed to light under the same conditions as in Experimental Example 1, and the initial surface potential and residual potential were measured.

これらの測定結果は第3図に示される通りで、図中、横
軸はa−5i障壁層の膜厚を、左縦軸は初期表面電位を
、右縦軸は残留電位を示し、またカーブfE)、fF)
は夫々正及び負帯電時の初期表面電位と膜厚の関係を、
カーブ(Gl、σ1)は夫々正及び負帯電時の残留電位
と膜厚の関係を示す。この図から明らかな様に、a−5
i障壁層が形成されていない感光体の場合、初期表面電
位は正帯電時て400■、負帯電時て一360■と低い
が、厚さ05ミクロンのa−5i障壁層(酸素含有it
 O,08atomi CX )を形成した場合、特に
負帯電時に初期表面電位の著しい向上が見られ実に一6
00vともなる。また正帯電時にも470vと高(なっ
ている。この様に厚さ0.5ミクロンのa−5i障壁層
の介在により初期表面電位がカールソン方式による作像
を可能ならしめる程度に向上するということは、それ以
下の厚さであっても同様に初期表面電位を向上すること
を意味し、第3図からみて約02ミクロン以上の厚さが
あれば最低限の初期表面電位を保証する。
These measurement results are shown in Figure 3, in which the horizontal axis represents the film thickness of the a-5i barrier layer, the left vertical axis represents the initial surface potential, the right vertical axis represents the residual potential, and the curve fE), fF)
are the relationship between the initial surface potential and film thickness when positively and negatively charged, respectively.
The curves (Gl, σ1) show the relationship between the residual potential and film thickness during positive and negative charging, respectively. As is clear from this figure, a-5
In the case of a photoreceptor without an i-barrier layer, the initial surface potential is as low as 400 μm when positively charged and -360 μs when negatively charged.
When O,08atomi CX) was formed, a remarkable improvement in the initial surface potential was observed, especially when negatively charged, and it was actually
It also becomes 00v. In addition, even when positively charged, it is as high as 470V.As shown above, due to the presence of the 0.5 micron thick A-5I barrier layer, the initial surface potential is improved to the extent that image formation by the Carlson method is possible. means that the initial surface potential is similarly improved even if the thickness is less than that, and as seen from FIG. 3, a minimum initial surface potential is guaranteed if the thickness is about 0.2 microns or more.

一方、膜厚を1ミクロンとしたときは初期表面電位は夫
々+475v及び−625vと幾分ながらも向上するが
、これに伴って残留電位も高くなり25V及び−20V
となる。膜厚を更に厚(することにより初期表面電位は
幾分は向上するがほぼ飽和傾向を示す反面、残留電位は
高くなり、現に膜厚24ミクロンで初期表面電位か+5
00V及び−630V。
On the other hand, when the film thickness is set to 1 micron, the initial surface potential improves somewhat to +475V and -625V, respectively, but the residual potential also increases accordingly to 25V and -20V.
becomes. By making the film thicker, the initial surface potential improves somewhat, but on the other hand, the residual potential increases, and at a film thickness of 24 microns, the initial surface potential is +5
00V and -630V.

残留電位が+50V及び−40v13ミクロンで初期表
面電位か505■及び−650V、残留電位か70V及
び−60v14::クロンで初期表面電位が+530V
及び’−670V、残留電位が+110V及び−95V
、5ミクロンで初期表面電位が550V及び−680V
、残留電位か+155v及び−145V、そして6ミク
ロンで初期表面電位が+570V及び−700Vに対し
残留電位か+210■及び−185Vともなる。上述の
通り、残留電位が約±150V以下であれば充分にコン
トラストの優れた画像か得られるので第3図の結果から
も明らかな様に3−51障壁層の膜厚は最大5ミクロン
程度までとすることかでき、またその最少厚さも前述の
通り約02ミクロン以上あればよい。
The initial surface potential is 505 V and -650 V when the residual potential is +50 V and -40 V 13 microns, and the initial surface potential is +530 V when the residual potential is 70 V and -60 V 14:: Kron.
and '-670V, residual potential is +110V and -95V
, initial surface potential of 550V and -680V at 5 microns
, the residual potentials are +155V and -145V, and the initial surface potentials at 6 microns are +570V and -700V, while the residual potentials are +210V and -185V. As mentioned above, if the residual potential is about ±150V or less, images with sufficiently excellent contrast can be obtained, so as is clear from the results in Figure 3, the thickness of the 3-51 barrier layer can be up to about 5 microns. As mentioned above, the minimum thickness may be approximately 0.2 microns or more.

