JPS60142222A - Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus - Google Patents

Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus

Info

Publication number
JPS60142222A
JPS60142222A JP58245746A JP24574683A JPS60142222A JP S60142222 A JPS60142222 A JP S60142222A JP 58245746 A JP58245746 A JP 58245746A JP 24574683 A JP24574683 A JP 24574683A JP S60142222 A JPS60142222 A JP S60142222A
Authority
JP
Japan
Prior art keywords
closed
furnace
temperature
end tube
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58245746A
Other languages
Japanese (ja)
Inventor
Shigeki Tojo
東條 茂樹
Tatsuo Kamisaka
上坂 辰男
Takeo Kawate
川手 剛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58245746A priority Critical patent/JPS60142222A/en
Priority to DE3447724A priority patent/DE3447724C2/en
Publication of JPS60142222A publication Critical patent/JPS60142222A/en
Priority to US06/873,452 priority patent/US4666314A/en
Priority to US07/209,954 priority patent/USRE33245E/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure a temp. distribution in a furnace precisely and stably for a long term by setting plural tubes, which are different in length and closed at the ends, to a high pressure furnace, detecting a thermal emission from an inner wall of said tubes at the opening hole parts thereof to perform arithmetic processing. CONSTITUTION:The tubes 12 whose ends are closed are set while penetrating a furnace wall 11 of a high-pressure vessel. Detectors 13 containing photoelectric converters are provided at the opening hole parts of said tubes to convert the thermal emissions from the top end parts of the tubes 12 to electric signals to amplify them by amplifiers 14, then said signals are introduced to a computer 15 to perform respective necessary arithmetic processings. Thereat, the temp. measurement error due to stray light from side walls of the end closed tubes is corrected to take out only the thermal emission power at the top end part of said tube and to measure the temp. distribution in furnace. Thereby, the temp. distribution in furnace can be measured precisely and stably for a long term.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱間静水圧加圧(以−[、単[HIPと略記す
る。)装置の炉内の温度分布を測定する方法、特に閉端
管に取り刊けた光ファイバを利用したに記装置31の炉
内温度分布の4(す定法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for measuring temperature distribution in a furnace of a hot isostatic pressing (hereinafter abbreviated as HIP) device, particularly a closed This relates to the standard method for temperature distribution in the furnace of the device 31 described below, which utilizes optical fibers arranged in end tubes.

(従来技術) 現在、HIP装置には炉内の温度分布を測定する場合、
熱電対を異なった場所に複数個設置する方法が一般に採
用されているが、1 ’600〜2000℃という高温
雰囲気による熱電対素線の劣化やシャントエラーによる
測温誤差の発生などの問題がある。
(Prior art) Currently, when measuring temperature distribution in a furnace, HIP equipment requires
The commonly used method is to install multiple thermocouples in different locations, but there are problems such as deterioration of the thermocouple wires due to the high temperature atmosphere of 1'600 to 2000 degrees Celsius, and temperature measurement errors due to shunt errors. .

一方、新しい温度分布測定法として超音波を利用した超
音波温度用があり、1本のセンサ体で一次元の温度分布
が測定できるという長所をもっているが、しかし、この
方法もセンサ体を前記炉内の高温雰囲気中に設置する場
合には耐久性、信頼性に乏しいという難点を有する。
On the other hand, as a new temperature distribution measurement method, there is an ultrasonic temperature measurement method that uses ultrasonic waves, which has the advantage of being able to measure one-dimensional temperature distribution with one sensor body. When installed in a high-temperature atmosphere inside a building, it has the disadvantage of poor durability and reliability.

とは云え、このような現状の中でH工P装置の炉内の温
度分布を精度よく、長期間にわたり測定できる装置はH
IP装置の実用化の面から頗る重要な開路であり、その
だめの測定手段が強く望まれている。
However, under these current circumstances, the only device that can accurately measure the temperature distribution in the furnace of the H-P equipment over a long period of time is the H-P equipment.
This is a very important opening from the perspective of practical use of IP devices, and a means of measuring it is strongly desired.

そのため、かか乙要望に対応すべく熱電対以外の各種高
温湿度語、例えば気体温度計、雑音温度泪、流体温度計
、放射温度計などについて夫々、センサ体の耐圧、高温
高圧雰囲気による物性の変化、信号検出回路の難易度な
どに関し利用の適否を考察した。その結果、光ファイバ
を利用した放射温度用が最も好適で、かつ優れているこ
とを見出した。
Therefore, in order to respond to requests from both parties, we have developed various high-temperature and humidity devices other than thermocouples, such as gas thermometers, noise thermometers, fluid thermometers, and radiation thermometers. The suitability of its use was considered with regard to changes in the signal detection circuit and the degree of difficulty of the signal detection circuit. As a result, it was found that the radiation temperature method using an optical fiber is the most suitable and excellent method.

この方法は、例えば特開昭56−:+−29827号公
報に開示されているが、温度放射物体からの熱放射を光
ファイバによって導いて放射測温を行なう方法であり、
近時、その利用が注目されつつあるが、しかし、この方
法も、そのま1で炉内の高温高田下で光ファイバを配置
すれば炉内の熱の伝導、対流により光ファイバが加熱さ
れ溶解する恐れを内包しており、なお完全でないことを
知見した。
This method is disclosed, for example, in Japanese Unexamined Patent Publication No. 56-29827, and is a method in which radiation temperature is measured by guiding thermal radiation from a temperature-emitting object through an optical fiber.
Recently, its use has been attracting attention, but this method also has the disadvantage that if the optical fiber is placed under a high-temperature furnace inside the furnace, the optical fiber will be heated and melted by heat conduction and convection inside the furnace. It has been found that there is a fear that this may occur, and that it is still not perfect.

そこで、本発明者らは引続き検討を加え、前記光ファイ
バを閉端管に組合せ、HIP炉内に閉端管を設置し、光
ファイバを該閉端管の開口端に取り付けて閉端管先端部
からの熱放射を11iJ記光フアイバを通じて炉外に棉
き放射測温を行なう測温方法を見出すに至り別途提案し
た。
Therefore, the present inventors continued to study, combined the optical fiber with a closed-end tube, installed the closed-end tube in a HIP furnace, attached the optical fiber to the open end of the closed-end tube, and attached the optical fiber to the open end of the closed-end tube. We discovered a temperature measurement method in which the heat radiation from the furnace is transferred to the outside of the furnace through an 11iJ optical fiber and separately proposed.

