JPS60142718A - Electronic ac voltage variable device - Google Patents

Electronic ac voltage variable device

Info

Publication number
JPS60142718A
JPS60142718A JP25120883A JP25120883A JPS60142718A JP S60142718 A JPS60142718 A JP S60142718A JP 25120883 A JP25120883 A JP 25120883A JP 25120883 A JP25120883 A JP 25120883A JP S60142718 A JPS60142718 A JP S60142718A
Authority
JP
Japan
Prior art keywords
voltage
load
induction motor
power
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25120883A
Other languages
Japanese (ja)
Inventor
Takashi Deguchi
隆 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25120883A priority Critical patent/JPS60142718A/en
Publication of JPS60142718A publication Critical patent/JPS60142718A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/445Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being transistors in series with the load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To simplify the system constitution by using an induction motor of an air-conditioner as a load of a voltage variable device and mounting a power MOSFET of the voltage variable device to the enclosure of the motor so as to save a heat sink. CONSTITUTION:One terminal of the AC input of a diode bridge 11 of an electronic AC voltage variable device is connected to a single phase AC power source 1 via a load 4 together with the other AC input terminal. Furthermore, a drain and a cathode of the power MOSFET12 are connected to the DC output terminal of the bridge 11 and a series circuit comprising a fixed resistor 9 and a variable resistor 10 is connected in parallel between the drain and the cathode. Then a gate of the FET12 is connected to a connecting point of the resistors 9, 10 and a voltage applied to the load 4 is changed by changing the resistance value of the resistor 10. The induction motor 13 of the air-conditioner is used as the load 4, and the FET12 is mounted on the enclosure of the induction motor 13 so as to save the heat sink thereby simplifying the system constitution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は交流電源に接続される比較的軽負荷の2 ゛ 
− 電圧制御を行うもので、主として、空気調和機の誘導電
動機の速度制御に適する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to a relatively light-loaded power supply connected to an AC power supply.
- It performs voltage control and is mainly suitable for speed control of induction motors in air conditioners.

従来例の構成とその問題点 従来例について第1図〜第3図を用いて説明する。Conventional configuration and its problems A conventional example will be explained using FIGS. 1 to 3.

第1図は一般に広く知られる出力電圧可変型単巻変圧器
(以下、スライダックと呼ぶ)を示す。
FIG. 1 shows a generally widely known variable output voltage type autotransformer (hereinafter referred to as a slideac).

1は交流電源、2はスライダック、3はスライダック2
の出力タップ、4は負荷である。い捷スライダック2の
入力に印加された交流電源1の電源WEE v工は、出
力タップ3の位置により比例的に減少して、負荷4に負
荷電圧vLとして印加される。
1 is AC power supply, 2 is Slydac, 3 is Slydac 2
output tap, 4 is the load. The power supply WEE v of the AC power supply 1 applied to the input of the switching slide duck 2 is proportionally reduced depending on the position of the output tap 3 and is applied to the load 4 as a load voltage vL.

電源電圧■Iと、電荷電圧■Lの様子を、第3図にそれ
ぞれ実線及び、破線を粗いて示す。
The state of the power supply voltage ``I'' and the charge voltage ``L'' is shown in FIG. 3 by rough solid lines and broken lines, respectively.

スライダック2により交流出力電圧ケ可変する方式は構
造が簡単で、割合安価なため広く使用されているが、欠
点としては、重量が重く、構造が機械的であるため、シ
ステムとして制御するには不適であるということが上げ
られる。また、出力電圧を決定する要因は、機械的な接
触による為、3 ′ :゛ 長期信頼性、環境信頼性が低いという問題点もある。
The method of varying the AC output voltage using SLIDAC 2 has a simple structure and is relatively inexpensive, so it is widely used, but its disadvantages are that it is heavy and has a mechanical structure, making it unsuitable for control as a system. It can be said that Furthermore, since the factor that determines the output voltage is mechanical contact, there is also the problem of low long-term reliability and low environmental reliability.

