JPS60140812A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60140812A
JPS60140812A JP58246928A JP24692883A JPS60140812A JP S60140812 A JPS60140812 A JP S60140812A JP 58246928 A JP58246928 A JP 58246928A JP 24692883 A JP24692883 A JP 24692883A JP S60140812 A JPS60140812 A JP S60140812A
Authority
JP
Japan
Prior art keywords
layer
region
protective film
film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58246928A
Other languages
Japanese (ja)
Inventor
Osamu Okura
理 大倉
Hideo Sunami
英夫 角南
Kikuo Kusukawa
喜久雄 楠川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58246928A priority Critical patent/JPS60140812A/en
Publication of JPS60140812A publication Critical patent/JPS60140812A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To change a desired region in a semiconductor layer applied on an amorphous substrate or a thin-film excellently into a signle crystal by previously forming a protective film on a semiconductor thin-film layer by using a substance optically transparent to projecting laser beams. CONSTITUTION:A thremal oxide film 2 is formed on a single crystal silicon substrate 1, and a polycrystalline silicon layer 3 is further shaped on the thermal oxide film 2. An oxide film 4 is formed as a protective film as a first layer, and silicon nitride films 5 are shaped as protective films as second layers. The upper section of a region to be changed into a single crystal in the polycrystalline silicon layer 3 is removed through a photolighographic process, and the silicon nitride films 5 are removed. When such structure is irradiated by a laser, a temperature rise in a region 11 consisting of one layer of the protective film is made larger than that in regions 12 composed of two layers of the protective films because laser power reaching to the polycrystalline silicon layer 3 is larger than the region 12 in the region 11. Consequently, solidification starts from the regions 12 consisting of two layers of the protective films at a low temperature as shown in the arrows A, and gradually progresses to the resion 11 composed of one layer of the protective film Accordingly, an excellent single crystal layer is obtained in the regions 12 consisting of two layer of the protective films.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に関し、詳しくは、非晶
質基板或いは薄膜上の所望の領域のみに良質の単結晶薄
膜層を形成し、その他の領域には上記単結晶領域に対し
自己整合的に誘電分離領域を形成する方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device, in which a high-quality single crystal thin film layer is formed only in a desired region on an amorphous substrate or a thin film, and other This field relates to a method of forming a dielectric isolation region in a self-aligned manner with respect to the single crystal region.

〔発明の背景〕[Background of the invention]

非晶質基板或いは薄膜上に単結晶領域を形成する方法の
1つとして、上記非晶質領域上に単結晶化すべき多結晶
層もしくは非晶質層を形成し、これに大出力レーザ光を
照射してこれを融解せしめ、その再結晶化過程において
これを単結晶化あるいは粒径増大化する方法が提案され
ている。
One method for forming a single crystal region on an amorphous substrate or thin film is to form a polycrystalline layer or an amorphous layer to be made into a single crystal on the amorphous region, and then apply a high-power laser beam to this layer. A method has been proposed in which the material is irradiated to melt it, and in the recrystallization process it is made into a single crystal or its grain size is increased.

このようにして形成される単結晶領域は通常の単結晶半
導体基板と同様に電気的素子を形成する為に用いられる
のが一般的である。ところでこのような目的の為に上記
単結晶領域を用いるKはこれまで以下に述べるような問
題点が存在していた。
The single crystal region formed in this manner is generally used for forming electrical elements in the same way as a normal single crystal semiconductor substrate. By the way, K using the above-mentioned single crystal region for such purposes has hitherto had the following problems.