(発明の目的) 本発明は」−記提案に係る閉端管を利用した1itu 
湛方法を更に発展さぜ、長さの異なる複数の前記閉端管
を炉内に固定し、その内壁からの熱放射を検出し、Nl
i正演算演算なうことによって炉内の各加熱ゾーンにお
ける温度分布を精度良く、かつ長期間安定的にi’ll
l+定することヲ目的とするものである。
(Objective of the Invention) The present invention is directed to a one-item tube using the closed-end tube according to the proposal.
We further developed the filling method by fixing a plurality of closed-end tubes of different lengths in a furnace, detecting heat radiation from the inner wall, and
By performing positive calculations, the temperature distribution in each heating zone in the furnace can be accurately and stably maintained over a long period of time.
The purpose is to determine l+.

(発明の構成) しかして、上記目的を達成する本発明測定方法は、高1
E容器内に断熱層、加熱装置を配設し高圧炉を形成せし
めたHIF装置において、その高[E炉内に長さの異な
る複数の閉端管を夫々周辺の温度と平衡状態で、かつ、
各加熱ゾーンに応じた熱放射を閉端管内部へ発散せしめ
る如く、先端部を各加熱ゾーンに位置せしめて挿入し、
各閉端管間1−1部に光フアイバ先端入射部を取り伺け
、閉端管先端部の内部放射光を受光可能とし、その後端
出射側を高温容器外に取り出し、これらを測定系に接続
して各閉X1li管内壁からの熱放射パワーを検出し、
かつ減算による補正演算処理を行ない、高目(炉内の各
加熱ゾーンにおける各閉端管先端部からの熱放射パワー
による温度のみを導き、各加熱ゾーンの温度分布を測定
するにある。
(Structure of the Invention) Therefore, the measuring method of the present invention that achieves the above object is
In a HIF device in which a heat insulating layer and a heating device are arranged in an E-container to form a high-pressure furnace, the high-pressure ,
The tip is positioned and inserted in each heating zone so that heat radiation corresponding to each heating zone is radiated into the inside of the closed-end tube,
The input end of the optical fiber is inserted into the 1-1 section between each closed-end tube, so that it can receive the internally emitted light at the end of the closed-end tube, and the output end of the optical fiber is taken out of the high-temperature container and connected to the measurement system. Connect to detect the thermal radiation power from the inner wall of each closed X1li tube,
Then, correction calculation processing by subtraction is performed to derive only the temperature due to the thermal radiation power from the tip of each closed-end tube in each heating zone in the furnace, and the temperature distribution in each heating zone is measured.

ここで、閉端管は通常、タングステン、モリブデン、ボ
ロンナイト、グラファイト等の耐熱材料で作られたもの
である。そして、光ファイバを取す伺けるときはその開
口部に保持治具等によって取り伺けを行なうが、光ファ
イバは閉端管の開口部に取りイ」けられているとき、石
英系ファイバで視野の開き角(視野角)が約24度ある
ため、光ファイバは閉端管先端部からの熱放射のみなら
ず閉端管側壁からの熱放射も入射する。
Here, the closed-end tube is usually made of a heat-resistant material such as tungsten, molybdenum, boronite, or graphite. When the optical fiber can be removed, the opening is held using a holding jig, etc.; Since the viewing angle (viewing angle) is approximately 24 degrees, the optical fiber receives not only thermal radiation from the closed-end tube tip but also thermal radiation from the closed-end tube side wall.

勿論、閉端管側壁からの熱放射が光ファイバに入射する
のを防+J−するため閉端管末端部分に近づけてコリメ
ータ、レンズ等を設けることも考えられるが、本発明に
おいては、後述する補正による測温誤差の解消によって
光フアイバ先端に特にコリメータ、レンズ等の視野制限
手段を用いず、研磨Xfi而のままの光ファイバを用い
る。
Of course, it is conceivable to provide a collimator, lens, etc. close to the end of the closed-end tube in order to prevent thermal radiation from the side wall of the closed-end tube from entering the optical fiber, but in the present invention, this will be described later. By eliminating the temperature measurement error through correction, a field-of-view limiting means such as a collimator or a lens is not used at the tip of the optical fiber, and the optical fiber is used as it is as polished.

ところで、本発明測定方法は閉端管の先端部からの熱放
射パワーを取り出し、これにもとづくへ温度を知ること
が肝要であるから側壁から九ファイバに入射する前記熱
放q(土は測温誤差となる。
By the way, in the measurement method of the present invention, it is important to extract the thermal radiation power from the tip of the closed-end tube and to know the temperature based on this. This will result in an error.

従って、先端部のみが加熱装置により加熱されるような
場合、即ち、下部加熱ゾーンに対する閉端管とか、閉端
管がN本あるとし、その先端部温度がそれぞれ短かい方
よりTl + T2・・・・・TN−i + TNであ
るとして’r1< ’r+t < ・・・<TIJ−1
<jlJの関係の場合には側壁の温度は先端の温度に比
べて十分低いため放射温度d1の検出波長を側壁の熱放
射を無視できる程5度チに短かくすることによって先端
部からの熱放射のみを取り出すことがnJ能となり、精
度よく測温することができる。
Therefore, in the case where only the tip is heated by the heating device, that is, if there are N closed-end tubes or closed-end tubes for the lower heating zone, the temperature of each tip is Tl + T2 · from the shorter one. ...Assuming TN-i + TN, 'r1<'r+t<...<TIJ-1
In the case of the relationship <jlJ, the temperature of the side wall is sufficiently lower than the temperature of the tip, so by shortening the detection wavelength of the radiation temperature d1 to 5 degrees so that the heat radiation from the side wall can be ignored, the heat from the tip can be reduced. Extracting only the radiation provides nJ capability, allowing accurate temperature measurement.

