JPS6014240B2 - Underground storage tank for low temperature liquefied gas - Google Patents

Underground storage tank for low temperature liquefied gas

Info

Publication number
JPS6014240B2
JPS6014240B2 JP52058503A JP5850377A JPS6014240B2 JP S6014240 B2 JPS6014240 B2 JP S6014240B2 JP 52058503 A JP52058503 A JP 52058503A JP 5850377 A JP5850377 A JP 5850377A JP S6014240 B2 JPS6014240 B2 JP S6014240B2
Authority
JP
Japan
Prior art keywords
storage tank
temperature
underground storage
underground
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52058503A
Other languages
Japanese (ja)
Other versions
JPS54213A (en
Inventor
瑞人 井畔
亨 中沢
茂 後藤
敏 赤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Tokyo Gas Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP52058503A priority Critical patent/JPS6014240B2/en
Publication of JPS54213A publication Critical patent/JPS54213A/en
Publication of JPS6014240B2 publication Critical patent/JPS6014240B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/10Arrangements for preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground

Description

【発明の詳細な説明】 本発明はLNG,LPG等の低温液化ガスを貯蔵するた
めの池下貯槽に関し、更に詳述すればこの地下貯槽内の
低温液化ガスの冷熱の伝毒熱により地下貯槽が埋設され
る地盤が凍結して濠士がむやみに発達することを防止し
、凍士の発達を有限に保つための温度制御装置が付設さ
れた低温液化ガス用地下貯槽に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an underground storage tank for storing low-temperature liquefied gas such as LNG and LPG, and more specifically, the underground storage tank is This invention relates to an underground storage tank for low-temperature liquefied gas that is equipped with a temperature control device to prevent the ground in which it is buried from freezing and the moat to develop unnecessarily and to keep the growth of the moat to a finite limit.

LNG,LPG等の低温液化ガスを貯蔵する地下貯槽で
は、その貯液の冷熱のために、地下貯槽周囲の地盤が凍
結する。
In underground storage tanks that store low-temperature liquefied gases such as LNG and LPG, the ground around the underground storage tanks freezes due to the cold heat of the stored liquid.