次に電子式の交流電圧可変方式の一例を第2図に示す。Next, FIG. 2 shows an example of an electronic alternating voltage variable system.

5.6はダイオード、7はN P Nトランジスタ、8
はPNP l−ランジスタ、9は固定抵抗器、10は可
変抵抗器である。1及び4は第1図と共通である。
5.6 is a diode, 7 is an N P N transistor, 8
is a PNP l-transistor, 9 is a fixed resistor, and 10 is a variable resistor. 1 and 4 are the same as in FIG.

固定抵抗器9及び可変抵抗器10によりNPNトランジ
スタ7とPNP)ランジスタ8のそれぞれベース電圧が
決定され、エミッタの電位が決定し、従って負荷4に印
加される電圧が決まる。交流電源1の正相及び逆相にそ
れぞれのトランジスタ7.8が対応し、交流電源1と、
負荷4に印加される電圧との差、即ち電圧降下分はトラ
ンジスタ7及び8のvcE として消費される。ダイオ
ード5及び6はそれぞれのトランジスタ7.8が逆バイ
アスされた際のベース→コレクタ電流を阻止する為に必
要である。
The base voltages of the NPN transistor 7 and the PNP transistor 8 are determined by the fixed resistor 9 and the variable resistor 10, the emitter potential is determined, and therefore the voltage applied to the load 4 is determined. Each transistor 7.8 corresponds to the positive phase and negative phase of the AC power source 1, and the AC power source 1 and
The difference from the voltage applied to the load 4, ie, the voltage drop, is consumed as vcE of the transistors 7 and 8. Diodes 5 and 6 are necessary to block base-to-collector current when the respective transistor 7.8 is reverse biased.

第2図の回路によっても電源電圧VI及び負荷電圧vL
の電圧波形は第3図の様になる。
The circuit shown in Figure 2 also allows the power supply voltage VI and load voltage vL to be
The voltage waveform of is shown in FIG.

第2図のトランジスタによる交流電圧可変方式によれば
、可変抵抗器10ケ可変することにより負荷電圧■Lを
可変することができるが、主に電力消費を行うトランジ
スタ7.8が2素子となること、相互のコレクタに絶縁
が必要なこと等により、小型化、低価格化に限界がある
。またトランジスタ7.8のベースに入っている可変抵
抗器1oの両端には負荷電圧vLが常に印加されており
、結局、可変抵抗器1oには交流電源1の電圧■工相当
の耐圧が必要になり、更に出力を安全に可変操作するた
めに絶縁も必要になる。従って、この回路をマイクロコ
ンピュータ等に用いてシステム化するためには、絶縁、
高耐圧の制御菓子が必要となり、コンパクトなシステム
には適会しなくなってし捷う。
According to the AC voltage variable system using transistors in Figure 2, the load voltage ■L can be varied by varying 10 variable resistors, but transistors 7 and 8, which mainly consume power, become two elements. However, there are limits to miniaturization and cost reduction due to the necessity of insulating the collectors from each other. In addition, the load voltage vL is always applied to both ends of the variable resistor 1o included in the base of the transistor 7.8, and as a result, the variable resistor 1o needs to have a withstand voltage equivalent to the voltage of the AC power supply 1. Furthermore, insulation is also required to safely vary the output. Therefore, in order to systemize this circuit by using it in a microcomputer, etc., insulation,
A control device with high pressure resistance is required, and it is no longer suitable for a compact system.

発明の目的 本発明は上記従来例の問題点を克服し、単純な回路構成
で、システム化も可能な、比較的軽負荷を対象とした電
力コントロール全目的とするもの54 、・ である。
OBJECTS OF THE INVENTION The present invention overcomes the problems of the above-mentioned conventional examples, has a simple circuit configuration, can be systemized, and is intended for all purposes of power control for relatively light loads.

