JPS60143355A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS60143355A
JPS60143355A JP24815883A JP24815883A JPS60143355A JP S60143355 A JPS60143355 A JP S60143355A JP 24815883 A JP24815883 A JP 24815883A JP 24815883 A JP24815883 A JP 24815883A JP S60143355 A JPS60143355 A JP S60143355A
Authority
JP
Japan
Prior art keywords
layer
region
low resistance
intermediate layer
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24815883A
Other languages
Japanese (ja)
Inventor
Masatoshi Wakagi
政利 若木
Kunihiro Tamahashi
邦裕 玉橋
Shigeharu Konuma
重春 小沼
Megumi Naruse
成瀬 恵
Toshiyuki Ono
俊之 大野
Mitsuo Chikazaki
近崎 光夫
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24815883A priority Critical patent/JPS60143355A/en
Publication of JPS60143355A publication Critical patent/JPS60143355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent generation of white, blur, etc. of the printed image by laminating a photoconductive layer in which a high resistance part occupies the main region and a low resistance region exists partially on a base via an intermediate layer and making the resistance value of the intermediate layer equal to or higher than the low resistance region. CONSTITUTION:A high resistance region 1A and a low resistance region 1B are both made present in a photoconductive layer 1 of a photosensitive body constituted by providing the layer 1 on a base 2. An intermediate layer 3 having the resistance value equal to or higher than the resistance value of the region 1B is made present between the layer 1 and the base 2. The layer 1 consists of a-Si: and the resistance value thereof is about 10<13>OMEGAcm. The intermediate layer 3 is formed by using a-Si:O. The resistance value of such layer 3 is about 10<14>OMEGAcm and the dielectric relaxation time is about 20sec and therefore the fast potential attenuation is suppressed even if there is the low resistance region 1B which is the cause for white etc. extisting on the layer 1. No adverse influence is thus given to the light attenuation of the region 1A. The satisfactory image is thereby obtd.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子写真感光体に係り、特にレーザービームプ
リンタへの適用に好適な電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electrophotographic photoreceptor, and particularly to an electrophotographic photoreceptor suitable for application to a laser beam printer.

〔発明の背景〕[Background of the invention]

従来、電子写真感光体の光導電性材料として5eXSe
合金、CdS等の無機物やポリビニルカルバゾール(P
VK)等の有機物が用いられている。しかしこれらの無
機物は要件が強く、製造時の取扱いや使用後の処理等に
問題がある。また、これらの材料から構成される感光体
は表面の硬度が十分でないため、使用中表面に傷がつい
たりして像を悪化させていた。これらの欠点を改良する
ため水素を含む非晶質Si(以下a−8i:)(と略す
)を感光体として用いることが提案された(例えば特開
昭54−78135号公報参照)。
Conventionally, 5eXSe has been used as a photoconductive material for electrophotographic photoreceptors.
Alloys, inorganic substances such as CdS, and polyvinylcarbazole (P
Organic substances such as VK) are used. However, these inorganic substances have strong requirements, and there are problems in handling during production and treatment after use. Furthermore, since the surface of photoreceptors made of these materials does not have sufficient hardness, the surface is scratched during use, resulting in poor images. In order to improve these drawbacks, it has been proposed to use hydrogen-containing amorphous Si (hereinafter abbreviated as a-8i) as a photoreceptor (see, for example, Japanese Patent Laid-Open No. 78135/1983).

一般的な電子写真感光体の構造を第1図に示し、その等
価回路を第2図に表わすと膜の表面電位■の時間変化は
次式で表わされる。
The structure of a general electrophotographic photoreceptor is shown in FIG. 1, and its equivalent circuit is shown in FIG. 2. The time change in the surface potential (2) of the film is expressed by the following equation.

AnV= −−十A τ ・・・(1) τ=RC 几:感光体の抵抗値 C:感光体の静電容量A:定数 感光体の抵抗率をρ、比誘電率をεとするとτ=εε0
ρ ・・・(2) εo :真空の誘電率(8,85X10−14CF/c
rn))と表わす事ができる。
AnV=--10A τ...(1) τ=RC 几: Resistance value of the photoconductor C: Capacitance of the photoconductor A: Constant If the resistivity of the photoconductor is ρ and the relative dielectric constant is ε, then τ =εε0
ρ...(2) εo: Dielectric constant of vacuum (8,85X10-14CF/c
It can be expressed as rn)).