しかし、」二下複数の加熱ゾーンに分割され、これに対
応した冒さの閉端管が存在しているとき、中部あるいは
上部の加熱ゾーンは下部あるいは中部の加熱ゾーンによ
り加熱されるため、側壁の温度が先端部温度に比べて高
い場合を生じる。そうなると、先端ではなく最も湿度の
高い側壁の温度f:1(lll定して了う。即ち、前記
において、例えば、T、 > T2とするとlp2に対
応する検出器は1゛2を正確に指示せずT、に近い値を
指示する。
However, when a closed-end pipe is divided into two or more heating zones and has a corresponding length, the middle or upper heating zone is heated by the lower or middle heating zone, so the side wall The temperature may be higher than the tip temperature. In that case, the temperature of the side wall with the highest humidity, instead of the tip, is determined to be f:1 Instead, specify a value close to T.

そこで、この誤差を補正しなければならないが、かかる
補正を行なうには当該光ファイバに入射しだ熱放射全体
から側壁から光ファイバに入射する熱放射を減算するこ
とが必要となり、Mfj記′(2に対応する検出器の出
力から温度′1゛、にある側壁からの熱放射による出力
を減算する。但し、この場合、最も短かい閉端管は先端
部温度が側壁温度よりも高いと仮定し、T、は真の値が
優られているとする。
Therefore, it is necessary to correct this error, but in order to perform such correction, it is necessary to subtract the thermal radiation incident on the optical fiber from the side wall from the total thermal radiation incident on the optical fiber, and Mfj' ( Subtract the output due to thermal radiation from the side wall at a temperature of '1' from the output of the detector corresponding to 2. However, in this case, assume that the tip temperature of the shortest closed-end tube is higher than the side wall temperature. However, it is assumed that the true value of T is superior.

そして、このようにしてT2が寿られると、次は・I”
、 、 T2を用いて次の検出器の出力を補正し′1゛
3を得、この操作を繰り返すことによって最短閉端管の
先端部温度T、から最長閉端管の先端部湿度TN捷でを
精度よく測定することができる。
And, when T2 lives in this way, next time I”
, , T2 is used to correct the output of the next detector to obtain '1゛3, and by repeating this operation, from the temperature T at the tip of the shortest closed-end tube to the humidity TN at the tip of the longest closed-end tube, can be measured with high precision.

以下、前記手法の理解を助けるため図面により説明する
と、第1図において、最も短かい長さくり、 )の閉端
管(Hl)では先端部liA度が側壁のl:lA度に比
べ十分に旨いと考えられるので光ファイバに入射する熱
放射パワー(Wl)は先端部からの熱放射のみであり W+−fI R(TI )・・・・・・・・・・・・(
1)が成り立つ。世し、flは光ファイバの入射端面が
ら最も短かい閉端管(Hl )の先端をみた形態係数で
あり、R(TI )は温度T1にある物体からの熱放射
パワーである。
To help understand the above method, the following will be explained with reference to drawings. In Fig. 1, in the closed-end tube (Hl) with the shortest length, Since the thermal radiation power (Wl) incident on the optical fiber is only the thermal radiation from the tip, W+-fIR(TI)...
1) holds true. Here, fl is the view factor when looking at the tip of the shortest closed-end tube (Hl) from the input end face of the optical fiber, and R(TI) is the thermal radiation power from an object at temperature T1.

しかして、」−記(1)式でばw1+ fIが分ってい
るからR(T、)が算出できる。
Therefore, using equation (1), since w1+fI is known, R(T,) can be calculated.

次にR(T、)から温度T1をめるには下記(2ンの関
係式を用いる。
Next, to calculate the temperature T1 from R(T,), use the following relational expression (2).

f11シ1.l、 、 z2は検出波長の上限及び下限
f11shi1. l, , z2 are the upper and lower limits of the detection wavelength.

λは熱放り・[の波長。λ is the wavelength of heat radiation.

0、.02はブランクの第1.第2放射定数。0,. 02 is the blank 1st. Second radiation constant.

しかし、この(2)式は、これによってT、に関し直ち
に11γrくことはできないが、R(T、)とT1との
関係を数値テーブルにしておくことによってR(T、)
がらl黒度T、請求めることは容易である。
However, this formula (2) cannot be immediately reduced to 11γr with respect to T, but by making a numerical table of the relationship between R(T,) and T1, R(T,)
However, it is easy to claim blackness T.

このようにして前記の閉端管(H3)の場合には光ファ
イバに入射する熱放射パワー(W、)のデータだけから
精度よく先端部温度(T、)をめることができる。
In this way, in the case of the closed-end tube (H3), the tip temperature (T,) can be determined with high accuracy only from the data of the thermal radiation power (W,) incident on the optical fiber.

なお、形態係数f、は前記閉端管(Hl)の長さ、内径
および光ファイバのコア径から31mされる。
Note that the view factor f is 31 m from the length and inner diameter of the closed-end tube (Hl) and the core diameter of the optical fiber.

しかし、一般にこの形態係数をfi、で表わすと、これ
は閉端管の先端部の形状によって夫々下記式%式% (f) 先端が平面である場合、(第2図(イ)参照)
但し、L;閉端管の円筒部の長さ 2r;閉端管の内径 2a;光ファイバのコア径 (以下同じ) (0) 先端が球面である場合、(第2図(ロ)参照)
×Cσノφdφ (ハ) 先端が円錐形の場合、(第2図(ハ)参照)−
、(X2−4−2L7.X−rt) ta惧し、(/l
 =’l’酊 □ X;円錐部分の長さく高さ) t;点Aの中心線からの距離 h;点Aの円錐底部からの高さ 次に長さくL2)の閉端管(H2)の先端部温度(T2
)を+ifj記閉端q=’(H2)から光ファイバに入
射するパワー(W2)を用いて測定する場合について考
察する。
However, in general, this view factor is expressed as fi, which is determined by the following formula depending on the shape of the tip of the closed-end tube. (f) If the tip is flat, (see Figure 2 (a))
However, L: Length of the cylindrical part of the closed-end tube 2r; Inner diameter of the closed-end tube 2a; Core diameter of the optical fiber (same below) (0) If the tip is spherical, (see Figure 2 (b))
×Cσノφdφ (c) If the tip is conical (see Figure 2 (c)) -
, (X2-4-2L7.X-rt) ta fear, (/l
= 'l' □ The tip temperature (T2
) is measured using the power (W2) incident on the optical fiber from the closed end q=' (H2).