発明の構成 そして上記目的を達成するために本発明は次の構成をと
ったものである。
Structure of the Invention In order to achieve the above object, the present invention has the following structure.

すなわち牟相交流電飾より、一端を負荷を介し、他端を
直接に、それぞれダイオードブリッジの交流入力に接続
し、前記ダイオードブリッジの直流出力に、前記パワー
MO8FETのドレイン及び、ソースを接続し、前記ド
レイン及びソースに並列に、固定抵抗器及び可変抵抗器
の直列回路を接続し、更に、前記固定抵抗器及び可変抵
抗器の接続点に前記パワーAV108 FETのゲート
に接続し、前記可変抵抗器の抵抗値を可変することによ
り、前記負荷に印加される電圧を可変する構成とすると
ともに、前記負荷ケ誘導電動機とし、この誘導電動機の
筐体に前記パワーMO8FETi取付けたものである。
That is, from the cross-phase AC lighting, one end is connected to the AC input of the diode bridge through a load and the other end is directly connected to the AC input of the diode bridge, and the drain and source of the power MO8FET are connected to the DC output of the diode bridge. A series circuit of a fixed resistor and a variable resistor is connected in parallel to the drain and source, and the connection point of the fixed resistor and the variable resistor is connected to the gate of the power AV108 FET, and the connection point of the variable resistor is connected to the gate of the power AV108 FET. The structure is such that the voltage applied to the load is varied by varying the resistance value, the load is an induction motor, and the power MO8FETi is attached to the casing of the induction motor.

実施例の説明 第4図においてFET12 のドレインソース間には電
源電圧v工から負荷電圧vL會引Iた電圧が印6 、 
DESCRIPTION OF THE EMBODIMENTS In FIG. 4, the voltage between the drain and source of the FET 12 is marked 6, which is the difference between the power supply voltage V and the load voltage VL.
.

加されており(以下ドレイン電圧■Dsと略す)、ドレ
イン電圧を固定抵抗器9と可変抵抗器10で分圧された
電圧がゲートーソース間に印加されている(以下ゲート
電圧vGsと略す)。第6図及び第7図はFET12の
特性図である。第6図はID5−■G8特性を示す。通
常、FETにはスレッシュホールド電圧vTHがあり、
ゲート電圧vGsがスレッシュホールド電圧■THk越
すとON領域に入って電流lDsが流れる。
A voltage obtained by dividing the drain voltage by a fixed resistor 9 and a variable resistor 10 is applied between the gate and the source (hereinafter abbreviated as gate voltage vGs). 6 and 7 are characteristic diagrams of the FET 12. FIG. 6 shows the ID5-■G8 characteristics. Usually, a FET has a threshold voltage vTH,
When the gate voltage vGs exceeds the threshold voltage THk, it enters the ON region and current IDs flows.

第7図は、より5−vDs特性を示す。ゲート電圧vG
Skパラメータとして、ドレイン電流IDSとドレイン
電圧■Dsの関係がめられる。第7図中の一点鎖線が、
第4図に示す回路の動作点を示している。よりpH−1
:vL−■工のときのドレイン電流よりsのピーク電流
値を示す。vDPは■L−0即ち■Ds#■Iのときの
ドレイン電圧vDsのピーク電圧値を示す、ゲート電圧
■Gsの値を上昇させるとドレイン電流よりs電流増加
方向、ドレイン電圧■Dsは減少方向へ動作点が移動す
る。
FIG. 7 shows more 5-vDs characteristics. Gate voltage vG
The relationship between the drain current IDS and the drain voltage Ds can be seen as the Sk parameter. The dashed-dotted line in Figure 7 is
4 shows the operating points of the circuit shown in FIG. 4. pH-1
:vL-■ indicates the peak current value of s from the drain current when working. vDP indicates the peak voltage value of the drain voltage vDs when ■L-0, that is, ■Ds#■I.When the gate voltage ■Gs value is increased, the s current increases more than the drain current, and the drain voltage ■Ds decreases. The operating point moves to

更に電源電圧■Iは交流電圧であるので、電圧7 、− 位相により、一点鎖線で示す動作点ラインが第7図の矢
印方向に移動する。
Furthermore, since the power supply voltage I is an alternating current voltage, the operating point line indicated by the dashed line moves in the direction of the arrow in FIG. 7 due to the phase of the voltage 7.