この地盤の凍結現象は、必ずしも地下貯槽にとって不利
なものではなく、むしろその安全面から貯槽周囲に発達
した凍結士は利用価値が高い。それは、地盤が凍結する
ことによって、その地盤の強度が上昇し、合せて、液密
、気密の性質を有するようになるからである。しかし乍
ら反面、土壌は、凍結するときに凍結膨張と称する膨張
作用が生じ、この凍結膨張によって様々な有害な現象が
発生する。即ち、貯槽に作用する外圧、貯槽周辺機器の
移動、貯槽自体の凍上などである。このため、低温液化
ガス用地下貯槽周囲の地盤は、凍土の発達を抑制し、凍
結膨張が生じないように凍結させる必要がある。従来、
このような濠土の発達を制御する方法として、池下貯槽
と所定間隔離間して地盤中にヒータを埋設し、このヒー
タの熱量によってヒータ埋設箇所以上に濠士が広がるこ
とを防止する方法は知られている。しかるに、貯槽の外
方よりこの貯0糟に向けてヒータ熱を与え、貯槽周囲の
地盤を温度制御する従釆のこの種のヒートフェンス方式
は、濠士がむやみに広がることは確実に防止できるが、
貯槽とヒータとの間の地盤が、一方ではヒータ埋設箇所
側から暖められると共に、他方では貯槽近傍の地盤に貯
液冷熱が直接伝熱され貯槽側より冷却されることになり
、このように地盤を一方側より加熱し、他方側より冷却
すると、この地盤内に氷塊(アイスレンズ)が生成し、
氷の層が成長し続けて、凍結膨張が生じる場合も考えら
れる。本発明はこのような従来の問題点を解決するため
になされたもので、低温液化ガス用地下符槽本体の壁体
もしくはこの本体に近接した地盤に上記本体周囲の地盤
を0℃の所定温度に制御する温度制御装置を埋設し、そ
して、地下貯槽本体の周囲の地盤中に所定の配列形態で
もつて埋設した複数の地中側温センサーを用いて、その
地下貯槽本体の周囲の地盤の凍結を貯槽本体側より的確
に制御することにより、凍結士の有益性を積極的に利用
すると同時に、凍結膨張を確実に抑制して凍結膨張に伴
って派生する有害な現象を制御し、かつ孫士がむやみに
広がることを防止するようにした低温液化ガス用地下貯
槽を提供することを目的とする。
This ground freezing phenomenon is not necessarily disadvantageous for underground storage tanks; in fact, freezing systems developed around storage tanks are of high value from the safety standpoint. This is because when the ground freezes, its strength increases and it also becomes liquid-tight and air-tight. However, on the other hand, when soil freezes, an expansion action called freeze expansion occurs, and this freeze expansion causes various harmful phenomena. That is, external pressure acting on the storage tank, movement of equipment surrounding the storage tank, frost heaving of the storage tank itself, etc. For this reason, the ground around the underground storage tank for low-temperature liquefied gas needs to be frozen to suppress the development of frozen soil and prevent freeze expansion. Conventionally,
As a method to control the development of such moated soil, there is a known method of burying a heater in the ground with a predetermined distance between it and the storage tank, and preventing the moat from spreading beyond the area where the heater is buried due to the amount of heat generated by this heater. It is being However, this type of heat fence method, which controls the temperature of the ground around the storage tank by applying heater heat to the storage tank from outside the storage tank, can reliably prevent the moat from spreading unnecessarily. but,
On the one hand, the ground between the storage tank and the heater is heated from the side where the heater is buried, and on the other hand, the cold heat of the stored liquid is directly transferred to the ground near the storage tank and is cooled from the storage tank side. When heated from one side and cooled from the other side, an ice mass (ice lens) is formed within this ground,
It is also possible that the ice layer continues to grow, causing freeze expansion. The present invention has been made in order to solve such conventional problems, and the ground around the main body is heated to a predetermined temperature of 0°C on the wall of the main body of the underground tank for low-temperature liquefied gas or on the ground adjacent to this main body. Freezing of the ground surrounding the underground storage tank is achieved by installing a temperature control device buried therein, and using a plurality of underground temperature sensors buried in a predetermined array in the ground surrounding the underground storage tank. By precisely controlling this from the storage tank itself, we can proactively utilize the benefits of the cryostat, reliably suppress freeze expansion, and control harmful phenomena that occur due to freeze expansion. An object of the present invention is to provide an underground storage tank for low-temperature liquefied gas that prevents the gas from spreading unnecessarily.