その第1点は再結晶成長時にプリッジングエピタキシー
法(特開昭56−73697)にみられるように単結晶
の種結晶を用いない限り所望の領域に結晶粒界を含まな
い単結晶領域を形成する事が困難である事。第2点とし
てはこのようにして形成した単結晶領域を素子分離の為
に誘電分離する際にマスク合わせ余裕が必要であるとい
う点である。特に後者についてはこれまで予め誘電分離
を行なった後にレーザ照射を行なうといった方法も提案
されているが、この場合については適正なレーザ照射条
件域が狭くなる事やパターン崩れを生じたりするなどの
問題点が指摘されていた。
The first point is that unless a single crystal seed crystal is used during recrystallization growth, a single crystal region containing no grain boundaries is formed in the desired region, as seen in the prudging epitaxy method (Japanese Patent Application Laid-Open No. 73697/1983). something that is difficult to do. The second point is that a margin for mask alignment is required when dielectrically separating the single crystal region thus formed for element isolation. Particularly regarding the latter, methods have been proposed in which laser irradiation is performed after performing dielectric separation in advance, but in this case, there are problems such as narrowing the range of appropriate laser irradiation conditions and causing pattern collapse. The point was pointed out.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来の問題点を解決し、非晶質基板
あるいは薄膜上に被着した半導体層の所望の領域を良質
に単結晶化し、他の領域を上記単結晶領域と自己整合で
酸化し、誘電分離領域とし得る方法を提供する事にある
An object of the present invention is to solve the above-mentioned conventional problems, to form a desired region of a semiconductor layer deposited on an amorphous substrate or a thin film into a high-quality single crystal, and to form other regions in self-alignment with the above-mentioned single crystal region. It is an object of the present invention to provide a method for oxidizing and forming a dielectric isolation region.

〔発明の概要〕 本発明は、非晶質基板あるいは薄膜上に形成した半導体
層の上にレーザや電子ビームなどの照射に先立って、上
記レーザ光非吸収物体よりなる保護膜を形成した後に、
更にその上にレーザ光照射によって発生する上記半導体
層の温度分布を制御する目的で耐酸化性の第2の保護膜
を形成する。
[Summary of the Invention] The present invention provides a method of forming a protective film made of the above-mentioned laser beam non-absorbing material on a semiconductor layer formed on an amorphous substrate or a thin film prior to irradiation with a laser beam, an electron beam, etc.
Furthermore, an oxidation-resistant second protective film is formed thereon for the purpose of controlling the temperature distribution of the semiconductor layer generated by laser beam irradiation.

このような系にレーザ照射を行ない、2層の保護膜によ
って被覆されている上記半導体層のみを良質の単結晶層
とし、その後に全系を酸化雰囲気中で熱処理する事によ
り耐酸化性を有する第2の保護膜によって覆われていな
い領域、即ち結晶性が上記良質の単結晶領域より劣る領
域を選択的かつ自己整合で酸化膜とし、上記良質の単結
晶層を誘電分離する事を特徴としている。
Laser irradiation is performed on such a system to make only the semiconductor layer covered by the two protective films a high-quality single crystal layer, and then the entire system is heat-treated in an oxidizing atmosphere to achieve oxidation resistance. The region not covered by the second protective film, that is, the region whose crystallinity is inferior to the above-mentioned high-quality single-crystal region, is selectively and self-aligned as an oxide film, and the above-mentioned high-quality single-crystal layer is dielectrically isolated. There is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 第1図に断面構造を示すように単結晶シリコン(100
)面差板1上に厚さ600 nmの熱酸化膜(SiQ、
) 2を形成した後、この上に更に厚さ400nmの多
結晶シリコン層3をモノシラン(SiH,)の熱分解(
630℃)′(−用いたCVD法。
Example 1 Single-crystal silicon (100%
) A thermal oxide film (SiQ,
) 2, a polycrystalline silicon layer 3 with a thickness of 400 nm is further formed on this layer by thermal decomposition of monosilane (SiH, ).
630°C)'(- CVD method used.

により形成した。次に第1層の保護膜として厚さ20n
mの酸化膜4をCVD法により形成した後、引き続いて
第2層の保護膜として窒化シリコン膜(S13N、)5
を厚さ120nm形成した。次にホトリソグラフ工程に
より多結晶シリコン層3の単結晶化したい領域上を除き
窒化シリコン膜5を除去した。
It was formed by Next, the first layer of protective film is 20n thick.
After forming the oxide film 4 of m in thickness by the CVD method, a silicon nitride film (S13N,) 5 is successively formed as a second protective film.
was formed to a thickness of 120 nm. Next, the silicon nitride film 5 was removed by a photolithography process except for the area on the polycrystalline silicon layer 3 where it was desired to be made into a single crystal.