従って第4図に示す可変抵抗器10の値をある値にセッ
トすると、IDP−■DP ’1m結ぶ動作点ライン上
の一点に動作点Aがめられる。電源電圧■Iの位相によ
り、動作点は上記動作点Aとよりsとvvsの原点ケ結
ぶほぼ直線上を移動することになる。
Therefore, when the value of the variable resistor 10 shown in FIG. 4 is set to a certain value, the operating point A is set at one point on the operating point line connecting IDP-DP'1m. Depending on the phase of the power supply voltage I, the operating point moves on a substantially straight line connecting the operating point A and the origins of s and vvs.

第5図に、電源電圧■Iと負荷電圧■Lの関係を示す。FIG. 5 shows the relationship between the power supply voltage ■I and the load voltage ■L.

前述のゲートのスレッシュホールド電圧■THの影響に
より、電源電圧■Iの電圧値が低くなる位相では、ドレ
イン電流よりsが極端に減少する為負荷電圧vLは減少
している。
Due to the influence of the gate threshold voltage TH described above, in the phase where the voltage value of the power supply voltage I becomes low, the load voltage vL decreases because s is much smaller than the drain current.

但し、ゲートのスレッシュホールド電圧vTHはドレイ
ン電流に対して比較的ゆるやかに減少しているため、高
調波成分は少ない。
However, since the gate threshold voltage vTH decreases relatively slowly with respect to the drain current, there are few harmonic components.

1だFET12に、ゲートのスレッシュホールド電圧の
ほぼ○となるものを採用すれば、負荷電圧■Lはほとん
ど電源電圧■Iに相似させることもできる。
If a FET 12 whose gate threshold voltage is approximately ○ is used, the load voltage (L) can be made almost similar to the power supply voltage (I).

一般に誘導電動機の可変速の手段として、−火室圧制御
が多く用いられている。その手段として誘導電動機の主
コイル及び補コイルの比率を段階制御方式もあるが、空
気調和機用としては、ノイズ及び空気調和機の風洞と共
鳴する電気音の発生が問題となり、一部の分野以外には
使用されていない。
Firebox pressure control is generally used as a means of variable speed for induction motors. As a means of achieving this, there is a stepwise control method for the ratio of the main coil and auxiliary coil of an induction motor, but for air conditioners, this poses a problem of noise and the generation of electrical sound that resonates with the air conditioner's wind tunnel, and is used in some fields. It is not used for anything else.

本発明による一次電圧制御は、誘導電動機に印加される
電圧を可変する方式であるので、電圧降下分の電力は、
パワーFET0熱損失となるので放熱器による放熱設計
が必要となる。
Since the primary voltage control according to the present invention is a method of varying the voltage applied to the induction motor, the power for the voltage drop is
Since the power FET causes zero heat loss, a heat radiation design using a heat radiator is required.

誘導電動機の一次電圧制御は、゛′タップ切換制御゛に
よる場合と本発明の様な電圧可変方式の場合とでは、電
源から見た効率はほぼ等しくなる。
Regarding the primary voltage control of an induction motor, the efficiency seen from the power source is approximately the same when using ``tap switching control'' and when using a variable voltage method such as the present invention.

つ−!す、切換タップを有した誘導電動機の入力と、本
発明の電子式交流電圧可変装置及び切換タップを有しな
い誘導電動機の入力和は、各速度域に於てほぼ等しくな
る訳である。
Tsu-! The sum of the inputs of the induction motor having a switching tap and the electronic AC voltage variable device of the present invention and the induction motor not having a switching tap are approximately equal in each speed range.