τは電子写真感光体としては、10(8)以上である事
が必要である。
τ needs to be 10(8) or more for an electrophotographic photoreceptor.

a−8i:Hの場合εは11程度である。τを1Q84
K1以上にするには、 ρ、= io” [:Ω・口〕 が必要となる。
In the case of a-8i:H, ε is about 11. τ to 1Q84
To make it K1 or higher, ρ,=io” [:Ω・mouth] is required.

ところでa−8i:Hをグロー放電法等で作成するとρ
を1013〔Ω・α〕以上にするのは難しくなる。
By the way, if a-8i:H is created by glow discharge method etc., ρ
It becomes difficult to make the value greater than 1013 [Ω·α].

このため、a−8i:HにBやOをドープした9、Cや
Nを含有させる等して抵抗率を上げたりしている。
For this reason, resistivity is increased by doping a-8i:H with 9, C, or N, which is doped with B or O.

またa−8i:Hでρが10131(Ω・03以上なく
てもa −8ich等の電荷注入阻止層(ブロッキング
層)を感光体と基体との間に設けて帯電能を上げる方法
もある(特開昭56−24354号公報等φ照)。
In addition, even if ρ is not 10131 (Ω・03 or more) for a-8i:H, there is a method to increase the charging ability by providing a charge injection blocking layer (blocking layer) such as a-8ich between the photoreceptor and the substrate ( (see JP-A No. 56-24354, etc.).

本願発明者は、反応性スパッターにより、a−8i:H
t作製した。その時、スパッター中水素分圧をコントロ
ールする事によシρが1013[Ω・釧〕以上のa−8
i:Hを再現性よく作製する事に成功した。
The inventor of this application has developed a-8i:H by reactive sputtering.
t was prepared. At that time, by controlling the hydrogen partial pressure during sputtering, a-8
We succeeded in producing i:H with good reproducibility.

これにより、BやOをドープしたシ、CやNを含有させ
たり、またブロッキング層を用いたりしなくても帯電能
の高い感光体を得る事ができた。
As a result, it was possible to obtain a photoreceptor with high charging ability without containing B or O-doped film, C or N, or without using a blocking layer.

しかし、この感光体を用いて印画試験を行った結果、コ
ピーサンプル上に白ヌケが見られた。これは第5図に示
すように感光体に局所的に柱状の低抵抗部IBが存在す
るためであると考えられる。
However, when a printing test was conducted using this photoreceptor, white spots were observed on the copy sample. This is thought to be due to the presence of columnar low resistance portions IB locally on the photoreceptor, as shown in FIG.

他の部分は高抵抗部IAである。事実本願発明者が作製
したa−8i:H膜のチャージアップの様子を電子顕微
鏡で観察した結果、チャージアップしていない部分(黒
くみえる部分)が存在する事がわかった。
The other part is a high resistance part IA. In fact, as a result of observing the state of charge-up of the a-8i:H film produced by the present inventor with an electron microscope, it was found that there were portions (parts that appeared black) that were not charged-up.

問題の電子写真上の白ヌケはこの低抵抗部分から表面の
チャージがぬける事によっておこるも9と考えられる。
It is thought that the white spots on the electrophotograph in question are caused by the surface charge escaping from this low-resistance portion.

4 勿論このような低抵抗部分ができる事は好ましい事では
ない。しかしこのような部分をなくす事は、特に高速成
膜を行う際には、非常に困難である。
4 Of course, the formation of such a low resistance part is not a desirable thing. However, it is extremely difficult to eliminate such portions, especially when performing high-speed film formation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は光導電層が水素化アモルファスシリコン
系等高抵抗・低抵抗側領域が存在するにもかかわらず印
字画像の白ヌケやボケ等の発生を防止することの可能な
電子写真感光体を提供するにある。
An object of the present invention is to provide an electrophotographic photoreceptor in which the occurrence of white spots, blurring, etc. in printed images can be prevented despite the presence of high and low resistance regions in which the photoconductive layer is made of hydrogenated amorphous silicon, etc. is to provide.