以上の工程によって得られた構造に対し、レーザ照射を
行なった。レーザ照射にはアルゴンイオンレーザ光を用
い、試料温度を400〜500℃に保ちながら、照射パ
ワ−5〜15W1ビーム走査速度1〜100 (R/ 
aで行なった。尚、この時ビーム直径は30〜100μ
mとした。
Laser irradiation was performed on the structure obtained through the above steps. Argon ion laser light was used for laser irradiation, and while keeping the sample temperature at 400 to 500°C, the irradiation power was 5 to 15 W, the beam scanning speed was 1 to 100 (R/
It was done in a. At this time, the beam diameter is 30 to 100μ.
It was set as m.

上記試料構造において多結晶シリコン層3に到達するレ
ーザパワーは保護膜が1層の場合と2層の場合とで異な
る。これは保護膜が照射レーザ光に対して光学的に透明
であり、界面の多重反射効果によって反射率が変化する
為である。本実施例で用いた保護膜の膜厚では1層の場
合、多結晶シリコン層3に到達するレーザパワーは照射
パワー(5) 065%、2層の場合については50チであった。
In the above sample structure, the laser power reaching the polycrystalline silicon layer 3 differs depending on whether there is one protective film or two protective films. This is because the protective film is optically transparent to the irradiated laser beam, and the reflectance changes due to the multiple reflection effect at the interface. With the thickness of the protective film used in this example, in the case of one layer, the laser power reaching the polycrystalline silicon layer 3 was irradiation power (5) 065%, and in the case of two layers, it was 50%.

このような条件下でレーザ照射後の再結晶化過程におい
て結晶成長がどのように生じたかを第2図によって説明
する。上述のように保護膜が1層の領域11では多結晶
シリコン層3に到達するレーザパワーが保護膜が2層の
領域12より太きくなっている為、温度上昇はこの領域
の方が大きくなる。その結果として矢印Aで示したよう
姉、固化は低温である保護膜2層の領域12より開始し
、漸次保護膜1層領域11へと進行する。
How crystal growth occurred in the recrystallization process after laser irradiation under such conditions will be explained with reference to FIG. As mentioned above, in region 11 where the protective film is one layer, the laser power reaching the polycrystalline silicon layer 3 is thicker than in region 12 where the protective film is two layers, so the temperature rise is greater in this region. . As a result, as shown by arrow A, solidification starts from the low temperature region 12 of two layers of protective film and gradually progresses to region 11 of one layer of protective film.

以上の結果として得られた試料表面を工、チングにより
結晶粒界を顕在化せしめ、顕微鏡観察した結果を模式的
に第3図に示す。図よりわかるように保護膜が2層の領
域12においては良質の単結晶層が得られており、その
他の保護膜が1層の領域11では結晶粒界13t−含む
結晶が得られている。
The surface of the sample obtained as above was etched and etched to expose the grain boundaries, and the results of microscopic observation are schematically shown in FIG. As can be seen from the figure, a high-quality single crystal layer is obtained in the region 12 where there are two protective films, and a crystal containing grain boundaries 13t- is obtained in the other region 11 where there is one protective film.

又、上記保護膜の効果によりレーザ照射後の表面は平坦
であった。
Moreover, the surface after laser irradiation was flat due to the effect of the above-mentioned protective film.

次にこの試料を酸化性雰囲気において1000℃□ (6) 300分の熱処理を行なった。この処理によって周知の
LOCO8酸化法と同様に保護膜が2層の領域12のシ
リコン層は酸化されず、保護膜が1層の領域11のシリ
コン層、即ち結晶性の良くない領域のみが選択的に酸化
され素子分離領域が形成された。更に、上記保護膜層を
除去した後の試料断面構造を第4図に示す。酸化膜2に
よって分離された領域内に良質の単結晶シリコン層14
が形成された。
Next, this sample was heat treated at 1000° C. (6) for 300 minutes in an oxidizing atmosphere. As with the well-known LOCO8 oxidation method, this process does not oxidize the silicon layer in region 12 with two layers of protective films, and only selectively oxidizes the silicon layer in region 11 with one layer of protective film, that is, a region with poor crystallinity. was oxidized to form an element isolation region. Further, FIG. 4 shows the cross-sectional structure of the sample after removing the protective film layer. A high-quality single crystal silicon layer 14 is formed in the region separated by the oxide film 2.
was formed.

