JPS60141052A - Trouble position searching system in digital transmission line - Google Patents

Trouble position searching system in digital transmission line

Info

Publication number
JPS60141052A
JPS60141052A JP24693183A JP24693183A JPS60141052A JP S60141052 A JPS60141052 A JP S60141052A JP 24693183 A JP24693183 A JP 24693183A JP 24693183 A JP24693183 A JP 24693183A JP S60141052 A JPS60141052 A JP S60141052A
Authority
JP
Japan
Prior art keywords
code
waveform
signal
error detection
digital transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24693183A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takasaki
高崎 喜孝
Kiichi Yamashita
喜市 山下
Yasushi Takahashi
靖 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24693183A priority Critical patent/JPS60141052A/en
Priority to CA000446911A priority patent/CA1205561A/en
Priority to DE8484101290T priority patent/DE3482230D1/en
Priority to EP84101290A priority patent/EP0118763B1/en
Priority to US06/578,791 priority patent/US4604745A/en
Publication of JPS60141052A publication Critical patent/JPS60141052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems

Abstract

PURPOSE:To attain trouble position searching suitable for optical fiber communication in keeping a modulation speed equal to NRZ (Non Return to zero) by using a parity code and an alteration point code as two kinds of error detection code, and applying differentiation to shape the latter in receiving side to form it into an AMI (alternate mark inversion) code. CONSTITUTION:Coding is applied to NRZ pulse train in the transmitting side, and a signal ''1'' is converted to an alteration point and a signal ''0'' is converted to a non-alteration point (or reversely). When this is differentiated to shape the form in receiving side, AMI code is obtained and searching of trouble position can be made by this. When an original signal is supplied to an input terminal 41 of an encoder, coded output is obtained in an output terminal 44 as shown in the figure (b). When this is supplied to an input terminal 50 of received waveform decoder, and waveform [shown in figure (c)] obtained by delaying it by a delay circuit 51 is subtracted from original waveform (b) by a subtracter 52, a waveform (d) is obtained. This waveform shows MI pulse train, and ''1'' and ''-1'' correspond to ''1'' of original signal, and ''0'' corresponds to ''0'' of original signal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はディジタル伝送路の障害位置探索方式に関し、
特に光7アイパデイジタル伝送路上の中継器の障害位置
を1回の操作で検知できる探索方式に関するものである
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fault location search method for a digital transmission line.
In particular, it relates to a search method that can detect the location of a fault in a repeater on an optical 7-eye digital transmission path with a single operation.

〔発明の背景〕[Background of the invention]

本発明者らは、先に、ディジタル伝送における障害位置
探索方式を提案した(特願昭58−40455)。
The present inventors previously proposed a fault location search method in digital transmission (Japanese Patent Application No. 58-40455).

このディジタル伝送路の障害位置探索方式は、送信端局
では原信号に2種類の誤り検出符号化を施して送信し、
各中継点では一方の誤り検出符号を用いて符号誤りを検
出した後、上記誤り検出符号のみに対し再符号化を行っ
て次の中継点に送出するとともに、検出された符号誤り
率を測定することKより対応する中継区間に障害が発生
したことを送信または受信端局に通知し、受信端局では
受信信号忙対し他方の誤り検出符号を用いて回線総合の
符号誤りを検出するものである。
In this digital transmission path fault location search method, the transmitting terminal applies two types of error detection encoding to the original signal before transmitting it.
At each relay point, after detecting code errors using one error detection code, re-encoding is performed only on the error detection code and sending it to the next relay point, and the detected code error rate is measured. This system notifies the transmitting or receiving terminal station that a failure has occurred in the corresponding relay section, and the receiving terminal station uses the other error detection code to detect a code error in the overall line while the receiving terminal is busy with the received signal. .

第1図、第2図は、上記方式の一例を示すディジタル伝
送符号処理のタイムチャートとブロック図である。
FIGS. 1 and 2 are a time chart and a block diagram of digital transmission code processing showing an example of the above method.

第2図に示すように、この方式のブロック構成は、各中
継点ごとに障害信号送出回路6を設け、障害信号伝送用
介在ケーブル7全通して受信端局5の障害信号受信回路
10に符号誤り情報を送出する。中継器4の処理機能は
、第1図に示すようKSAM I (Alternat
e Mark Inversion ) 再符号化して
次の区間に送出するよう罠なっている。
As shown in FIG. 2, the block configuration of this method is that a fault signal sending circuit 6 is provided at each relay point, and the intervening cable 7 for transmitting the fault signal is passed through to the fault signal receiving circuit 10 of the receiving terminal station 5. Send error information. The processing function of the repeater 4 is as shown in FIG.
e Mark Inversion) The trap is set so that it is re-encoded and sent to the next section.