以下、本発明の一実施例につき図面を参照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図中1は地盤2内に上部を地上に突出した状態で埋設さ
れたコンクリート製の円形状地下貯槽本体で、その上端
開口部は鋼鉄製屋根3により閉塞され、また本体1内面
には図示していないが断熱材が張り付けられ、更にこの
断熱材にメンプレンが配設されて、内部にLNG,LP
G等の低温液化ガスが収容される。上記貯槽本体1の側
壁4には、周方向に沿って互にほぼ等間隔ずつ離間する
複数本の温度制御用パイプ5がそれぞれ側壁4ほぼ全長
に亘つて埋設されている。これら各制御用パイプ5は、
それぞれ上端が開口しかつ下端が閉塞する外側パイプ5
a内部に上下端が関口する内側パイプ5bが挿入された
二重管構造に構成され、上記内側パイプ5bはその下端
閉口部6を介して外側パイプ5a内(外側パイプ5a内
周面と内側パイプ5b外周面との間の間隙)に蓮適して
いる。上記両パイプ5a,5bの上部は、それぞれ側壁
4上端より外方に突出されており、内側パイプ5bの突
出上端がポンプ7を介菱する不凍液供給管8にそれぞれ
連続されていると共に、外側パイプ5aの突出上端がそ
れぞれ不凍液排出管9に連結され、また上記不凍液供甥
溝管8の一端が不凍液タンク(図示せず)に連結されて
、上記ポンプ7の作動によりこのタンク内の不凍液が供
給管8内を通って内側パイプ5b内に流入し、次いでそ
の下端関口部6より外側パイプ5a内を流れた後、排出
管9に排出されるようになっている。なお、上記ポンプ
7は、上記貯槽本体1の側方の地盤2内に埋設された地
中側温センサー10によって検知される地盤2所定箇所
の温度に応じたポンプ自動制御菱鷹11の指示により、
その能力が可変されて、上記不凍液の流量が自動制御さ
れるようになっている。地中側溢センサー10は、第1
図から明らかなように、貯槽本体1から遠ざかる方向に
沿って間隔をおいて複数埋設されている。つまり、これ
らの地中側温センサー10は、貯槽本体1の周囲から広
がる嫌士2aの厚さ方向に沿って並ぶ配列形態でもつて
埋設されている。次に、上記構成の低温液化ガス用地下
貯槽の作用を説明する。
In the figure, 1 is a concrete circular underground storage tank body buried in the ground 2 with its upper part protruding above the ground. Although it is not covered, a heat insulating material is attached, and a membrane is placed on this heat insulating material, allowing LNG and LP to be stored inside.
A low-temperature liquefied gas such as G is accommodated. A plurality of temperature control pipes 5 are embedded in the side wall 4 of the storage tank body 1, each extending approximately the entire length of the side wall 4 and spaced apart from each other at approximately equal intervals along the circumferential direction. Each of these control pipes 5 is
Outer pipes 5 each having an open upper end and a closed lower end.
The inner pipe 5b has a double pipe structure in which an inner pipe 5b whose upper and lower ends are closed is inserted into the inside of the outer pipe 5a (the inner circumferential surface of the outer pipe 5a and the inner pipe The lotus is suitable for the gap between 5b and the outer peripheral surface. The upper portions of both the pipes 5a and 5b respectively protrude outward from the upper end of the side wall 4, and the protruding upper end of the inner pipe 5b is connected to the antifreeze supply pipe 8 that passes the pump 7, and the outer pipe The protruding upper ends of the tubes 5a are connected to antifreeze discharge pipes 9, and one end of the antifreeze supply channel pipe 8 is connected to an antifreeze tank (not shown), and the antifreeze in this tank is supplied by the operation of the pump 7. The liquid flows into the inner pipe 5b through the pipe 8, flows through the outer pipe 5a from the lower end entrance 6, and is then discharged into the discharge pipe 9. The pump 7 is operated according to instructions from a pump automatic control unit 11 according to the temperature at a predetermined location in the ground 2 detected by an underground temperature sensor 10 buried in the ground 2 on the side of the storage tank body 1. ,
Its capacity is varied so that the flow rate of the antifreeze fluid is automatically controlled. The underground overflow sensor 10 is a first
As is clear from the figure, a plurality of them are buried at intervals along the direction away from the storage tank body 1. In other words, these underground temperature sensors 10 are buried in an array form along the thickness direction of the base plate 2a extending from the periphery of the storage tank body 1. Next, the operation of the underground storage tank for low temperature liquefied gas having the above configuration will be explained.

まず、ポンプ7を作動させることにより、不凍液タンク
からプラィン等の不凍液を供給管8内を通って内側パイ
プ5b内に流入させ、次いでその下端関口部6から外側
パイプ5a内を通って排出管9に排出し、このように温
度制御用パイプ5内に不凍液を循環する。この場合、上
記不凍液は0℃以下でかつ低温液化ガス用地下貯槽本体
1内に貯槽されるLNG,LPG等の貯液の温度よりも
高い温度で循環する。而して、上記貯槽本体1内の貯液
の冷熱が壁体に伝熱されるが、側壁4に伝毒熱された冷
熱の一部は上記パイプ5内を流れる不凍液と熱交換され
、不凍液によって地盤2の外に運びさられる。
First, by operating the pump 7, antifreeze such as prine is caused to flow from the antifreeze tank into the inner pipe 5b through the supply pipe 8, and then from the lower end entrance 6 to the outer pipe 5a and into the discharge pipe 9. In this way, the antifreeze liquid is circulated within the temperature control pipe 5. In this case, the antifreeze solution circulates at a temperature of 0° C. or lower and higher than the temperature of the liquid stored in the underground storage tank body 1 for low-temperature liquefied gas, such as LNG or LPG. As a result, the cold heat of the liquid stored in the storage tank body 1 is transferred to the wall body, but a part of the cold heat transferred to the side wall 4 is heat exchanged with the antifreeze flowing in the pipe 5, and is absorbed by the antifreeze. It is carried outside of Ground 2.