以上の工程によって、所望領域に単結晶領域が形成され
、更にその他の領域には酸化膜が形成され上記単結晶領
域を自己整合で誘電分離する事ができた。
Through the above steps, a single crystal region was formed in a desired region, and an oxide film was further formed in other regions, making it possible to dielectrically isolate the single crystal region by self-alignment.

尚、本実施例では保護膜として酸化膜、シリコン窒化膜
の組合せを用いたが、本発明の効果はこれに限定される
ものではなく、1)双方の材料が照射レーザ光の吸収が
少ないものである事、2)一方の材料のみは耐酸化性を
有する事の2条件を満足すればどのような材料を用いて
も構わない。又、その膜厚についても本実施例の他Kl
)レーザ照射後の表面が平坦である事、2)一層像護膜
のみの照射レーザ光透過率が二層の場合のそれよりも高
い事の2条件を満足すれば、自由に選択可能である。
In this example, a combination of an oxide film and a silicon nitride film was used as the protective film, but the effects of the present invention are not limited to this.1) Both materials have low absorption of irradiated laser light. Any material may be used as long as it satisfies the following two conditions: 2) only one material has oxidation resistance. Also, regarding the film thickness, in addition to this example, Kl
) The surface after laser irradiation is flat, and 2) The irradiation laser light transmittance of only one layer of image protective film is higher than that of two layers, so it can be selected freely. .

更に照射レーザに対しても本実施例の他に、1)大出力
が得られる、2)Siに対する吸収係数が大きいといっ
た条件を満足するYAGレーザやクリプトンレーザなど
をはじめ各種レーザ光が使用可能である。
Furthermore, for the irradiation laser, in addition to this example, various laser beams can be used, including YAG laser and krypton laser, which satisfy the following conditions: 1) large output can be obtained, and 2) a large absorption coefficient for Si. be.

実施例2 本実施例は実施例1に対して結晶成長の核となる種結晶
を有する構造、即ちブリッジングエビタキシーに本発明
を適用したものである。試料断面構造を第5図に示す。
Example 2 In this example, the present invention is applied to a structure having a seed crystal serving as a nucleus for crystal growth, that is, bridging epitaxy, in contrast to Example 1. Figure 5 shows the cross-sectional structure of the sample.

実施例1と異なる点はSI基板1上に熱酸化膜2を形成
した後、これをホトリソグラフ工程によって所望の領域
を除いて一部除去し、レーザ照射後の再結晶成長時の種
結晶部分を露出させている点である。その後は実施例1
と同様に多結晶シリコン層3.1層目保護膜(酸化膜)
4および2層目保護膜(シリコン窒化膜)5を形成した
後、上記2層目保護膜5のみを所望領域を除いて除去し
た。なお、各層の膜厚は実施例1のときと同じ値を用い
た。
The difference from Example 1 is that after a thermal oxide film 2 is formed on an SI substrate 1, a part of it is removed except for a desired area by a photolithography process, and the seed crystal part during recrystallization growth after laser irradiation is removed. The point is that it exposes the After that, Example 1
Similarly, polycrystalline silicon layer 3. First layer protective film (oxide film)
After forming the second protective film 4 and the second protective film (silicon nitride film) 5, only the second protective film 5 was removed except for desired areas. Note that the same value as in Example 1 was used for the film thickness of each layer.

次に実施例1と同じ条件でレーザ照射を行なった。この
場合も保護膜2層領域に入射されるレーザパワーは保護
膜1層領域の場合よりも小さくなる。但し、この場合前
者は酸化膜2上に、後者では単結晶基板41上に多結晶
シリコン層3が存在し、これらの熱伝導率が約100倍
異なる為に多結晶シリコン層3の温度上昇は保護膜が2
層の領域の方が却って大きくなる。従って本実施例にお
いては第2層目の保護膜はこの温度差を緩和する役割を
果たしていると考えてよい。
Next, laser irradiation was performed under the same conditions as in Example 1. In this case as well, the laser power incident on the two-layer protective film region is smaller than that in the one-layer protective film region. However, in this case, the polycrystalline silicon layer 3 exists on the oxide film 2 in the former case, and the polycrystalline silicon layer 3 exists on the single crystal substrate 41 in the latter case, and since their thermal conductivities are about 100 times different, the temperature rise of the polycrystalline silicon layer 3 is 2 protective films
On the contrary, the area of the layer becomes larger. Therefore, in this example, it can be considered that the second protective film plays a role in alleviating this temperature difference.