第1図のfa)は原符号であり、送信端局1ではこパ れを誤り検出可能とするため、(b)に示すように、−
4−リテイ符号化する。矢印で対応を示しているように
、1ブロツクを6ビツト構成とし、斜線を施した部分に
、ブロック内のパルス数が奇数となるよパ パ うにフリテイ・パルスを挿入する(奇数≠リテイ)。
fa) in FIG. 1 is the original code, and since the transmitting terminal station 1 can detect errors in the error, as shown in (b), -
4-Reity encoding. As shown by the arrows, one block is made up of 6 bits, and free pulses are inserted into the shaded areas in such a way that the number of pulses in the block is an odd number (odd number ≠ right).

(a)では2ブロツク分が示されており、1番目のプパ ロックでは3パルスのためフリティ・パルス社挿入され
ず、2番目のプロ、りでは2パルスのためぺ 一/4− IJティ・パルス(斜線表示)が挿入されて
いる。
In (a), 2 blocks are shown, and the first pro-lock is 3 pulses, so Friti Pulse is not inserted, and the second pro-lock is 2 pulses, so the 1/4-IJ pulse is inserted. (diagonal line) has been inserted.

次に、fc)に示すように、AMI符号化した後、送信
器2から伝送線路3に信号を送出する。
Next, as shown in fc), after AMI encoding, the signal is sent from the transmitter 2 to the transmission line 3.

通常の伝送線路3では、変成器、コンデンサにより低周
波信号が遮断されるため、(b)VC示す符号のま1で
は、符号のマーク率の変動とともに等化波形列に直流変
動が生じて識別再生が困難となる。
In a normal transmission line 3, low frequency signals are blocked by a transformer and a capacitor, so in code 1 (b) VC, DC fluctuations occur in the equalized waveform sequence along with fluctuations in the mark rate of the code, making identification Playback becomes difficult.

そのため、パルスごとに極性が正負に反転して、スペク
トルがパルス繰り返し周波数のIAの付近に最大エネル
ギを持つAMI符号(バイポーラ符号)を用いているの
である。
Therefore, an AMI code (bipolar code) is used in which the polarity is reversed for each pulse and the spectrum has maximum energy near IA, which is the pulse repetition frequency.

伝送線路3を伝送中に1符号誤りがない場合には、この
波形がそのまま伝送されるが、伝送線路3の雑音により
、例えば(d)の点線に示すような誤りが生じた場合、
中継器4では、この誤りを検出して、登算し、かつ次の
区間に対してAMI則を満足するように再符号化して送
出する。すなわち、区間ごとの誤りはAMI則の乱れK
より検出し、1秒間に何個の誤りが存在するか(誤り率
)を登算した後、第1図(d)のようにパルス1個が消
失した場合には、第1図(epic示すように、それに
続くブロックのパルスの極性をすべて反転して、全体を
とおしてパルスととに極性が正負に反転するように再符
号化する。
If there is no one code error during transmission on the transmission line 3, this waveform is transmitted as is, but if an error occurs due to noise on the transmission line 3, for example as shown by the dotted line in (d),
The repeater 4 detects and registers this error, and re-encodes and transmits the next section so as to satisfy the AMI rule. In other words, the error for each section is a disturbance of the AMI rule K
If one pulse disappears as shown in Figure 1(d) after detecting the number of errors per second (error rate), the error rate as shown in Figure 1 (epic , the polarities of all the pulses in the subsequent block are inverted, and the entire pulse is re-encoded so that the polarity is reversed between positive and negative.

これにより、次の区間では、その区間のみの符号誤り率
を検出することができる。
As a result, in the next section, the code error rate of only that section can be detected.

一方、回線全体としての符号誤り率は、受信端局5にお
いて、第1図(f)のように元の符号に戻すことKよリ
ーリティ・チェ、りで検出できるので、常時、受信回路
8により監視すればよい。
On the other hand, the code error rate for the entire line can be detected at the receiving terminal station 5 by returning the original code to the original code as shown in FIG. 1(f). All you have to do is monitor.