従って、上記貯液冷熱の全てが貯槽本体1の壁体より直
接地盤2伝わることが防止され、地盤2には、上記不凍
液の流量「温度等によって決まる0℃以下で貯液温度よ
りも高く、地盤2の状態等により適宜コントロールされ
た所定温度の熱量が伝達され、これにより貯槽本体1周
囲の地盤2が凍結する。この場合、地盤2内に埋設され
た洩り温センサー10:こより、地盤2所定箇所の温度
が測定されて疎土2aの厚さが計測され、その指示によ
り自動制御装置11が働いてポンプ7の能力が調節され
、不凍液の流量が調節される。その際、孫士2aの厚さ
方向に沿って並ぶ複数の地中側温センサー10は、それ
ぞれの埋設箇所の温度を測定する。したがって、これら
の測定信号からは、凍土2aの厚さの変化をきわめて詳
しく知ることができ、しかもその派生状況、すなわちそ
の凍土2aの状態の変化をも逐次詳しく知ることができ
る。ゆえに、自動制御装置11は、これらの情報に基づ
いてポンプ2の能力を細かく調整し、漁±2aの発達を
確実に制御することができる。この点において、自動制
御装置11は、温度の制御を司どろ制御部であるといえ
る。ちなみに、一定の厚さに保つべき疎土2aの境界の
位置に、単純に只一つの地中側温センサーを備えた場合
には、凍士2aの厚さの検出精度が低く、その孫土2a
の発達の制御能力が劣ることになる。このようにして、
自動制御装置11は、複数の地中側温センサー10から
の検出信号に基づいて、細かく的確な温度制御を行なう
Therefore, all of the cold heat of the stored liquid is prevented from being directly transmitted to the ground 2 from the wall of the storage tank main body 1, and the flow rate of the antifreeze liquid is ``determined by the temperature, etc., below 0°C and higher than the storage liquid temperature. The amount of heat at a predetermined temperature that is appropriately controlled depending on the condition of the ground 2 is transferred, and the ground 2 around the storage tank body 1 is thereby frozen.In this case, the leakage temperature sensor 10 buried in the ground 2: 2. The temperature at a predetermined location is measured, and the thickness of the loose soil 2a is measured. Based on the instructions, the automatic control device 11 operates to adjust the capacity of the pump 7 and the flow rate of the antifreeze. A plurality of underground temperature sensors 10 arranged along the thickness direction of the frozen soil 2a measure the temperature of each buried location.Therefore, from these measurement signals, it is possible to know changes in the thickness of the frozen soil 2a in extremely detailed manner. Moreover, the derived situation, that is, the change in the state of the frozen soil 2a, can be known in detail one by one.Therefore, the automatic control device 11 finely adjusts the capacity of the pump 2 based on this information, and The development of the loose soil 2a can be reliably controlled.In this respect, the automatic control device 11 can be said to be a control unit that controls the temperature. If only one underground temperature sensor is installed at the same location, the accuracy of detecting the thickness of Chishi 2a will be low, and the
The ability to control the development of children will be impaired. In this way,
The automatic control device 11 performs detailed and accurate temperature control based on detection signals from the plurality of underground temperature sensors 10.

これによって、貯槽本体1から地盤2中への冷熱量は自
由に制御され、猿士2aの発達が制御されて凍士2の厚
さが一定に保たれると共に、氷塊(アイスレンズ)の生
成、成長が制御され、凍結膨張が確実に抑制される。こ
のため、低温液化ガス用地下タンクは、凍結膨張に伴っ
て派生する凍上等の有害な作用を受けることなく、強度
が高くかつ液密、気密の性質を有する濠士2aに安定し
て支持される。なお、上記実施例では温度制御用パイプ
を貯槽本体の側壁のみ埋設するようにしたが、貯槽本体
の底壁にも温度制御用パイプを埋設することができ、ま
た二重管構造の多数の温度制御用パイプを埋設する代り
に、U字状、蛇管状等にパイプを埋設してもよい。
As a result, the amount of cold heat from the storage tank body 1 into the ground 2 can be freely controlled, the development of the ice cubes 2a is controlled, the thickness of the ice cubes 2 is kept constant, and the formation of ice blocks (ice lenses) is controlled. , growth is controlled and freeze expansion is reliably suppressed. Therefore, the underground tank for low-temperature liquefied gas is stably supported by the moat 2a, which has high strength and is liquid-tight and air-tight, without being subjected to harmful effects such as frost heaving caused by freezing and expansion. Ru. In the above embodiment, the temperature control pipe was buried only in the side wall of the storage tank body, but it is also possible to bury the temperature control pipe in the bottom wall of the storage tank body. Instead of burying the control pipe, the pipe may be buried in a U-shape, a serpentine shape, etc.