この場合、閉端管(H2)の(匂−Ll )の部分が前
記T1の温度にあるとすると、尤ファイバにはw2−T
2 R(”2) + 9HR(TI) ・・・・・−(
3)の熱放射パワーが入射する。但し、f2+′!lは
尤ファイバ入射端面から上記閉端?J(H2)の先端お
よび(L2 Ll)の部分の側壁ケ見る形Iル[糸数で
閉端管(H2)の長さ、内径、光ファイバのコア径によ
って決捷る定数であり、第2図に)を参照し である。
In this case, if the (Ll) part of the closed-end tube (H2) is at the temperature T1, then there is w2-T
2 R(”2) + 9HR(TI) ・・・・・・−(
3) thermal radiation power is incident. However, f2+′! Is l the above closed end from the input end face of the fiber? The shape of the tip of J (H2) and the side wall of the (L2 Ll) part is determined by the number of threads, the length of the closed-end tube (H2), the inner diameter, and the core diameter of the optical fiber, and the second (see figure).

下肥の(3)式はW2 + T2 + ’lが分ってお
り前述の記載に従って最も短かい閉端管(Hl)からR
(TI )が分るからR(T2)がまり、(2)式と同
様に先端部温度(T2)をめることができる。
Equation (3) for the manure is determined by knowing W2 + T2 + 'l, and according to the above description, R from the shortest closed-end pipe (Hl).
Since (TI) is known, R(T2) can be determined, and the tip temperature (T2) can be calculated similarly to equation (2).

更に第3の長さくL3)の閉端管(H3)の先端部温度
(T3i該閉端管(H3)から光ファイバに入射するパ
ワー(W3) を用いて測定する方法につき考察すると
、この場合、(L3 [12)の部分の温度(T2) 
、 (L12 ”+)の部分が温度(T1)にあるとす
ると、光ファイバには、 W3−fa R(T3) 4−92 R(T2)+7゜
R(T1)・・・・・・・・・・・(4)のパワーが入
射する。但し、T3 + T2は光ファイバ入射端面か
ら第3の閉端管(H3)の先端および(L3−L2)の
部分の側壁を見る形態係数で前記閉端管()L、)の長
さ、内径、光ファイバのコア径によって決まる定数であ
る。
Furthermore, considering the method of measuring using the power (W3) incident on the optical fiber from the closed-end tube (H3), the tip temperature (T3i) of the closed-end tube (H3) with the third length L3), in this case , (L3 [12) part temperature (T2)
, (L12"+) is at temperature (T1), the optical fiber has the following properties: W3-fa R(T3) 4-92 R(T2)+7°R(T1)... ...The power of (4) is incident. However, T3 + T2 is the view factor when looking at the tip of the third closed-end tube (H3) and the side wall of the portion (L3-L2) from the optical fiber input end surface. This is a constant determined by the length and inner diameter of the closed-end tube (L, ) and the core diameter of the optical fiber.

し、かじで(4)式ではW3 + T3 + li′□
、り、が分っており、閉i7W /i’l’、’ (H
+ 1及び(H2)からR(TI) 、 R(T2)が
分るがらR(T、)がめられ、これからは同様にして温
度(’r3)をめることができる。
However, in equation (4), W3 + T3 + li'□
, ri, is known, and the closed i7W /i'l',' (H
By knowing R(TI) and R(T2) from +1 and (H2), R(T, ) can be determined, and from there, the temperature ('r3) can be determined in the same way.

以1−.のようにして側壁からの熱放射を考慮して放射
測温を行なうことにより、上、中、下3ゾーンの温度(
’T+ )(’]12)(13)を精度よく測定するこ
とができる。
Below 1-. By performing radiation temperature measurement in consideration of heat radiation from the side walls, the temperature of the upper, middle, and lower three zones (
'T+)(']12)(13) can be measured with high accuracy.

なお、上記(1)式、(3)式、(4)式を行列を用い
て記述すると、 以上ば3ゾーンの場合であるが、更に加熱ゾーンが4つ
以上になった場合や、より細かく測温するために閉端管
の数を増し、長さの異なる9本の閉端管でn位置の測温
を行なう場合には前記(5)式を一般化すること、によ
り 換言すれば という式がイ0られ、結局、この式からn位置の測温が
できる。
Note that when formulas (1), (3), and (4) above are written using matrices, the above is for three zones, but when there are four or more heating zones, or more precisely, In other words, when increasing the number of closed-end tubes for temperature measurement and measuring the temperature at position n using nine closed-end tubes of different lengths, the above formula (5) can be generalized. The equation is 0, and after all, the temperature at position n can be measured from this equation.

なお、以上説明した補正手法は第3図(イ)に図示17
たような(L2 Ll)の部分の温度はTI + (L
3 L2 )の部分の温度はT2というように閉端管側
壁の温度は階段状と仮定して補正を行なっていだが、現
実ではこの仮定は必らずしも一致するものとは云えない
ので、更により現実に近い仮定を考えて補正手法を考察
する。
The correction method explained above is shown in FIG.
The temperature of the (L2 Ll) part is TI + (L
The temperature at the part 3 L2) was corrected by assuming that the temperature at the side wall of the closed-end tube was step-like, such as T2, but in reality, this assumption does not necessarily match. Furthermore, we consider correction methods based on assumptions that are closer to reality.

この仮定は第31図(ロ)に示すが(L2 Ll )の
側壁部分の温度は′1゛2からT3に直線的に上昇して
いるとするものである。
This assumption, shown in FIG. 31(b), assumes that the temperature of the side wall portion of (L2 Ll) increases linearly from '1'2 to T3.

かかる仮定に立脚すると、(L2 TJI)部分から尤
ファイバに入射する熱放射の量を前記(3)式の7.R
(1’、 )に代って(L2 +、)間で温度勾配を考
慮したG1(1’l 、 ’]’2)という関数を導入
する。
Based on this assumption, the amount of thermal radiation incident on the fiber from the (L2 TJI) portion can be expressed as 7. of equation (3) above. R
In place of (1', ), we introduce a function G1 (1'l, ']'2) that takes into account the temperature gradient between (L2 +,).