9 ζ ジ 換言丁扛ば、誘導電動機の中、低速音域では、タップ切
換方式に比べて、誘導電動機自身の損失が減少し、その
損失分をパワーFETが受け待つことになる。
In other words, in the low speed sound range of the induction motor, the loss of the induction motor itself is reduced compared to the tap switching method, and the power FET absorbs the loss.

一方、タップ切換制御の場合は、誘導電動機の体積的な
制約により、タップ数は通常3〜4本に制約されている
が、本発明によnば、無限に段階数を設定することがで
きる。またタップ切換制御の切換手段は、通常リレーの
接点による切換全使用するが、接点の寿命及び切換音の
発生により切換タイミング及び切換回数に制約があるが
、本発明によ扛ば、無接点、無音であることから、何ら
の制約なしに、変速が可能となる。
On the other hand, in the case of tap switching control, the number of taps is normally limited to 3 to 4 due to volume constraints of the induction motor, but according to the present invention, an infinite number of stages can be set. . In addition, the switching means for tap switching control normally uses relay contacts, but there are restrictions on the switching timing and number of switchings due to the life of the contacts and the generation of switching noise. Since it is silent, it is possible to change gears without any restrictions.

次に構造を第8図を用いて説明する。Next, the structure will be explained using FIG. 8.

13は負荷4として用いた金稠筐体ケ有する誘導電動機
であり、その筐体にFET12を取付け、放熱を行って
いる。前述の様ににJl!:TI2の損失をさめた、誘
導電動機13の総合効率はタップ切換方式の誘導電動機
の効率とほぼ等しいので、FET12の放熱のために誘
導電動機13に改造10ベフ を加える必要はない。
Reference numeral 13 denotes an induction motor having a metal housing used as the load 4, and an FET 12 is attached to the housing for heat radiation. As mentioned above, Jl! : Since the overall efficiency of the induction motor 13, which reduces the loss of TI2, is almost equal to the efficiency of a tap-switching type induction motor, there is no need to modify the induction motor 13 by 10 BEF to dissipate heat from the FET 12.

発明の効果 本発明によれば、比較的軽負荷の電力制御をコンパクト
に、安価に提供でき、システム化も容易にできるという
すぐれた特徴を持っている。
Effects of the Invention According to the present invention, power control for relatively light loads can be provided compactly and inexpensively, and systemization can be easily achieved.

第1の特徴は、電力制御用の素子が1素子で実現できる
ことである。
The first feature is that the power control element can be realized with one element.

第2に出力をコントロールする部分、即ち第4図に於け
る可変抵抗器10に印加される電圧が低いことである。
Second, the voltage applied to the part that controls the output, ie, the variable resistor 10 in FIG. 4, is low.

この電圧はゲート電圧vGsであるので通常の場合10
V程度ケ上限として制御できる。従って、交流電源10
0vまたは2ooV系の制御を行うには極めて低い制御
電圧であり、フォトカプラ等ケ使用して、容易にマイク
ロコンピュータ等と組会せて、システム化することがで
きる。
This voltage is the gate voltage vGs, so normally 10
It can be controlled with an upper limit of about V. Therefore, AC power supply 10
The control voltage is extremely low for controlling a 0V or 2ooV system, and it can be easily combined with a microcomputer or the like to form a system using a photocoupler or the like.

更に、回路構成が極めて単純であり、安価に構成できる
こと、各部品のショート、オープン等の異常時に対して
も、回路の電源側に負荷が入っていることから、安全性
が高いという利点ケ有して11ペブ いる。
Furthermore, the circuit configuration is extremely simple and can be constructed at low cost, and even in the event of an abnormality such as a short circuit or open circuit of each component, the load is placed on the power supply side of the circuit, so it has the advantage of being highly safe. There are 11 pebs.