なおまた、温度制御用装置としては、パイプ構造のもの
に限られず、種々の変形が可能であり、温度制御は気体
、液体、もしくは電熱によって、凍士の厚さが所定の厚
さに保たれるように行なわれる。更に、上記実施例では
温度制御用パイプを貯槽本体側壁に埋設したが、これに
限られることはなく、貯槽本体に近接した地盤に温度制
御装置を埋設してもよく、その他の構成についても本発
明の要旨を逸脱しない範囲で種々変形して差支えない。
以上説明したように、本発明は低温液化ガス用地下貯槽
本体の壁体もしくはこの地下貯槽本体に近接した地盤に
上記本体周囲の地盤を000以下の所定温度に制御する
温度制御装置を埋設して、上記本体周囲の地盤の凍結を
この本体側より制御するように成し、そして上記本体周
囲の地盤中に、その本体から遠ざかる方向に沿って並ぶ
配列形態でもつて複数の地中側温センサーを埋設して、
それら複数の地中側温センサーからの検出信号に基づい
て温度制御装置を制御するように構成したから、それら
複数の地中側温センサーの検出信号に基づいて凍士の厚
さの変化をきわめて詳しく察知した上で細かい温度制御
を行なうことができ、この結果、貯槽本体周囲の凍士が
むやみに発達することが確実に防止され、孫士の厚さを
一定に保つことができると共に、残務吉膨張を確実に抑
制して凍結膨張に伴って派生する有害な現象を防止でき
、凍結士の有益性を有効に利用することができる等の利
点を有する。
Furthermore, the temperature control device is not limited to one with a pipe structure, and can be modified in various ways. It will be done in such a way that it will be done. Further, in the above embodiment, the temperature control pipe is buried in the side wall of the storage tank body, but the temperature control device is not limited to this, and the temperature control device may be buried in the ground close to the storage tank body. Various modifications may be made without departing from the gist of the invention.
As explained above, the present invention has a temperature control device buried in the wall of the main body of an underground storage tank for low-temperature liquefied gas or in the ground adjacent to the main body of the underground storage tank to control the ground around the main body to a predetermined temperature of 000 or less. , the freezing of the ground around the main body is controlled from the main body side, and a plurality of underground temperature sensors are arranged in the ground around the main body in a direction away from the main body. Bury it,
Since the temperature control device is configured to be controlled based on the detection signals from the plurality of underground temperature sensors, changes in the thickness of the refrigeration layer can be controlled based on the detection signals from the plurality of underground temperature sensors. It is possible to perform detailed temperature control based on detailed information, and as a result, it is possible to reliably prevent the unnecessarily developing of the freezing layer around the storage tank body, maintain a constant thickness of the freezing layer, and reduce backlogs. This method has advantages such as being able to reliably suppress freezing expansion and preventing harmful phenomena that occur due to freezing expansion, and making it possible to effectively utilize the benefits of a cryotechnologist.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図0−0線に沿う断面図である。 1・・・・・・低温液化ガス用地下貯槽本体、2・・・
・・・地盤、2a・・・・・・疎士、4・・・・・・側
壁、5・・・・・・温度制御用パイプ。 第1図 第2図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
It is a sectional view along line 0-0 of FIG. 1... Underground storage tank body for low temperature liquefied gas, 2...
...Ground, 2a...Soji, 4...Side wall, 5...Temperature control pipe. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 低温液化ガス用地下貯槽本体の壁体もしくはこの地
下貯槽本体に近接した地盤中に埋設された温度制御装置
を有し、この温度制御装置により、上記地下貯槽本体周
囲の地盤を0℃以下の所定温度に制御して、上棋記地下
貯槽本体周囲の地盤の凍土の厚さを一定に保つ低温液化
ガス用地下貯槽において、上記地下貯槽本体周囲の地盤
中に、この地盤中の温度を測定する地中測温センサーを
上記地下貯槽本体から遠ざかる方向に沿って間隔をおい
て複数埋設し、かつこれらの地中測温センサーの検出信
号に基づいて凍土の厚さを計測して前記温度制御装置の
温度制御を行なう制御部を有してなることを特徴とする
低温液化ガス用地下貯槽。
1. Has a temperature control device buried in the wall of the underground storage tank body for low-temperature liquefied gas or in the ground adjacent to the underground storage tank body, and this temperature control device keeps the ground around the underground storage tank body at a temperature of 0°C or less. In an underground storage tank for low-temperature liquefied gas, where the temperature is controlled to a predetermined level to maintain a constant thickness of frozen soil in the ground surrounding the underground storage tank body, the temperature in the ground around the underground storage tank body is measured. A plurality of underground temperature sensors are buried at intervals along the direction away from the underground storage tank body, and the temperature is controlled by measuring the thickness of the frozen soil based on the detection signals of these underground temperature sensors. An underground storage tank for low-temperature liquefied gas, characterized in that it has a control section that controls the temperature of the device.
JP52058503A 1977-05-20 1977-05-20 Underground storage tank for low temperature liquefied gas Expired JPS6014240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52058503A JPS6014240B2 (en) 1977-05-20 1977-05-20 Underground storage tank for low temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52058503A JPS6014240B2 (en) 1977-05-20 1977-05-20 Underground storage tank for low temperature liquefied gas