上記処理により、再結晶成長は保護膜が1層の領域より
開始し、保護膜が2層の領域へと、単結晶基板の面方位
情報を引継ぎながら進行し、再結晶化後のシリコン層3
は単結晶となった。
Through the above process, recrystallization starts from the region with one layer of protective film and progresses to the region with two layers of protective film while inheriting the surface orientation information of the single crystal substrate.
became a single crystal.

次に実施例1と同様にこの試料を酸化性雰囲気中で熱処
理する事によって保護膜が2層の領域下を除いてシリコ
ン層3を酸化した。この状態を第6図に示す。図は保護
膜4,5を除去した後の試(9) 斜断面構造を表わしたものであり、実施例1と同様に単
結晶シリコン層14が酸化膜2によって誘電分離されて
おり、なおかつこの分離が、第5図に示したように第2
層保護膜5の存在する領域と自己整合になっている事が
わかる。
Next, in the same manner as in Example 1, this sample was heat treated in an oxidizing atmosphere to oxidize the silicon layer 3 except under the area where the two protective films were formed. This state is shown in FIG. The figure shows the diagonal cross-sectional structure of test (9) after the protective films 4 and 5 have been removed, and as in Example 1, the single crystal silicon layer 14 is dielectrically isolated by the oxide film 2. The separation occurs in the second stage as shown in Figure 5.
It can be seen that the area is self-aligned with the area where the layer protective film 5 is present.

以上ブリッジングエビタキシーにおいても本発明を有効
に実施できる事がわかった。
As described above, it has been found that the present invention can be effectively implemented even in bridging epitaxy.

尚、本実施例においても実施例1と同様に、保護膜材料
や膜厚、照射レーザ光に対して大きな自由度が存在する
事には変わりはない事は明白である。
It is clear that in this example, as in Example 1, there is still a large degree of freedom regarding the protective film material, film thickness, and irradiation laser beam.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、非晶
質基板もしくは薄膜上の所望の領域に粒界を含まない良
質の単結晶半導体薄膜層を形成し、なおかつその他の領
域には上記単結晶領域に対して自己整合で誘電分離層を
形成する事が可能である。
As is clear from the above description, according to the present invention, a high-quality single crystal semiconductor thin film layer containing no grain boundaries is formed in a desired region on an amorphous substrate or thin film, and the above-described thin film layer is formed in other regions. It is possible to form a dielectric isolation layer in self-alignment with respect to a single crystal region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2(10) 図はレーザ照射後の結晶成長方向を説明するための模式
図、第3図はレーザ照射後の結晶性を説明するための模
式図、第4図、第5図および第6図は、それぞれ本発明
の実施例を示す断面図である。 1・・・・・・・・・・・・・・・・・・・・・・・・
シリコン単結晶基板2・・・・・・・・・・・・・・・
・・・・・・・・・シリコン酸化膜3・・・・・・・・
・・・・・・・多結晶シリコン層4・・・・・・・・・
第1層保護膜(シリコン酸化膜)5・・・・・・・・・
第2層保護膜(シリコン窒化膜)14・・・・・・再結
晶単結晶化層 (11) 第 1 図 第3 団 第4図 第 5 図 第 乙 回
Fig. 1 is a cross-sectional view showing one embodiment of the present invention, Fig. 2 (10) is a schematic diagram for explaining the direction of crystal growth after laser irradiation, and Fig. 3 is a schematic diagram for explaining the crystallinity after laser irradiation. 4, 5, and 6 are cross-sectional views showing embodiments of the present invention, respectively. 1・・・・・・・・・・・・・・・・・・・・・・・・
Silicon single crystal substrate 2・・・・・・・・・・・・・・・
・・・・・・・・・Silicon oxide film 3・・・・・・・・・
・・・・・・Polycrystalline silicon layer 4・・・・・・・・・
First layer protective film (silicon oxide film) 5...
Second layer protective film (silicon nitride film) 14... Recrystallized single crystal layer (11) Figure 1 Figure 3 Group Figure 4 Figure 5 Figure B