2r;閉gjM管の内径 2a;ソCファイバのコア径 λ;熱放射の波長 λ1.λ2;検出波長の下限、上限 0;光ファイバ入射角中心から側壁を見−にげる角度(
視野角) c、、G2:第1.第2放射定数 となる。即ち、前記の(3)式は W2 = f2R(T2)十〇l (TI、T2 ) 
・−・・・(3)と書くことができる。同様にして(4
)式はW3 = f3R(T’3)十G+(TI、”2
) ]−G0 (T2.TA) ・ ・ (4)の先端
湿度Tn 請求めることができる。
2r; inner diameter 2a of closed gjM tube; core diameter λ of SOC fiber; wavelength λ1 of thermal radiation. λ2: Lower limit of detection wavelength, upper limit 0; Angle at which the side wall is viewed from the center of the optical fiber incidence angle (
viewing angle) c,, G2: 1st. This becomes the second radiation constant. That is, the above equation (3) is W2 = f2R(T2) 10l (TI, T2)
・−・・・(3) can be written. Similarly (4
) formula is W3 = f3R (T'3) + G + (TI, "2
) ]-G0 (T2.TA) ・ ・ The tip humidity Tn of (4) can be claimed.

以上、述べた各補正手法は、補正のだめの演)¥処理用
の計算機によって行なわれ、各閉端管の補正された先端
部温度は表示器によって表示され、HIP装置υの炉内
の温度分布をiin+定することができる。
Each of the above-mentioned correction methods is performed by a processing computer, and the corrected tip temperature of each closed-end tube is displayed on the display, and the temperature distribution in the furnace of the HIP device υ is can be defined as iin+.

(実施例) 次に引続き前記本発明による測定法を実施するシステム
について述べる。
(Example) Next, a system for carrying out the measurement method according to the present invention will be described.

先ず、第4図はその1例として萬圧容器の炉壁(Ill
 t V1通して閉9iM管02)を設置した場合で閉
端管間IZJ部に光電変換器を含む検出器(13)が設
けられ、閉端管θ2)先端部からの熱放射を電気信号に
変換しアンプ(14)で増幅した後、計算機05)に導
入し、前述の各所要演算処理、即ち(3)式の計算、R
(T)からTへの変換を行なって夫々表示器に各閉端管
(12)の先端HB湿温度表示する。
First, Figure 4 shows an example of the furnace wall of a pressure vessel (Ill.
When a closed 9iM tube 02) is installed through the closed-end tube 02), a detector (13) including a photoelectric converter is installed at the IZJ section between the closed-end tubes, and converts the thermal radiation from the tip of the closed-end tube θ2) into an electrical signal. After converting and amplifying it with an amplifier (14), it is introduced into a computer 05) and subjected to the above-mentioned necessary arithmetic processing, that is, calculation of equation (3), R
(T) is converted to T, and the humidity temperature of the tip HB of each closed-end tube (12) is displayed on the display respectively.

しかし、実際に炉内圧が高(2000℃、2000気圧
に及ぶ高温高圧の場合には閉端管を炉壁(II)を通じ
て炉外へ延長せしめることはEEカシールの点から不可
能に近い。
However, when the furnace pressure is actually high (up to 2,000° C. and 2,000 atmospheres), it is nearly impossible to extend the closed-end tube out of the furnace through the furnace wall (II) from the viewpoint of EE Cassir.

そこで、かかる場合には第5図に図示するように閉端管
(22)全体を高庄容器の炉壁(21)内の断熱層(2
7)内部の晶[(炉に収設固定し、閉端管(2り先端部
からの熱放射を閉端管開口部に取り付けた光ファイバ(
24)によって容器蓋、図では下蓋C231)を通じて
炉外へ導き、前記と同じく検出器C25) 、計算機(
2[ilを含む一連の測定系によって測温する。
Therefore, in such a case, the entire closed-end tube (22) is covered with a heat insulating layer (2
7) The internal crystal [(fixed in the furnace, the closed-end tube (2) and the optical fiber (attached to the closed-end tube opening)
24) to the outside of the furnace through the container lid (in the figure, the lower lid C231), and the detector C25) and computer (
The temperature is measured by a series of measurement systems including 2[il].

この場合、炉外に導かれた熱放射は通常Sbフォトダイ
オード等からなる光電変換素子を有する放射温度泪など
で測温され既知の輝度湿度変換、2色温度演算などの手
段で温度変換される。
In this case, the temperature of the heat radiation led outside the furnace is measured by a radiation temperature sensor having a photoelectric conversion element, usually consisting of an Sb photodiode, etc., and the temperature is converted by known means such as brightness/humidity conversion or two-color temperature calculation. .

なお、放射温度泪での検出波長としては、0.3μm〜
0.6μmの範囲が測温上有効である。
In addition, the detection wavelength for radiation temperature drop is 0.3 μm ~
A range of 0.6 μm is effective for temperature measurement.

第6図は」−記者システムにおける温度分布演算用の計
算機θ5) (2(i)の詳細を示すブロック図であり
、各閉端管からの熱放射を受けてこ肛らを検出し、既知
の構成に従って所要の電気的、電子的な演算処理回路で
割数的に演算し温度として表示することを示す。
Figure 6 is a block diagram showing the details of 2(i), which is a calculator θ5 for temperature distribution calculation in the reporter system, which detects the apertures receiving heat radiation from each closed-end tube, and It is shown that the temperature is calculated in divisors using the required electrical and electronic calculation processing circuits according to the configuration and is displayed as temperature.

第7図は特に3ゾ一ン加熱方式のH工P装置における加
熱装置例を示し、この場合には上、中。
FIG. 7 particularly shows an example of a heating device in a three-zone heating type H-P apparatus, in this case upper and middle zones.