Publications (2)

Publication Number Publication Date
JPS54213A JPS54213A (en) 1979-01-05
JPS6014240B2 true JPS6014240B2 (en) 1985-04-12

Family

ID=13086213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52058503A Expired JPS6014240B2 (en) 1977-05-20 1977-05-20 Underground storage tank for low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS6014240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539523Y2 (en) * 1986-09-24 1993-10-07

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123230A (en) * 1981-01-23 1982-07-31 Mitsubishi Monsanto Chem Co Preparation of thermoplastic resin molded product having metal film
JPS57153887A (en) * 1981-03-04 1982-09-22 Japan Gasoline Heat-insulating water tank
JP3284372B2 (en) * 1993-02-09 2002-05-20 株式会社竹中工務店 Insulated pipe for injecting and removing liquefied natural gas into underground rock cavities
FI125018B (en) * 2012-02-29 2015-04-30 Wärtsilä Finland Oy LNG tank
EP3169587B1 (en) 2014-07-16 2020-02-12 The SkyLIFE Company, Inc. Methods and systems for mass distribution of supply packs
JP6886378B2 (en) * 2017-09-28 2021-06-16 鹿島建設株式会社 How to build underground tank structure and underground continuous wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539523Y2 (en) * 1986-09-24 1993-10-07

Also Published As

Publication number Publication date
JPS54213A (en) 1979-01-05

Similar Documents

Publication Publication Date Title
US3217791A (en) Means for maintaining perma-frost foundations
NO840022L (en) DEFROST PROTECTION DEVICE FOR STORAGE OR SUPPLY DEVICES FOR ANIMAL SUBSTANCES, SPECIAL WATER
JPS6014240B2 (en) Underground storage tank for low temperature liquefied gas
CN109791026A (en) Thermal siphon for the storage device that temperature is adjusted
JPH0989546A (en) Ice thickness measuring device
US3564862A (en) Method and apparatus for supporing a pipeline in permafrost environment
US3943889A (en) Heat distributing tanks for retarding surface freezing
RU2157872C2 (en) Mechanical design of cooled fill footing of structures and method for temperature control of permafrost soils
Yarmak Jr et al. Thermosyphon design for a changing arctic
JPS6117625A (en) Ground consolidation method and apparatus
JPS5953994B2 (en) Underground tank construction method
KR20120117204A (en) Apparatus of freeze prevention
RU2470114C2 (en) Thermopile for bridge supports
JPH02677Y2 (en)
RU2384672C1 (en) Cooled pile support for structures erected on permanently frozen soil
JPH08145297A (en) Heater equipment for low temperature liquefied gas tank
CN110359481A (en) A kind of insulating layer and the swollen system of the integrated heat-preserving anti-freezing of heating tube and implementation method
JPS6283599A (en) Underground tank of assembled continuous wall type having freezing pipe
JPH04366731A (en) Level detection device for ice heat storage tank
JPS6131360B2 (en)
JPH06278791A (en) Underground low temperature tank
JPS626160B2 (en)
JPS62159897A (en) Underground storage tank installation for low temperature liquefied gas
SU1124225A1 (en) Method for simulating ground freezing
RU2015481C1 (en) Water cooling device