各中継点では、その中継点に対応する中継区間の符号誤
りを検出できるので、これを登算しておき、これが所定
の限度を越えたとき障害信号送出回路6から送出すれば
、介在ケーブル7全通して障害信号受信回路9または1
0で受信することKより、どの中継区間に障害が発生し
ているかを知ることができる。中継区間ごとに障害信号
の周波数を異ならせれば、障害信号を受信し【対応する
帯域通過フィルタを通過させることにより、どこの中継
区間かを簡単に識別することができる。また、障害信号
にそれぞれアドレスを付加させることもできる。
At each relay point, it is possible to detect code errors in the relay section corresponding to that relay point, so if this is registered and the error signal is sent from the fault signal sending circuit 6 when it exceeds a predetermined limit, the intervening cable 7 Fault signal receiving circuit 9 or 1 throughout
By receiving K at 0, it is possible to know in which relay section a failure has occurred. By making the frequency of the fault signal different for each relay section, it is possible to easily identify which relay section the fault signal is in by receiving the fault signal and passing it through the corresponding band-pass filter. It is also possible to add an address to each fault signal.

パ 以上の説明では、AMI符号とフリティ符号とを併用す
る例を述べたが、2種類の符号が直交するならば、つま
り2種類の符号が互いに影響を受けないならば、いかな
る符号を組み合わせても良いことは明らかである。例え
ば、送信側で2値AMI符号(11−−111または@
00′に、10”を!10”または@01”に変換する
符号)を用い、これを受信側でロールオフフィルタによ
りデュオバイナリに成形してAMI符号とする伝送形式
(例えば、r 0ptical pulse form
ats forfiber optic digita
l corrmunicationg J I EEE
Trans on Commun、C0M−24r 4
4 PP・404−413.1976年4月参照)と、
〜4リテイ符号を併用すれば、光通信のような送信側で
2値打号を用いる方式においても、この障害位置探索方
式を適用することができる。上記の@1″を“11“ま
たは@00”J”0’i’lO”または@01”k変換
する2値AMI符号はDMI(Differentia
l Mark Inversion )符号と呼ばれる
ものであるので以後の説明ではDMI符号の名称を用い
る。
In the above explanation, an example was given in which an AMI code and a friti code are used together, but if the two types of codes are orthogonal, that is, if the two types of codes are not influenced by each other, any code can be combined. It is clear that it is also good. For example, on the transmitting side, the binary AMI code (11--111 or @
00', a code that converts 10" to !10" or @01"), and this is formed into duobinary by a roll-off filter on the receiving side to create an AMI code (for example, r 0ptical pulse form).
ats for fiber optic digita
l correspondence J I EEE
Trans on Commun, C0M-24r 4
4 PP 404-413. April 1976) and
By using the ~4-ity code in combination, this fault location search method can be applied even to systems such as optical communications that use binary codes on the transmitting side. The binary AMI code that converts @1" above to "11" or @00"J"0'i'lO" or @01"k is DMI (Differentia
In the following explanation, the name DMI code will be used.

光通信のように、半導体レーザを変調する波形が2値で
あることが望ましい場合は、前述のように、送信側でD
MI符号化を行い、受信側でこれを狭帯域成形するとと
忙よりAMI符号とする方法を用いる。この場合、中継
点における再符号化にもDMI符号を用いる。
When it is desirable for the waveform modulating the semiconductor laser to be binary, as in optical communication, as mentioned above, D
Since it is difficult to perform MI encoding and perform narrow band shaping on the receiving side, a method of converting it into AMI code is used. In this case, the DMI code is also used for re-encoding at the relay point.