下の3ゾーンのヒータに投入する電力制御のため各ゾー
ンの温度を測定する必要がある。そのため従来、用いら
れている熱電対挿入部を利用]〜、閉端管を挿入するこ
とが好ましく、図では略図て示しているが、第7図(イ
)は」−1中、下のヒータ(31+ (1t33+の各
泄濡位1;りfに先端が位14するように3本の閉端管
C,+a (35)C,4(i)を立てたもの、第7図
(o)は」二、中、下3ゾーンの各11I11濡位置に
対応する長さの空洞(38) (39)(/Itl) 
を設けた耐熱4A判(37)を前記3本の閉端管の代り
に設置するものである。特に後者は機械的強度にすぐれ
、取り伺け、取扱いが容易である。
In order to control the power input to the heaters in the lower three zones, it is necessary to measure the temperature of each zone. Therefore, it is preferable to insert a closed-end tube using the conventionally used thermocouple insertion section. (31+ (35) C, 4(i) set up so that the tips are at 14 points at each excretion level 1; A cavity with a length corresponding to each of the 11I11 wet positions in the second, middle, and bottom three zones (38) (39) (/Itl)
A heat-resistant 4A size (37) equipped with the above-mentioned three closed-end pipes is installed in place of the three closed-end pipes. In particular, the latter has excellent mechanical strength and is easy to pick up and handle.

第8図(イ)(ロ)(ハ)ば]−記第7図(ロ)に示す
閉端管製作の1例を示す図であり、(イ)は正面図、(
0)は」−面図。
Fig. 8(a)(b)(c)b] - Fig. 8(a) is a diagram showing an example of manufacturing the closed-end tube shown in Fig. 7(b);
0) is a '-side view.

(ハ)は側面図で、支持体(4I)を互いに複数に分割
(41a、)(4]、b)(4]、c)(4]、cl、
) シこれらを互いに凹凸嵌合ニヨリ一体となし一体型
閉端管となしている。
(c) is a side view, in which the support (4I) is divided into a plurality of parts (41a, ) (4], b) (4], c) (4], cl,
) These are integrally fitted with each other in a concave and convex manner to form an integral closed end tube.

以上は本発明測定法における各装置部利のブロック図に
関し、叙上のような各側に従って閉シIM管を配置6シ
、その開口部に直接、検出器を取り付け、又は光ファイ
バを取り付けて炉外に導いて検出器に連結して本発明測
定法を実施するが、その概安は第9図に示す如くであり
、照合によって閉端管先端部温度er)を表示し、再び
スタートに導き、継続的に測定を行ないHIP処理にお
ける温度制御を確実ならしめる効果を発揮する。
The above is a block diagram of each device part in the measurement method of the present invention, in which a closed IM tube is arranged according to each side as described above, and a detector is directly attached to the opening, or an optical fiber is attached. The measuring method of the present invention is carried out by leading the tube outside the furnace and connecting it to a detector, but the general procedure is as shown in Figure 9. By checking, the temperature at the tip of the closed end tube (er) is displayed, and the start is started again. It is effective in ensuring temperature control in HIP processing by guiding and continuously measuring.

以下、実際に数値を定めシュミレーション実験した例を
示す。
Below is an example of a simulation experiment in which numerical values were actually determined.

長さ17n、内径10 mm 、ソCファイバコア径4
00μmの閉端管を用い、先端温度2000℃、末端開
口部温度500℃で側壁の温度が500℃から2000
℃へ直線的に変化している場合について調べた。
Length 17n, inner diameter 10mm, SoC fiber core diameter 4
Using a 00 μm closed-end tube, the temperature at the tip is 2000°C, the end opening temperature is 500°C, and the side wall temperature is from 500°C to 2000°C.
We investigated the case where the temperature changes linearly to °C.

その結果は光ファイバに入射する先端部、側壁部台用の
熱放射パワー(エネルギー)から屯純に温度換算すると
、先端部温度2000℃に対して検出波長 0.9μm
で約200℃ 検出波長 0.4μmで約20℃ の測温誤差を生じた。しかし、前記補正の手法を用いる
とこれらの誤差をなくし、側壁の影響をなくすことが判
った。
The result is that when converting the thermal radiation power (energy) for the tip and side wall base into the optical fiber into a net temperature, the detection wavelength is 0.9 μm for a tip temperature of 2000°C.
At about 200°C, a temperature measurement error of about 20°C occurred at a detection wavelength of 0.4 μm. However, it has been found that by using the correction method described above, these errors can be eliminated and the influence of the sidewalls can be eliminated.

又、閉端管下端温度を300℃に固定し、閉端管下端温
度を1000℃〜2500℃の範囲で度と1:′端温度
を面線的に結んだ第10図点線に示す湿度勾配をもって
いるとした。
In addition, the temperature at the lower end of the closed-end tube is fixed at 300°C, and the humidity gradient shown in the dotted line in Figure 10, which connects the temperature at the lower end of the closed-end tube in a range of 1000°C to 2500°C, and the 1:' end temperature in a plane line. Suppose you have .

その結果は第11図点線で図示する如くであった。The results were as shown by the dotted line in Figure 11.

そこで、実際のル(0濡糸全体を校正する場合、現実的
な校正曲線は第11図点線に対応するものが得られると
して閉端管の中央が先端部より200℃加熱された場合
を考えてみるに、先端温度が1500℃の場合、中央部
加熱によって図中(−)で示す111の放射パワーが増
加し、第11図実線の位置に来ることになる。
Therefore, when calibrating the entire zero-wet yarn, a realistic calibration curve corresponding to the dotted line in Figure 11 will be obtained, and we will consider the case where the center of the closed-end tube is heated 200°C more than the tip. For example, when the temperature at the tip is 1500° C., the radiation power at 111 indicated by (-) in the figure increases due to central heating, and comes to the position shown by the solid line in FIG. 11.

そのためこの増加した放射エネルギー即し放射パワーを
補1]:、することなくそのま1第11図点線の曲線で
温度変換すると約1’700℃を指示することになる。
Therefore, if this increased radiant energy, ie, radiant power, is directly converted to the temperature using the dotted line curve in Figure 11 without compensating for it, the temperature will be approximately 1'700°C.