次に上記各種感光体とは別にa−5i障壁層として厚さ
を0.3ミクロン、酸素含有量を1 atomic%と
した以外は同し構成の感光体を作成した。この感光体を
同様の方法により帯電、露光し初期表面電位と残留電位
を測定した。その結果は第3図において測定値(J)、
(Kl、fL+、岡として示す通りで、け)、(K)は
夫々正及び負帯電時の初期表面電位を、fL+、(財)
は夫々正及び負帯電時の残留電位を示す。
Next, apart from the various photoreceptors described above, photoreceptors having the same structure were prepared except that an a-5i barrier layer was used, the thickness was 0.3 microns, and the oxygen content was 1 atomic%. This photoreceptor was charged and exposed in the same manner, and the initial surface potential and residual potential were measured. The results are shown in Figure 3 as measured values (J),
(Kl, fL+, as shown as Oka, ke), (K) are the initial surface potentials at positive and negative charging, respectively, fL+, (Foundation)
represent the residual potential when positively and negatively charged, respectively.

即ち、測定結果によれば初期表面電位は夫々−1−63
0V及び−660vと作像可能な充分に高い値が得られ
ているとともに、残留電位も±150V程度とコントラ
ストの良好な画像が得られることを保証している。この
ことは、λ−5i障壁層を例えは03ミクロン程度の薄
層としたときは酸素の含有量を0、5 atomic%
以上とすることができることを意味し、上述の測定値か
らも明らかな様に1acomic%の酸素を含有しても
残留電位が最大限度の約±150■となるので薄層とし
たときに限って1 atomic%までの酸素を含有す
ることかできる。尚、ここでいうシ専層とは03ミクロ
ンに限らす、約02乃至04ミクロン程度であれば同様
に酸素を最大1atomic%まで含有できる。
That is, according to the measurement results, the initial surface potential is -1-63, respectively.
Sufficiently high values for image formation, such as 0 V and -660 V, are obtained, and the residual potential is approximately ±150 V, which guarantees that images with good contrast can be obtained. This means that when the λ-5i barrier layer is made thin, for example, about 0.3 microns, the oxygen content is reduced to 0.5 atomic%.
As is clear from the above measurement values, even if 1 acomic% of oxygen is contained, the residual potential will be the maximum limit of about ±150■, so only when it is made into a thin layer. It can contain up to 1 atomic percent oxygen. Note that the exclusive layer here is limited to 0.3 microns, and if it is about 0.2 to 0.4 microns, it can similarly contain up to 1 atomic % of oxygen.

実験例3 ここでは実験例1.2で作成した各感光体に対し作像実
験を行った。即ち、各感光体を+5.6 KV、。
Experimental Example 3 Here, an image forming experiment was conducted for each photoreceptor produced in Experimental Example 1.2. That is, +5.6 KV for each photoreceptor.

−5,6KVの電圧源に接続されたコロナチャージャで
夫々正と負に帯電し次いて画像露光し、2成分現像剤で
現像した後転写紙に転写して画質を調べた。
The images were charged positively and negatively using a corona charger connected to a voltage source of -5 and 6 KV, and then imagewise exposed, developed with a two-component developer, and then transferred to transfer paper to examine the image quality.

その結果、a−51障壁層か形成されていない・感光体
から得られた画像は、正負何れの帯電時でも表面電位か
低い関係上、鮮明てな(全体として滲んだ画像となった
。一方、厚さが05ミクロンで酸素を0.6 atom
ic%含有する1−51障壁層を有する感光体及び厚さ
か6ミクロンで酸素を0.03a tomi c%金含
有るa−5i障壁層を有する感光体から得られた画像は
カブリが現われ不鮮明であった。これに対し、厚さが何
れも05ミクロンで酸素含有量が夫々0.0−1008
.016.03.04.0.5 atomic先のa−
8i障壁層を有する感光体及び酸素含有量か何れも0.
08at orni c%て厚さか1.24.3.4.
5ミクロンのa−5i障壁層を有する感光体からは何れ
も非常に鮮明な画像か得られ、本発明による優れた効果
か確認された。尚、酸素含有量が0.05atomic
%の感光体からは正帯電時(ζ他と比して幾分劣った画
像か得られたか実用上問題ない程度であった。
As a result, the image obtained from the photoreceptor without the A-51 barrier layer was not clear (the image as a whole was blurred) due to the low surface potential during both positive and negative charging. , 0.6 atoms of oxygen with a thickness of 0.5 microns
Images obtained from a photoreceptor with a 1-51 barrier layer containing 0.03a tomic% gold and a photoreceptor with an a-5i barrier layer approximately 6 microns thick and containing 0.03a tomic% gold were foggy and unclear. there were. On the other hand, the thickness is 0.05 micron and the oxygen content is 0.0-1008 respectively.
.. 016.03.04.0.5 atomic destination a-
A photoreceptor with an 8i barrier layer and an oxygen content of 0.
08at ornic% thickness 1.24.3.4.
Very clear images were obtained from the photoreceptors having the 5 micron a-5i barrier layer, confirming the excellent effects of the present invention. In addition, the oxygen content is 0.05 atomic
% photoreceptor, when positively charged (ζ) images were obtained that were somewhat inferior to those of ζ and others, but there was no problem in practical use.