しかし乍ら、DMI符号fi N RZ (Non R
eturnto zero )符号に比して倍の変調速
度が要求されるので、発光ダイオードのような変調速度
に制限のある光素子を用いるシステムには不適当である
However, DMI code fi N RZ (Non R
Since it requires double the modulation speed as compared to the (eturn to zero) code, it is unsuitable for systems using optical elements such as light emitting diodes that have a limited modulation speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の事情を考慮し、変調速度がNRZ
並の符号化方式を提供することにある。
Considering the above circumstances, the object of the present invention is to
The objective is to provide a standard encoding method.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明では送信側でNRZ
パルス列に予符号化を適用し、信号11″は変化点に、
信号′0″は無変化点に(あるいはその逆に)変換する
。受信側で、これを微分成形するとA M I (Al
ternate Mark Inversion ) 
符号が得られ、これ尾より障害位置の探索を行うことが
できる。
In order to achieve the above object, the present invention uses NRZ on the transmitting side.
Applying precoding to the pulse train, signal 11'' is at the change point,
The signal '0'' is converted to a no-change point (or vice versa). When this is differentially shaped on the receiving side, A M I (Al
ternate Mark Inversion)
A code is obtained, and the fault location can be searched from this code.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を第3図乃至第5図により説明する
。第3図(a)ld原信号でありこれを第4図の予符号
器の入力端子41に印加すると出力端子44に第3図(
b)の如く符号化された出力が得られる。これは出力信
号と入力信号を法2則による加算器42で法2則の加算
をしたものを遅延線43で1ビ、ト遅延したものである
。矢印で示した如く原信号(a)の11”は波形(bl
の変化点に1 ′0”は無変化点に対応していることが
わかる。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 5. FIG. 3(a) is the ld original signal, and when this is applied to the input terminal 41 of the precoder shown in FIG. 4, the output terminal 44 is shown in FIG.
An encoded output as shown in b) is obtained. This is obtained by adding the output signal and the input signal according to the modulo 2 law in an adder 42 using the modulo 2 law, and then delaying the signal by 1 bit using the delay line 43. As shown by the arrow, 11” of the original signal (a) has a waveform (bl
It can be seen that 1'0'' corresponds to the point of no change at the point of change.

受信された波形(同じ第3図(b)とする)を第5図の
復号器の入力端子50に印加し、これを遅延回路51で
遅延させたもの(第3図fc)の波形)をもとの波形(
blから減算器52により減算すると波形(d)が得ら
れる。この波形はAMIパルス列であり slmおよび
“−1”は原信号の@1″に対応し、@θ″は原信号の
”O”K対応している。
The received waveform (same as Fig. 3(b)) is applied to the input terminal 50 of the decoder shown in Fig. 5, and it is delayed by the delay circuit 51 (waveform of Fig. 3 fc)). Original waveform (
By subtracting from bl by the subtractor 52, waveform (d) is obtained. This waveform is an AMI pulse train, and slm and "-1" correspond to @1" of the original signal, and @θ" corresponds to "O"K of the original signal.

以上により受信側KAMI波形が得られるので前述の方
式により障害位置の探索を行うことができる。すなわち
、各中継器でAMI符号のバイオレーション(AMI符
号では1と−1が交互如生じるのが正常で、それ以外は
バイオレーションである。)を検出し、それによって各
中継区間の障害状況を探知することができる。各中i器
でAM工符号を一旦NRZに直した後、再び予符号化し
て次の中継区間へ送出すればよい。
Since the KAMI waveform on the receiving side is obtained as described above, the fault location can be searched using the above-described method. In other words, each repeater detects a violation of the AMI code (with an AMI code, it is normal for 1 and -1 to occur alternately; anything else is a violation), and thereby the failure status of each relay section can be detected. can be detected. After the AM code is once converted to NRZ in each intermediate device, it is pre-encoded again and sent to the next relay section.

一方パルス列にパリティを併用することによって中継区
間全体の伝送誤りを監視することができる。
On the other hand, by using parity in combination with the pulse train, transmission errors in the entire relay section can be monitored.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発1[cよれば、変調速度をNRZ
なみ忙保ったまま、光フアイバ通信に適した障害位置探
索を行うことが出来るので、発光ダイオード等・変調速
度に制限のある伝送システムに適用した場合その効果は
大きい。
As explained above, according to the present invention 1[c, the modulation speed is set to NRZ
Since it is possible to perform a fault location search suitable for optical fiber communication while keeping the user busy, the effect is great when applied to transmission systems with limited modulation speeds such as light emitting diodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の前提となるディジタル
伝送路の障害位置探索方式の符号処理のタイムチャート
およびブロック図、第3図乃至第5図は、本発明の実施
例を示すもので、第3図は符号処理のタイムチャート、
第4図は予符号器のプロ、り図、第5図は復号器のブロ
ック図である。 41.50:入力端子、42:法2則による加算器、4
3.51:遅延回路、52:減算回路、53:出力端子
。 第 11″A 第31−A 第 4 しX 第5図
1 and 2 are time charts and block diagrams of the code processing of the fault location search method for digital transmission lines, which is the premise of the present invention, and FIGS. 3 to 5 show embodiments of the present invention. So, Figure 3 is a time chart of code processing,
FIG. 4 is a block diagram of the precoder, and FIG. 5 is a block diagram of the decoder. 41.50: Input terminal, 42: Adder based on law 2, 4
3.51: Delay circuit, 52: Subtraction circuit, 53: Output terminal. 11''A 31-A 4th X Figure 5