〔発明の概要〕[Summary of the invention]

本発明において光導電層は高抵抗部が主たる領域を占め
、部分的に低抵抗領域が存在するものであり、この光導
電層は支持基体上に中間層を介して積層されている。そ
してこの中間層は光導電層中の低抵抗領域と同等或いは
それより高い抵抗値を有するものである。
In the present invention, the photoconductive layer has a high-resistance portion mainly occupying a region, and a low-resistance region partially exists, and this photoconductive layer is laminated on a supporting substrate with an intermediate layer interposed therebetween. This intermediate layer has a resistance value equal to or higher than the low resistance region in the photoconductive layer.

前記のようにコピーサンプルにおいて白ヌケが発生する
のは以下のように考える事ができる。前記低抵抗部分の
σを1012[:Ω・口〕であると仮定する。(2)式
から表面電位減衰が10倍速くなっているのがわかる。
The reason why white spots occur in copy samples as described above can be considered as follows. It is assumed that σ of the low resistance portion is 1012 [:Ω·mouth]. It can be seen from equation (2) that the surface potential decay is 10 times faster.

この速い電位減衰を多層構造にしておさえる訳であるが
、多層構造ではどのように電荷が減衰するかを考える。
This rapid potential attenuation can be suppressed by using a multilayer structure, but let us consider how the charge attenuates in a multilayer structure.

二層構造を第3図に示し、その等価回路全第4図に示す
。電価減衰に対する方程式は次式の様になる。
The two-layer structure is shown in FIG. 3, and its complete equivalent circuit is shown in FIG. The equation for charge decay is as follows:

QIIVIIC+、几1は、それぞれ第2図の層(光導
電層1)の電荷量、電位差、容量、抵抗値。Q2 、V
2 、C2、R2け中間層2の電荷量。
QIIVIIC+ and 几1 are the charge amount, potential difference, capacitance, and resistance value of the layer (photoconductive layer 1) shown in FIG. 2, respectively. Q2, V
2, C2, and R2 are the charge amounts of the intermediate layer 2.

電位差、容量、抵抗値である。また、QI、Q2は、そ
れぞれQI 、Q2の時間による一次微分であ・る。
They are potential difference, capacitance, and resistance value. Furthermore, QI and Q2 are the first-order differentials of QI and Q2 with respect to time, respectively.

(3)式を解きこの感光体の表面電位の時間変化をめる
と次式のようになる。
Solving equation (3) and calculating the time change in the surface potential of this photoreceptor results in the following equation.

V = V r + V2 ・・・(4)ここで、VO
IIVO2は積分定数、τ1.τ2はそれぞれ図の光4
電層1、中間層3のI電緩和時間で で表わされる。V1@ V2は、それぞれ光導電層1、
中間層3にかかる電圧であシ、■が表面電位となる。(
4)式から明らかなように7里が小さくても、τ2がそ
れより大きければ、表面電位の減衰は遅くなる。
V = V r + V2 ... (4) Here, VO
IIVO2 is an integral constant, τ1. τ2 is the light 4 in the figure, respectively.
It is expressed by the I-electric relaxation time of the electric layer 1 and the intermediate layer 3. V1@V2 are photoconductive layer 1,
The voltage applied to the intermediate layer 3 is the surface potential. (
As is clear from equation 4), even if 7ri is small, if τ2 is larger than it, the surface potential decays slowly.

また初期条件として光導電層1、中間層3を流れる電流
が等しいとすると、V(+ Vxの初期値は次のように
なる。
Further, assuming that the currents flowing through the photoconductive layer 1 and the intermediate layer 3 are equal as an initial condition, the initial value of V(+Vx is as follows.

SVI =VORt / (Rt +Rz )ここでV
oは感光体にかかる初期電位である。
SVI = VORt / (Rt + Rz) where V
o is the initial potential applied to the photoreceptor.