Claims (1)

【特許請求の範囲】 下記の工程を含む半導体装置の製造方法(1)絶縁性基
板あるいは薄膜上に形成した非晶質あるいは多結晶牛導
体薄膜層をレーザ光照射を用いた局所的加熱により融解
、再結晶化する事によりこれを単結晶化する工程におい
て当該半導体薄膜層上に予め照射レーザ光に対し光学的
に透明である物質を用いて保護膜を形成する工程。 (2)上記保護膜上に耐酸化性を有しかつ上記レーザ光
に対し光学的に透明である物質を用いて第2の保護膜を
形成した後、所望の領域のみを除いてこれを除去する工
程。 (3) レーザ照射により上記半導体層を単結晶化した
後に上記第2の保護膜の除去された領域下の半導体層の
みを選択的かつ自己整合的に酸化する工程。
[Claims] A method for manufacturing a semiconductor device including the following steps (1) Melting an amorphous or polycrystalline conductor thin film layer formed on an insulating substrate or thin film by local heating using laser light irradiation. , a step of forming a protective film on the semiconductor thin film layer using a material that is optically transparent to the irradiated laser beam in advance in the step of converting the semiconductor thin film layer into a single crystal by recrystallization. (2) After forming a second protective film on the protective film using a substance that is oxidation-resistant and optically transparent to the laser beam, this is removed except for only the desired area. The process of doing. (3) A step of selectively and self-aligningly oxidizing only the semiconductor layer under the region where the second protective film has been removed after the semiconductor layer is single-crystalized by laser irradiation.
JP58246928A 1983-12-28 1983-12-28 Manufacture of semiconductor device Pending JPS60140812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246928A JPS60140812A (en) 1983-12-28 1983-12-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246928A JPS60140812A (en) 1983-12-28 1983-12-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60140812A true JPS60140812A (en) 1985-07-25

Family

ID=17155838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246928A Pending JPS60140812A (en) 1983-12-28 1983-12-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60140812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264072A (en) * 1985-12-04 1993-11-23 Fujitsu Limited Method for recrystallizing conductive films by an indirect-heating with a thermal-conduction-controlling layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264072A (en) * 1985-12-04 1993-11-23 Fujitsu Limited Method for recrystallizing conductive films by an indirect-heating with a thermal-conduction-controlling layer

Similar Documents

Publication Publication Date Title
US4448632A (en) Method of fabricating semiconductor devices
US4596604A (en) Method of manufacturing a multilayer semiconductor device
FR2517123A1 (en) METHOD FOR FORMING A SINGLE-CRYSTAL SEMICONDUCTOR FILM ON AN INSULATOR
JPS60150618A (en) Manufacture of semiconductor device
JPS60140812A (en) Manufacture of semiconductor device
JPH02246267A (en) Manufacture of semiconductor device
JPS5885520A (en) Manufacture of semiconductor device
JPS6042855A (en) Semiconductor device
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPS6159820A (en) Manufacture of semiconductor device
JP2718074B2 (en) Method of forming thin film semiconductor layer
JP2699325B2 (en) Method for manufacturing semiconductor device
JPS58175844A (en) Manufacture of semiconductor device
JPS5928328A (en) Preparation of semiconductor device
JPS60158616A (en) Manufacture of semiconductor device
JPS60249312A (en) Manufacture of semiconductor device
JPS61113230A (en) Manufacture of semiconductor device
JPS5934626A (en) Method for formation of semiconductor film
JPS5831515A (en) Manufacture of semiconductor thin film
JPH01307271A (en) Semiconductor device and manufacture thereof
JPS6149412A (en) Single crystallizing method of silicon film
JP2664458B2 (en) Element isolation method
JPS60144931A (en) Manufacture of semiconductor device
JPS62124753A (en) Manufacture of dielectric isolation substrate
JPS5939023A (en) Manufacture of semiconductor thin film