また、厚さ0.3ミクロンで酸素を1 atomic%
含有するa−5i障壁層を有する感光体に対しても同様
の作像実験を行ったところコン1−ラストの優れた鮮明
な画像が得られた。
In addition, 1 atomic% of oxygen is added at a thickness of 0.3 microns.
Similar imaging experiments were conducted on a photoreceptor having an a-5i barrier layer, and clear images with excellent contrast were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電子写真感光体を製造するだめの
グロー放電分解装置の概略図、第2図はアモルファスシ
リコン障壁層における酸素含有量と初期表面電位及び残
留電位の関係を示すグラフ図、第3図はアモルファスシ
リコン障壁層のDi厚と初期表面電位及び残留電位の関
係を示すグラフ図である。 (1)・5i1−14ガスを密封した第1タンク(2)
 −B21(6カスを密封した第2タンク(3)・・0
2カスを密封した第3タンク(4)、(5)、(6)・
・調整弁 (7) 、(s) 、(9) ・ メ − タ リ ン
 グツくル フ゛(10)、(11)・・主管 (17)反応管 (18)・・・共振振動コイル (19)・・基板 出Mr人 ミノルタカメラ株式会社 同 河村孝夫 同 京セラ株式会社 第1図
FIG. 1 is a schematic diagram of a glow discharge decomposition apparatus for manufacturing an electrophotographic photoreceptor according to the present invention, and FIG. 2 is a graph diagram showing the relationship between oxygen content, initial surface potential, and residual potential in an amorphous silicon barrier layer. , FIG. 3 is a graph showing the relationship between the Di thickness of the amorphous silicon barrier layer, the initial surface potential, and the residual potential. (1)・First tank sealed with 5i1-14 gas (2)
-B21 (Second tank (3) with 6 dregs sealed...0
3rd tank (4), (5), (6) in which 2 wastes are sealed
・Adjustment valve (7), (s), (9) ・Metering valve (10), (11)...Main pipe (17) Reaction tube (18)...Resonance vibration coil (19) )... Mr. Takao Kawamura, Minolta Camera Co., Ltd., Kyocera Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、導電性基板とアモルファスシリコン光導電体層間に
、酸素と約10乃至20000 PPmの周期律表第n
l b族不純物を含むアモルファスシリコン障壁層を形
成したことを特徴とする電子写真感光体。
1. Between the conductive substrate and the amorphous silicon photoconductor layer, oxygen and about 10 to 20,000 ppm of the periodic table n
An electrophotographic photoreceptor comprising an amorphous silicon barrier layer containing impurities of the lb group.
JP19513884A 1984-09-17 1984-09-17 Electrophotographic sensitive body Pending JPS60143359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19513884A JPS60143359A (en) 1984-09-17 1984-09-17 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19513884A JPS60143359A (en) 1984-09-17 1984-09-17 Electrophotographic sensitive body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14418980A Division JPS5766439A (en) 1980-05-08 1980-10-13 Electrophotographic receptor

Publications (1)

Publication Number Publication Date
JPS60143359A true JPS60143359A (en) 1985-07-29

Family

ID=16336085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19513884A Pending JPS60143359A (en) 1984-09-17 1984-09-17 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60143359A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127561A (en) * 1979-03-26 1980-10-02 Canon Inc Image forming member for electrophotography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127561A (en) * 1979-03-26 1980-10-02 Canon Inc Image forming member for electrophotography

Similar Documents

Publication Publication Date Title
US4489149A (en) Electrophotographic amorphous silicon member
JPS59223441A (en) Electrophotographic sensitive body
JPH021305B2 (en)
JPH021301B2 (en)
JPH021304B2 (en)
US4943503A (en) Amorphous silicon photoreceptor
JPS6363051A (en) Electrophotographic sensitive body
JPS60143359A (en) Electrophotographic sensitive body
JPS58171053A (en) Photoreceptor
JPH0241023B2 (en)
JPS61110152A (en) Photosensitive body
JPH0338584B2 (en)
JPH021302B2 (en)
JPH05232731A (en) Electrophotograhic sensitive member
JPH0256662B2 (en)
JPH0334060B2 (en)
JPS62151856A (en) Photoconductive member
JPS61281249A (en) Photosensitive body
JPS61182052A (en) Photosensitive body and copying method using it
JPH0256661B2 (en)
JPS60235156A (en) Photosensitive body
JPH02146054A (en) Electrophotographic sensitive body
JPS6385566A (en) Electrophotographic sensitive body
JPH01274155A (en) Electrophotographic sensitive body
JPH0350264B2 (en)