白ヌケを防止するためには、低抵抗部分で■2がvlと
同程度又はそれ以上である事が必要である。すなわち几
2がR1と同程度かそれ以上である事が必要となる。
In order to prevent white spots, it is necessary that (2) be equal to or higher than vl in the low resistance portion. In other words, it is necessary that R2 be equal to or greater than R1.

光導電層1をa−8i:Hとすると抵抗率は1013Ω
釧、銹電緩和時間は10方程度である。この層中に抵抗
率1012Ωm誘電緩和時間1派の低抵抗部があると仮
定する。
If the photoconductive layer 1 is a-8i:H, the resistivity is 1013Ω.
The relaxation time of Sen and Ryoden is about 10 degrees. It is assumed that there is a low resistance part in this layer with a resistivity of 1012 Ωm and a dielectric relaxation time of type 1.

中間層3を酸素化アモルファスシリコン(以下a−8i
:Oと略す)とするとその抵抗率は1014Ωm1誘電
緩和時間は20方程度である。
The intermediate layer 3 is made of oxygenated amorphous silicon (hereinafter referred to as a-8i).
:O), its resistivity is 1014Ωm1, and the dielectric relaxation time is about 20 degrees.

光導電層1をlOμm1中間層3を0.1μmとして電
位減衰の様子を(4)、(6)式から計算したのが第6
図である。図中人の曲線は、層3がない時の低抵抗部の
電位減衰曲線である。Bの曲線は、層3を導入した時の
低抵抗部の電位減衰曲線である。
The sixth figure shows how the potential attenuation was calculated using equations (4) and (6), assuming that the photoconductive layer 1 was 10 μm and the intermediate layer 3 was 0.1 μm.
It is a diagram. The curve shown in the figure is the potential attenuation curve of the low resistance part when the layer 3 is not present. The curve B is the potential decay curve of the low resistance part when layer 3 is introduced.

C,Dは高抵抗部の電位減衰曲線で、それぞれ暗減衰、
光減衰を表わす。
C and D are the potential decay curves of the high resistance part, respectively, dark decay and
Represents light attenuation.

この図から光導電層1の導入は、低抵抗部の電位減衰の
速度を遅くシ、かつ高抵抗部の光減衰に悪影響を与えな
い事がわかる。
From this figure, it can be seen that the introduction of the photoconductive layer 1 slows down the rate of potential attenuation in the low resistance part and does not adversely affect the optical attenuation in the high resistance part.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例について図面を用いて説明する。 Examples will be described below with reference to the drawings.

実施例1 第7図に本発明における水素を含むa−8i光導電体の
作製装置を示す。
Example 1 FIG. 7 shows an apparatus for producing an a-8i photoconductor containing hydrogen according to the present invention.

a−8i光導電体の作製方法は、第7図において反応槽
をI X 10−6T□rrに排気し、120φA4ド
ラム基板5をヒータによ!113001:”まで加熱し
、Atドラムの脱ガスを行った。しかる後、200Cま
で冷却し保温した。一方ガスは次のように調整した。ア
ルゴンボンベ11及び水素ボンベ12カラ、ソれぞれマ
スフローコントローラ9.10を介し、所定流量に調整
し、ガス混合器8へ送り、その後ニードルパルプ13に
より反応槽4内がIX 10−3TOrrになるように
調整し、最後にメインパルプ11によf) 5 X 1
0−sTQrrに調整した。
The method for manufacturing the a-8i photoconductor is as shown in FIG. 7: the reaction tank is evacuated to I x 10-6 T□rr, and the 120φ A4 drum substrate 5 is heated with a heater. The At drum was heated to 113,001" and degassed. Thereafter, it was cooled to 200C and kept warm. On the other hand, the gas was adjusted as follows: 11 argon cylinders and 12 hydrogen cylinders, each with mass flow. The flow rate is adjusted to a predetermined value via the controller 9.10, and sent to the gas mixer 8. Thereafter, the inside of the reaction tank 4 is adjusted to IX 10-3 TOrr by the needle pulp 13, and finally the main pulp 11 is fed. 5 x 1
Adjusted to 0-sTQrr.