即ち、中央部分の湿度に略対応する温1y出カとなり、
先端部の]、 500 ℃に対し−12001::の誤
差を生°rることになり正確な炉内温度分布f:得るこ
とができず、111P処理温度の不均一を生ずる。
In other words, the temperature output is 1y, which approximately corresponds to the humidity in the central part,
This results in an error of -12001:: with respect to 500 DEG C. of the tip, making it impossible to obtain an accurate temperature distribution in the furnace, resulting in non-uniformity of the 111P treatment temperature.

しかし、本発明による補正手法はこれを解消する。However, the correction method according to the present invention solves this problem.

(発明の効果) 以上の如く本発明はHIP装置の高圧炉に長さの異なる
複数の閉端管を設置し、閉端管内壁からの熱放射を閉端
管開口部において検出し演算処理を行ない、かつ演算に
際し、閉端管側壁からの迷光による測温誤差を補正処理
して閉端管先端部の熱放射パワーのみを取り出し炉内温
度分布を測定する方法であるから、炉内に熱電対のす1
1き測温素r−を必11とすることがなく、HIP装置
の1jli’を度分布測定手段として精度よく長期にわ
だり測温が口■能であると共に測温上限は閉端管の材質
のみで決まるため3000℃程度のy!Ill濡も可能
で、高1!AMr川炉の温度分布測定手段として極めて
顕著な効果を奏する。
(Effects of the Invention) As described above, the present invention installs a plurality of closed-end tubes of different lengths in a high-pressure furnace of a HIP device, detects heat radiation from the inner wall of the closed-end tubes at the opening of the closed-end tubes, and performs arithmetic processing. This method corrects the temperature measurement error caused by stray light from the side wall of the closed-end tube, extracts only the thermal radiation power at the tip of the closed-end tube, and measures the temperature distribution inside the furnace. pair 1
It is possible to accurately measure temperature over a long period of time by using the HIP device's 1jli' as a temperature distribution measuring means, without having to set the temperature element r- to 11. Since it is determined only by the material, the temperature is about 3000℃! It is possible to get wet, and it is a high school 1! It is extremely effective as a temperature distribution measuring means for AMr river furnaces.

しかも、光ファイバを用い炉内の閉端管開口部に取り付
は炉外に導くようにしたため、安全性も高く、その上、
閉端管側壁からの迷光による測温誤差を排除する補正演
算を加えることにより、uL差の減少をもたらし、より
一層の精度の向」二を図リ、HIP装置における炉内温
度分布の均一化に寄り、し、今後のHIP汎用化を促す
」二に頗る有用である。
Moreover, since the optical fiber is attached to the closed-end tube opening inside the furnace and guided out of the furnace, it is highly safe.
By adding a correction calculation that eliminates temperature measurement errors due to stray light from the side wall of the closed-end tube, the uL difference is reduced, further improving accuracy and making the temperature distribution in the furnace more uniform in the HIP device. It is the second most useful of all, as it encourages the generalization of HIP in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測定法における補正手法を説明するだめ
の説明図、第2図(イ)(0)(ハ)に)は閉端管先端
形状の各側を示す説明図、第3図(イ)(ロ)は夫々閉
端管の側壁ン晶度の変化を改定的に示した図表、第4図
及び第5図は閉端管の各1役随に対する炉内温度分布1
11jl 定システムのブロック図、第6図は上記シス
テムに用いろ語算機のブロック図、第7図(イ)(ロ)
(・ま3ゾ一ン加熱方式における閉端管設置例を示す略
示斜視図及び閉端管の他の実施例を示す斜視図、第8図
(イ)仲)(ハ)はntJ記第記文7図)に示す一体型
閉i7W管の製作例で(イ)は正面図、(ロ)は上面図
、(ハ)は側面図である。又第9図は本発明測定法にお
ける温度外1’lF測定のフローチャート、第10図は
閉端管における末端開口部よりの距離と温度との関係図
表、第11図は中間部に高温領域がある場合の入射パワ
ーと尤ファイバに入射する熱放射パワーとの関係を示す
図表である。 (1,1) (2++・・・・・・高圧容器の炉壁。 (+2)(231(34) (’、351 (36)・
・・・・閉端管。 (12)・・・・・・検出W、Q→・・・アンプ。 (+5) (26)・・・・・・語算機。 (3]+ (321+33)・・・・・・・ヒータ。 (41)・・・・・・・支持体。 第q図
Figure 1 is an explanatory diagram to explain the correction method in the measurement method of the present invention, Figure 2 (A), (0), and (C) are explanatory diagrams showing each side of the closed-end tube tip shape, and Figure 3. (a) and (b) are graphs showing revised changes in the side wall crystallinity of closed-end tubes, and Figures 4 and 5 are temperature distributions in the furnace for each role of closed-end tubes.
11jl Block diagram of the fixed system, Figure 6 is a block diagram of the word calculator used in the above system, Figure 7 (a) (b)
(・A schematic perspective view showing an example of installing a closed-end pipe in the three-zone heating method and a perspective view showing another example of the closed-end pipe, Figure 8 (a) middle) (c) In the manufacturing example of the integrated closed i7W tube shown in Figure 7), (a) is a front view, (b) is a top view, and (c) is a side view. Also, Fig. 9 is a flowchart for measuring 1'lF outside temperature in the measurement method of the present invention, Fig. 10 is a diagram showing the relationship between the distance from the end opening of a closed-end tube and temperature, and Fig. 11 shows that there is a high temperature region in the middle part. It is a chart showing the relationship between the incident power and the thermal radiation power incident on the fiber in a certain case. (1, 1) (2++... Furnace wall of high pressure vessel. (+2) (231 (34) (', 351 (36)
...Closed end tube. (12)...Detection W, Q→...Amplifier. (+5) (26)...Word calculator. (3]+ (321+33)... Heater. (41)... Support body. Figure q

Claims (1)