Claims (1)

【特許請求の範囲】[Claims] ディジタル伝送路の送信端局では、原信号に2種類の誤
り検出符号化を施して送信し、各中継点では、上記2種
類のうちの一方の誤り検出符号を用いて符号誤りを検出
した後、上記誤り検出符号に対してのみ再符号化を行っ
て次の中継区間に送出するとともに、検出された符号誤
り率を測定することにより対応する中継区間に障害が発
生したことを送信または受信端局に通知し、受信端局で
は、他方の誤り検出符号を用いて受信信号をチェックし
、回線総合の符号誤りを検出するディジタル伝送路の障
害位置探索方式において、前記2種類の誤り検出符号と
して、パリティ符号と変化息子符号を用い、後者を受信
側で微分成形してAM1 (Alternate Ma
rk Inversion ) 符号にXることを特徴
とするディジタル伝民路の障害位置探索方式。
At the transmitting terminal station of the digital transmission path, the original signal is subjected to two types of error detection encoding and transmitted, and at each relay point, after detecting code errors using one of the two types of error detection encoding, , re-encodes only the above error detection code and sends it to the next relay section, and measures the detected code error rate to notify the transmitting or receiving end that a failure has occurred in the corresponding relay section. In the fault location search method for digital transmission lines, the receiving end station checks the received signal using the other error detection code and detects code errors in the entire line. , a parity code and an alternating son code are used, and the latter is differentially shaped on the receiving side to create AM1 (Alternate Ma
rk Inversion) A method for locating faults in digital communication routes, which is characterized by an X in the code.
JP24693183A 1983-03-11 1983-12-28 Trouble position searching system in digital transmission line Pending JPS60141052A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24693183A JPS60141052A (en) 1983-12-28 1983-12-28 Trouble position searching system in digital transmission line
CA000446911A CA1205561A (en) 1983-03-11 1984-02-07 Method of searching fault locations in digital transmission line
DE8484101290T DE3482230D1 (en) 1983-03-11 1984-02-08 PROCESS FOR ERROR LOCATION IN A DIGITAL TRANSMISSION LINE.
EP84101290A EP0118763B1 (en) 1983-03-11 1984-02-08 Method of searching fault locations in digital transmission line
US06/578,791 US4604745A (en) 1983-03-11 1984-02-10 Method of searching fault locations in digital transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24693183A JPS60141052A (en) 1983-12-28 1983-12-28 Trouble position searching system in digital transmission line

Publications (1)

Publication Number Publication Date
JPS60141052A true JPS60141052A (en) 1985-07-26

Family

ID=17155876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24693183A Pending JPS60141052A (en) 1983-03-11 1983-12-28 Trouble position searching system in digital transmission line

Country Status (1)

Country Link
JP (1) JPS60141052A (en)

Similar Documents

Publication Publication Date Title
EP0118763B1 (en) Method of searching fault locations in digital transmission line
KR930015438A (en) Transmission system for transmitting data symbols
JP2833862B2 (en) Collision detection using Manchester code violation
US3162724A (en) System for transmission of binary information at twice the normal rate
JPS6285536A (en) Ami signal receiver and process of the same
CA1104693A (en) Modified duobinary repeatered span line
US3744051A (en) Computer interface coding and decoding apparatus
WO2024016870A1 (en) Signal processing method, device, and system
JP4388730B2 (en) Differential wavelength division multiplexing / separation method and apparatus
US20050024253A1 (en) Duobinary-to-binary signal converter
JPS60141052A (en) Trouble position searching system in digital transmission line
EP0111968B1 (en) Transmission system for the transmission of binary data symbols
Kawanishi et al. DmB1M code and its performance in a very high-speed optical transmission system
Hakamada et al. 32-Mbit/s star configured optical local area network design and performance
CN106033998B (en) A kind of method and device of detection multi-path interference
JPS6194426A (en) Transfer system for repeater monitor information
JPS6333818B2 (en)
JPH0557789B2 (en)
CA1091778A (en) Digital signal performance monitor
GB2094107A (en) Digital code for line transmission
JPS59107662A (en) Line supervisory system of time division directional control transmission system
JP2728725B2 (en) Optical receiver and optical communication network
JPH04287543A (en) Parallel optical transmission circuit
JPS6328377B2 (en)
JPS63179640A (en) Optical local area network