また、例えば空気調和機の送風機用の誘導電動機を制御
する際に、送風量ケはぼ無段に制御でき、無腎、無接点
のため、切換操作の制約がなく、誘導電動様の効率を落
すこともなく、且つ、負荷の誘導電動機の筐体を利用す
るので放熱器を省略でき、フィーリングの向上、省エネ
ルギー、コストダウン等を総合的に行えるという、多く
の利点を有している。
In addition, when controlling the induction motor for the blower of an air conditioner, for example, the air flow rate can be controlled virtually steplessly, and since there are no kidneys or contacts, there are no restrictions on switching operations, and the efficiency of induction motors can be achieved. It does not need to be dropped, and since it uses the casing of the induction motor as a load, a heat radiator can be omitted, and it has many advantages such as improving the feeling, saving energy, and reducing costs.

以上、種々の優扛た効果を有しており、比較的軽負荷の
電圧制御をシステム的に行う手段として最適のものとな
るのである。
As described above, it has various excellent effects, and is the most suitable means for systematically controlling voltage of relatively light loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスライダックを用いた従来例を示す回路図、第
2図はトランジスタを用いた従来例を示す回路図、第3
図は第1図、第2図の電圧制御波形図、第4図は本発明
の一実施例による電子式交流電圧可変装置の回路図、第
6図はその電圧制御波形図、第6図はFETのより5−
vGS特性図、第7図はFETのよりs−■Ds特性図
、第8図はその要部斜視図である。 1・・・・・・交流電源、4・・・・・・負荷、9・・
・・・・固定抵抗器、1o・・・・・・可変抵抗器、1
1・・・・・・ダイオードブリッジ、12・・・・・・
パワーMO8FET’、13・・・・・・誘導電動体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ダ 
峰 − 第 4 図 第5図 第6面 第7図
Figure 1 is a circuit diagram showing a conventional example using slideac, Figure 2 is a circuit diagram showing a conventional example using transistors, and Figure 3 is a circuit diagram showing a conventional example using a transistor.
The figures are voltage control waveform diagrams of Figures 1 and 2, Figure 4 is a circuit diagram of an electronic AC voltage variable device according to an embodiment of the present invention, Figure 6 is a voltage control waveform diagram thereof, and Figure 6 is a circuit diagram of an electronic AC voltage variable device according to an embodiment of the present invention. More than FET 5-
vGS characteristic diagram, FIG. 7 is a s-■Ds characteristic diagram of the FET, and FIG. 8 is a perspective view of the main part thereof. 1...AC power supply, 4...Load, 9...
...Fixed resistor, 1o...Variable resistor, 1
1...Diode bridge, 12...
Power MO8FET', 13...Induction motor. Name of agent: Patent attorney Toshio Nakao and one other person
Peak - Figure 4, Figure 5, Page 6, Figure 7

Claims (1)

【特許請求の範囲】[Claims] ダイオードブリッジの交流入力の一端は負荷ケ介して、
壕だ他端は直接羊相交流電源に、それぞれ接続し、前記
ダイオードブリッジの直流出力にハ、パワーMO8FE
Tのドレイン及び、ソースを接続し、前記ドレイン及び
ソースに並列に、固定抵抗器及び可変抵抗器の直列回路
を接続し、更に、前記固定抵抗器及び可変抵抗器の接続
点に、前記パワーMO3−FETのゲーIf接続し、前
記可変抵抗器の抵抗値を可変することにより、前記負荷
に印加される電圧を可変する構成とするとともに、前記
負荷を誘導電動機とし、この誘導電動機の筐体に前記パ
ワーMO8FETを取付けた電子式交流電圧可変装置。
One end of the AC input of the diode bridge is connected to the load via the
The other end of the trench is directly connected to the phase AC power supply, respectively, and the power MO8FE is connected to the DC output of the diode bridge.
The drain and source of T are connected, a series circuit of a fixed resistor and a variable resistor is connected in parallel to the drain and source, and the power MO3 is connected to the connection point of the fixed resistor and the variable resistor. - The configuration is such that the voltage applied to the load is varied by connecting the gate If of the FET and varying the resistance value of the variable resistor, and the load is an induction motor, and the case of the induction motor is An electronic AC voltage variable device equipped with the power MO8FET.
JP25120883A 1983-12-29 1983-12-29 Electronic ac voltage variable device Pending JPS60142718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25120883A JPS60142718A (en) 1983-12-29 1983-12-29 Electronic ac voltage variable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25120883A JPS60142718A (en) 1983-12-29 1983-12-29 Electronic ac voltage variable device