【特許請求の範囲】 1、 高1.E容器内に断熱層及び加熱装置を収設し、
被処理体を収容して該被処理体を熱間静水圧加〔E処理
する副王炉を形成せしめた熱間静水圧加圧装置において
、1iJ配高田炉に長さの異なる複数の閉端管を挿入設
置し、各閉端管先端部を夫々周辺の温度と平衡状態で、
かつ各加熱ゾーンに応じた熱放射を閉端管内部へ発散せ
しめる如く位置せしめると共に各閉端管開口部に光ファ
イバの先端入射部を取りイ」け、閉端管先端部の内壁放
射光を受光Frf能とし、その後端出射部側を高温容器
外に取り出し、各出射部端部に接続せしめた測定系によ
り夫々の閉端管内壁からの熱放射パワーを検出し、かつ
夫々光ファイバへ入射する閉端管内壁からの熱放射パワ
ーを減算する補正演算処理を行なって=%[]E炉内各
加熱ゾーンにおける閉端管先端部からの熱1攻射パワー
による温度を取り出して炉内加熱ゾーンの温度分布を測
定することを特徴とする熱間静水圧加圧装置における炉
内湿度分布の測定法。 2、 閉端管が高圧容器内部において」5.中、下に 
。 分割設置された加熱装置に対応する各加熱ゾーンに先端
部が位置して設置されている特許請求の範囲第1項記載
の熱間静水圧加圧装置における炉内温度分布の測定法。 3、 閉端管が耐熱相打からなる特+t’l・All求
の範囲第1項又は第2項記載の熱間静水圧加即装置にお
ける炉内温度分布の測定法。
[Claims] 1. High 1. A heat insulating layer and a heating device are placed in the E container,
In a hot isostatic pressurizing apparatus configured to form a Viceroy furnace for accommodating a workpiece and subjecting the workpiece to hot isostatic pressing (E-processing), a 1iJ distribution furnace is equipped with a plurality of closed ends of different lengths. Insert and install the tubes, and keep the tip of each closed-end tube in equilibrium with the surrounding temperature.
In addition, each heating zone is positioned so as to radiate heat radiation into the inside of the closed-end tube, and the tip entrance part of the optical fiber is placed at the opening of each closed-end tube, so that the light radiated from the inner wall of the tip of the closed-end tube is placed. The light receiving FRF capacity is set, and the rear end of the output side is taken out of the high-temperature container, and the thermal radiation power from the inner wall of each closed-end tube is detected by a measurement system connected to the end of each output section, and the power is input into each optical fiber. A correction calculation process is performed to subtract the thermal radiation power from the inner wall of the closed-end tube, and the temperature due to the heat radiation power from the tip of the closed-end tube in each heating zone in the furnace is extracted and the temperature is calculated by the heat radiation power in the furnace. A method for measuring the humidity distribution in a furnace in a hot isostatic pressurizing device, which is characterized by measuring the temperature distribution in a zone. 2. The closed-end pipe is inside the high-pressure vessel.”5. middle, bottom
. 2. A method for measuring temperature distribution in a furnace in a hot isostatic press apparatus according to claim 1, wherein the distal end portion is located in each heating zone corresponding to the separately installed heating apparatus. 3. A method for measuring the temperature distribution in the furnace in the hot isostatic pressurizing device according to item 1 or 2, in which the closed-end tube is made of heat-resistant mutually bonded material.
JP58245746A 1983-12-22 1983-12-29 Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus Pending JPS60142222A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58245746A JPS60142222A (en) 1983-12-29 1983-12-29 Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus
DE3447724A DE3447724C2 (en) 1983-12-22 1984-12-21 Temperature measuring device of an isostatic hot pressing device having a high pressure furnace
US06/873,452 US4666314A (en) 1983-12-22 1986-06-06 Method and apparatus for measuring temperature in the high pressure furnace of a hot isostatic pressing
US07/209,954 USRE33245E (en) 1983-12-22 1988-06-22 Method and apparatus for measuring temperature in the high pressure furnace of a hot isostatic pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58245746A JPS60142222A (en) 1983-12-29 1983-12-29 Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus

Publications (1)

Publication Number Publication Date
JPS60142222A true JPS60142222A (en) 1985-07-27

Family

ID=17138176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58245746A Pending JPS60142222A (en) 1983-12-22 1983-12-29 Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus

Country Status (1)

Country Link
JP (1) JPS60142222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194300U (en) * 1987-05-29 1988-12-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194300U (en) * 1987-05-29 1988-12-14
JPH0544720Y2 (en) * 1987-05-29 1993-11-12

Similar Documents

Publication Publication Date Title
JPH02256254A (en) Temperature measuring method for semiconductor wafer and semiconductor manufacturing apparatus
TW200403781A (en) System and process for calibrating temperature measurement devices in thermal processing chambers
CN102042993A (en) System for measuring normal spectral emissivity of high-temperature material
Hernandez et al. Experimental validation of a pyroreflectometric method to determine the true temperature on opaque surface without hampering reflections
CN106539567A (en) Body core temperature is measured
JPS60142222A (en) Method for measuring temperature distribution in furnace in hot hydrostatic pressing apparatus
CN108680263B (en) Non-contact glass temperature measuring system and method based on laser interference
US10598619B2 (en) Thermal properties measuring device
CN110044495A (en) Based on multispectral temperature measurement system and thermometry
CN112595440B (en) Spectrum calibration method for optical fiber thermometer
Murthy et al. Calibration of high heat flux sensors at NIST
CN114279594A (en) Distributed optical fiber sensor high-temperature dynamic calibration system and method
CN113984220A (en) Differential blackbody radiation temperature difference correction method based on equivalent emissivity
Krankenhagen et al. Determination of the spatial energy distribution generated by means of a flash lamp
Fiory et al. Optical Fiber Pyrometry with in-Situ Detection of Wafer Radiance and Emittance—Accufiber's Ripple Method
Lapshinov et al. Application of spectral pyrometry under conditions of intense microwave electromagnetic fields
JP3619356B2 (en) Data writing system
JPH07270254A (en) Optical fiber type device for measuring temperature
JPS60133327A (en) Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus using closed-end pipe
CN109211796A (en) A method of solid material high temperature continuous spectral emissivity is measured using thermal perturbation method
KR20020066343A (en) An apparatus and method of manufacturing optical waveguides
JPH03237346A (en) Method for measuring specific heat
JPH05223632A (en) Calibrating system for light power meter
JP2004157009A (en) Balanced type radiation temperature / emissivity measuring apparatus and method
Tsai A summary of lightpipe radiation thermometry research at NIST