富国9由偕→]I汁−001人rブフノくツi−かり1
1P外シリコンターゲツト7は、99.99%以上のも
のを使用した。スパッター中はAAドラム基板温度が一
定となるように冷却、加熱を適宜行った。
Fukoku 9 Yuka →] I soup-001 person r Bufunokutsu i-kari 1
The non-1P silicon target 7 used was 99.99% or more. During sputtering, cooling and heating were performed as appropriate to keep the temperature of the AA drum substrate constant.

反応槽へのアルゴンガスと水素ガスの混合ガス比は、ア
ルゴンと水素の全流量に対する水素の流量で定義し行っ
た。
The mixed gas ratio of argon gas and hydrogen gas to the reaction tank was defined as the flow rate of hydrogen to the total flow rate of argon and hydrogen.

以上の方法で混合ガス比0.2〜0.8で、5μm厚に
成膜した時の電気抵抗率を、第8図に示す。
FIG. 8 shows the electrical resistivity when a film was formed to a thickness of 5 μm using the above method at a mixed gas ratio of 0.2 to 0.8.

混合ガス比が0.4以上において光導電体の電気抵抗率
が1013Ω副以上を示す事が判った。
It was found that when the mixed gas ratio was 0.4 or more, the electrical resistivity of the photoconductor was 1013Ω or more.

実施例2 実施例1に示した方法で、外径120φのAtドラム上
に、混合ガス比0.5で、10μm厚のa−8i光導装
体にり製し、tユ 印画試験の結果、印画サンプル上に白ヌケがみられた。
Example 2 A 10 μm thick A-8I light guide was produced on an At drum with an outer diameter of 120 φ at a mixed gas ratio of 0.5 using the method shown in Example 1, and the results of the T Yu printing test were as follows. White spots were observed on the print sample.

このa−8i光導電体表面を金蒸着せずに電子顕微鏡で
観察した。試料表面に径10μm程度の黒点が見られた
。これは、試料がチャージアップするが、電気伝導度が
低い部分ではチャージがぬけて黒く見えるためだと考え
られる。
The surface of this a-8i photoconductor was observed with an electron microscope without gold vapor deposition. A black spot with a diameter of about 10 μm was observed on the sample surface. This is thought to be because the sample charges up, but in areas with low electrical conductivity, the charge escapes and appears black.

さらに定量的にチャージアップの様子を調べるため、E
 PMA (Electron Probe Micr
o Ana−1yser)を用いて実験した。
In order to further quantitatively investigate the state of charge-up,
PMA (Electron Probe Micro
o Ana-lyser) was used for the experiment.

Si−にα線の発生量の比の電子加速電圧依存を測定し
た。
The dependence of the ratio of the amount of α-rays generated to Si- on the electron acceleration voltage was measured.

X線の発生量は次のように考える事ができる。The amount of X-rays generated can be considered as follows.

X線発生のための電圧しきい値をEbとする。電子の加
速電圧を■、吸収電流を工とするとX線発生量Ixはお
およそ次式で表わされる。
Let Eb be the voltage threshold for X-ray generation. If the electron acceleration voltage is {circle around (2)} and the absorption current is {circumflex over (x)}, then the amount of X-ray generation Ix can be approximately expressed by the following equation.

Ixoc(V Eb)2・I −(7)ここで大体の近
似で I−(V−Eb) ・・・(8) とすると Ix ” (V E b ) 3−(9)低抵抗部とそ
れ以外の部分ではチャージアップのちがいによりEbの
値がちがいIxにちがいが生じると考えられる。
Ixoc(VEb)2・I-(7)Here, by rough approximation, I-(V-Eb)...(8) If Ix ''(VEb) 3-(9) Low resistance part and it In other parts, it is thought that differences in charge-up cause differences in the value of Eb and differences in Ix.