Publications (1)

Publication Number Publication Date
JPS60142718A true JPS60142718A (en) 1985-07-27

Family

ID=17219301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25120883A Pending JPS60142718A (en) 1983-12-29 1983-12-29 Electronic ac voltage variable device

Country Status (1)

Country Link
JP (1) JPS60142718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131626A (en) * 1983-09-05 1984-07-28 Kanegafuchi Chem Ind Co Ltd Preparation of polymer having silyl end group
US9527354B2 (en) 2012-04-04 2016-12-27 The Yokohama Rubber Co., Ltd. Tire repair fluid container packaging box and method of injecting tire repair fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535695B1 (en) * 1971-04-14 1980-09-16
JPS5626473U (en) * 1979-08-06 1981-03-11
JPS57658A (en) * 1980-06-03 1982-01-05 Fujitsu Ltd Measuring device for quantity of charge of toner
JPS5717265B2 (en) * 1978-06-21 1982-04-09

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535695B1 (en) * 1971-04-14 1980-09-16
JPS5717265B2 (en) * 1978-06-21 1982-04-09
JPS5626473U (en) * 1979-08-06 1981-03-11
JPS57658A (en) * 1980-06-03 1982-01-05 Fujitsu Ltd Measuring device for quantity of charge of toner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131626A (en) * 1983-09-05 1984-07-28 Kanegafuchi Chem Ind Co Ltd Preparation of polymer having silyl end group
JPH0123487B2 (en) * 1983-09-05 1989-05-02 Kanegafuchi Chemical Ind
US9527354B2 (en) 2012-04-04 2016-12-27 The Yokohama Rubber Co., Ltd. Tire repair fluid container packaging box and method of injecting tire repair fluid

Similar Documents

Publication Publication Date Title
KR100430794B1 (en) Power supply apparatus and air conditioner using the same
EP1973223A2 (en) Inverter device and motor drive with inrush limiting circuit
JPS60142718A (en) Electronic ac voltage variable device
JP2574213B2 (en) Electronic AC voltage variable device for air conditioner blower
JP3964912B2 (en) Inrush current reduction circuit
JPH0241761B2 (en)
JP2005137191A (en) Control circuit for switch-mode power supply
TW456096B (en) A synchronous flyback converter
JPS60142719A (en) Electronic ac voltage variable device
US7030566B2 (en) Circuit arrangement for generating an AC voltage from a DC voltage
JPS5943830Y2 (en) Switching power supply with dead load circuit
JP2003133924A (en) High side switch driving power source
JPS60142721A (en) Electronic ac voltage variable device
RU1774319C (en) Stabilized power supply
JPH05316753A (en) Power circuit for car air conditioner
JPS60142712A (en) Electronic ac voltage variable device
RU2047270C1 (en) A c transistor switch
CN116761303A (en) Lighting device with transient current suppression function
SU1582348A1 (en) Device for current reversal in load
SU1479920A1 (en) Specialized secondary power source
JPH0539190U (en) DC / DC converter
KR100520962B1 (en) A power circuit of cooker
JPH0475527B2 (en)
JPH0116390Y2 (en)
JPH0525128B2 (en)