低抵抗部とそれ以外の部分のIxO比の電子の加速電圧
の依存性を第9図に示す。(9)式によシ低抵抗部およ
びそれ以外の部分でのEbは、それぞれ2.2KV、2
.4KVと見積られた。低抵抗部は、それ以外の部分よ
シ200V程度チャージアップ量が少ないと考えられる
FIG. 9 shows the dependence of the IxO ratio of the low resistance part and other parts on the electron acceleration voltage. According to equation (9), Eb in the low resistance part and other parts are 2.2KV and 2KV, respectively.
.. It was estimated to be 4KV. It is thought that the low resistance part has a smaller charge-up amount by about 200V than the other parts.

この低抵抗部から電荷がぬけて、印画試験において白ヌ
ケができたと考えられる。
It is thought that the electric charge was removed from this low-resistance portion, causing white spots to appear in the printing test.

実施例3 ターゲットを5i02とし、実施例1と同様な方法で、
外径120φのAtドラム上に、0.1μm厚程鹿のa
−8i:Oを作製した。この時、スパッタガスはArの
みで、30 sCCm流した。その他の条件は、実施例
1と同様である。
Example 3 Using the same method as Example 1, using 5i02 as the target,
On an At drum with an outer diameter of 120φ, a deer a of about 0.1 μm thick was placed.
-8i:O was produced. At this time, the sputtering gas was only Ar, which was flowed at 30 sCCm. Other conditions are the same as in Example 1.

その後、ターゲットを84ターゲツトに交換し実施例2
と同様な方法で10μm厚のa Si光導電体を作製し
た。
After that, the target was replaced with 84 target and Example 2
A 10 μm thick a Si photoconductor was prepared in the same manner as described above.

以上のようにして得られたa−8i光導電体を用い印画
試験を行った結果、白ヌケのない画質のすぐれた印画サ
ンプルを得る事ができた。
A printing test was conducted using the a-8i photoconductor obtained as described above, and as a result, a printing sample with excellent image quality and no white spots could be obtained.

この感光体表面を実施例2と同様に金蒸着を行わずに電
子顕微鏡で観察した。その結果、実施例2で観察された
のと同様の粒子が観測された。しかしこの部分からチャ
ージはぬけずに黒点になっていない。中間層3によりチ
ャージのぬけがおさえられたためと考えられる。
The surface of this photoreceptor was observed with an electron microscope in the same manner as in Example 2, without gold vapor deposition. As a result, particles similar to those observed in Example 2 were observed. However, the charge did not come out of this area and it did not become a black spot. This is thought to be because the intermediate layer 3 suppressed charge leakage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば電子写真上の白ヌ
ケをなくすることが可能となシ良好な画像が得られると
いう効果がある。
As explained above, according to the present invention, there is an effect that it is possible to eliminate white spots on an electrophotograph and to obtain a good image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第5図は単層型電子写真感光体の模式断面図、
第2図は第1図の電子写真感光体の等価回路図、第3図
は本発明の一実施例に係る電子写真感光体の模式断面図
、第4図は第3図の電子写真感光体の等価回路図、第6
図は第1図及び第3図の各電子写真感光体の表面電位減
衰曲線図、第7図は本発明の電子写真感光体を得る為の
装置の一例であるスパッタリング装置の系統図、第8図
はガス混合比に対する電子写真感光体の抵抗率特性図、
第9図は電子写真感光体の電子加速電圧に対するSi−
にα線強度比特性図である。 1・・・光導電層、2・・・支持基体、3・・・中・間
層、IA■1図 君2図 躬3図 前4図 第5図 躬e;図 時間[5ecJ 第8図 う昆令力゛人しし 第1頁の続き 0発 明 者 大 野 俊 之 日立市幸町3丁目所内 ■発明者 近 崎 光 夫 日立市幸町3丁目所内 0発 明 者 華 園 雅 信 日立市幸町3丁目所内
Figures 1 and 5 are schematic cross-sectional views of a single-layer electrophotographic photoreceptor;
2 is an equivalent circuit diagram of the electrophotographic photoreceptor shown in FIG. 1, FIG. 3 is a schematic sectional view of an electrophotographic photoreceptor according to an embodiment of the present invention, and FIG. 4 is an equivalent circuit diagram of the electrophotographic photoreceptor shown in FIG. 3. Equivalent circuit diagram of 6th
The figures are surface potential decay curve diagrams of each of the electrophotographic photoreceptors shown in FIGS. 1 and 3, FIG. The figure shows the resistivity characteristics of the electrophotographic photoreceptor with respect to the gas mixture ratio.
Figure 9 shows the Si-
2 is an α-ray intensity ratio characteristic diagram. 1... Photoconductive layer, 2... Supporting substrate, 3... Intermediate/intermediate layer, IA Continued from page 1 of Ukonreirikijinshishi 0 Inventor: Toshi Ohno, 3-chome, Saiwaimachi, Hitachi City Inventor: Mitsuru Chikazaki, 3-chome, Saiwaimachi, Hitachi City 0 Inventor: Masanobu Hanazono Hitachi City Saiwaimachi 3-chome premises

Claims (1)

【特許請求の範囲】 1、光導電層をその支持基体上に設けてなる電子写真感
光体において、前記光導電層は高抵抗領域と低抵抗領域
とが共に存在しておシ、該光導電層と前記支持基体との
間には前記低抵抗領域よりも同等以上の抵抗値を有する
中間層を具備することを特徴とする電子写真感光体。 2、特許請求の範囲第1項記載において、前記光導電層
は水素化アモルファスソリコン系でおり、その抵抗率は
10′3Ω・m以上であることを%徴とする電子写真感
光体。 3、特許請求の範囲第1項または第2項記載において、
前記中間層は酸化アモルファスシリコン系でおることを
特徴とする電子写真感光体。
[Scope of Claims] 1. In an electrophotographic photoreceptor comprising a photoconductive layer provided on its supporting substrate, the photoconductive layer has both a high resistance region and a low resistance region; An electrophotographic photoreceptor characterized in that an intermediate layer having a resistance value equal to or higher than that of the low resistance region is provided between the layer and the support base. 2. The electrophotographic photoreceptor according to claim 1, wherein the photoconductive layer is made of a hydrogenated amorphous silicon material and has a resistivity of 10'3 Ω·m or more. 3. In claim 1 or 2,
An electrophotographic photoreceptor, wherein the intermediate layer is made of amorphous silicon oxide.
JP24815883A 1983-12-29 1983-12-29 Electrophotographic sensitive body Pending JPS60143355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815883A JPS60143355A (en) 1983-12-29 1983-12-29 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815883A JPS60143355A (en) 1983-12-29 1983-12-29 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS60143355A true JPS60143355A (en) 1985-07-29

Family

ID=17174081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815883A Pending JPS60143355A (en) 1983-12-29 1983-12-29 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60143355A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763545A (en) * 1980-10-03 1982-04-17 Canon Inc Photoconductive member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763545A (en) * 1980-10-03 1982-04-17 Canon Inc Photoconductive member

Similar Documents

Publication Publication Date Title
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JP3236692B2 (en) Electrophotographic photoreceptor
JPS60143355A (en) Electrophotographic sensitive body
JPS61159657A (en) Photosensitive body
JPS6126054A (en) Electrophotographic sensitive body
JPS60235150A (en) Photosensitive body
JPH01316750A (en) Electrophotographic sensitive body
JPH03288861A (en) Electrophotographic sensitive body
JPH01185638A (en) Photosensitive body
JPS58163954A (en) Photoconductive material
JP2000187345A (en) Image forming device
JPS628786B2 (en)
JPH02256084A (en) Electrophotography device
JPH01269945A (en) Electrophotographic sensitive body
JPS5981649A (en) Electrophotographic receptor
JPS628161A (en) Photosensitive body
JPH0473145B2 (en)
JPS628785B2 (en)
JPH04122950A (en) Electrophotographic sensitive body
JPS63143559A (en) Electrophotographic sensitive body
JPS6314164A (en) Electrophotographic sensitive body
JPH01142664A (en) Electrostatic latent image forming method
JP2001209197A (en) Electrophotographic photoreceptor
JPS60235151A (en) Photosensitive body
JPH0356635B2 (en)