JPS60140642A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPS60140642A
JPS60140642A JP24664583A JP24664583A JPS60140642A JP S60140642 A JPS60140642 A JP S60140642A JP 24664583 A JP24664583 A JP 24664583A JP 24664583 A JP24664583 A JP 24664583A JP S60140642 A JPS60140642 A JP S60140642A
Authority
JP
Japan
Prior art keywords
circuit
scanning
magnification
signal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24664583A
Other languages
Japanese (ja)
Other versions
JPH0234424B2 (en
Inventor
Yoshihiro Hirata
平田 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP24664583A priority Critical patent/JPS60140642A/en
Publication of JPS60140642A publication Critical patent/JPS60140642A/en
Publication of JPH0234424B2 publication Critical patent/JPH0234424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To obtain an extreme-magnification wide-visual field reflection electron image with uniform brightness by providing a means to compensate a change of the average level of output signals due to the scanning of electron rays. CONSTITUTION:A magnification control signal directing the magnification variable circuit 4, and a scanning signal from a scanning signal generating circuit 3 is fed to a deflection coil 2 after being converted into a large-amplitude signal. An arithmetic circuit 5 generates an output by adding output signals of all detection elements Dmn. At the same time, the control signal from the control section 6 is also fed to a switching circuit 9, which is made a conductive state, and the correction signal from a correction signal generating circuit 8 is fed to an intensity correcting circuit 7. The correction signal generating circuit 8 generates a correction signal compensating a decrease of the average level of the outputs of an adding circuit due to a decrease of the solid angle based on the scanning signal from the scanning signal generating circuit 3. Accordingly, an extreme-magnification wide-visual field reflection electron image with uniform brightness can be displayed on a CRT10.

Description

【発明の詳細な説明】 本発明は、二次元的に配列した複数の検出素子よる成る
反射電子検出器を具備する走査電子顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scanning electron microscope equipped with a backscattered electron detector consisting of a plurality of detection elements arranged two-dimensionally.

電子線を試料に照射した際発生する反射電子を検出して
、試料の反射電子像を得ることが行なわれているが、近
時、試料の高分解能高倍像と極低倍広視野像を双方共観
察し得る走査電子顕微鏡に対する要求が高まった。この
ような要求に応えるため、複数の反射電子検出素子を試
料の近傍に二次元的に配列して大型の反射検出器を形成
し、高分解能高倍像を得ようとする際には、検出面を狭
くして、一部の検出素子よりの出力信号のみを取り出覆
ようにして、分解能を低下させる原因となるところの試
料表面と鏡面の関係をなす方向から大きく外れた反射電
子の検出を避け、又、極低倍広視野を得ようとする際に
は、充分な量の反射電子を検出して明るさムラの少ない
像を得るため、全検出素子の出力信号を加算した信号に
基づいて試料像を得るようにしている。ところが、電子
線FBを第1図において矢印1」の向きに水平走査して
試料Sの極低倍広視野像を得る場合、反射電子発生点即
ち、電子線の試料への照射点の位置がP+ 、P2 、
P3と変化すると、反射電子発生点より反射電子検出器
りの検出面を見込む立体角はφ1、φ2.φ3となり、
変化してしまう。そのため、従来の装置においては、得
られた極低倍広視野像には第2図に示すように、23点
近傍は立体角が小さいために、暗くなり、11点近傍は
立体角が大きく各検出素子に入射する電子の量が多くな
って明るくなり、依然として無祝し得ない程度に明るさ
ムラが存在していた。
Backscattered electron images of a sample are obtained by detecting the backscattered electrons generated when the sample is irradiated with an electron beam, but recently, it has become possible to obtain both high-resolution, high-magnification images and ultra-low-magnification wide-field images of the sample. Demand for scanning electron microscopes capable of co-observation has increased. In order to meet these demands, multiple backscattered electron detection elements are arranged two-dimensionally near the sample to form a large reflection detector. By narrowing the area and extracting only the output signals from some of the detection elements, it is possible to detect backscattered electrons that deviate significantly from the direction that forms the relationship between the sample surface and the mirror surface, which causes a reduction in resolution. In addition, when trying to obtain a very low magnification wide field of view, in order to detect a sufficient amount of backscattered electrons and obtain an image with less uneven brightness, it is necessary to use a signal based on the sum of the output signals of all detection elements. to obtain a sample image. However, when horizontally scanning the electron beam FB in the direction of arrow 1'' in Fig. 1 to obtain an extremely low magnification wide-field image of the sample S, the position of the backscattered electron generation point, that is, the irradiation point of the electron beam on the sample, is P+, P2,
P3, the solid angles from the backscattered electron generation point to the detection surface of the backscattered electron detector are φ1, φ2, . It becomes φ3,
It will change. Therefore, in the conventional device, the obtained extremely low magnification wide-field image is dark because the solid angle is small near the 23rd point, and the solid angle is large near the 11th point, as shown in Figure 2. As the amount of electrons incident on the detection element increased, it became brighter, and there was still unaccountable unevenness in brightness.

本発明は、このような従来の欠点を解決し、高分解能高
倍像のみならず、明るさムラの無い極低倍広視野反射電
子像を得ることのできる走査電子顕微鏡を提供すること
を目的としている。
The present invention aims to solve these conventional drawbacks and provide a scanning electron microscope that can obtain not only high-resolution, high-magnification images, but also very low-magnification, wide-field backscattered electron images with uniform brightness. There is.

本発明は試料上において電子線を二次元的に走査する手
段と、該電子線の照射によって試料より散乱する反射電
子を検出するための二次元的に配列された複数の検出素
子より成る反射電子検出器と、該電子線の試料上におけ
る走査領域の大きさを変化させることにより観察倍率を
切換えるための倍率切換手段と、該倍率切換手段による
倍率切換えに連動して使用する検出素子の個数を切換え
るための手段と、前記電子線と同期走査され該反射電子
検出素子の出力信号に基づいて試料像を表示するための
手段とを備えた装置において、該電子線の走査に伴う該
出力信号の平均レベルの変化を補償するための手段を具
備していることを特徴としている。
The present invention consists of a means for two-dimensionally scanning an electron beam on a sample, and a plurality of two-dimensionally arranged detection elements for detecting backscattered electrons scattered from the sample by irradiation with the electron beam. A detector, a magnification switching means for switching the observation magnification by changing the size of the scanning area of the electron beam on the sample, and a number of detection elements used in conjunction with the magnification switching by the magnification switching means. In an apparatus comprising means for switching, and means for displaying a sample image based on an output signal of the backscattered electron detection element that is scanned in synchronization with the electron beam, It is characterized in that it includes means for compensating for changes in the average level.

以下、図面に基づき本発明の実施例を詳述する。Embodiments of the present invention will be described in detail below based on the drawings.

第3図は本発明の一実施例を示すためのもので、図中1
は対物レンズであり、この対物レンズ1によって集束さ
れた電子線EBは試料S上に照射される。2は電子線E
Bを偏向するための偏向コイルであり、この偏向コイル
2には走査信号発生回路3より倍率可変回路4を介して
第4図(a)に示す如き鋸歯状の走査信号が供給される
。Dは二次元的に配列された多数の反射電子検出素子D
IIIn(m= 1. 2. 3. 4. n= 1.
 2. 3)より成る反射電子検出器である。各反射電
子検出素子Dm11よりの出力信号は、対応する増幅器
、A、mnにおいて増幅された後、演算回路5において
信号選択あるいは加算等の演算処理を受ける。この演算
回路5において、どの検出素子よりの出力信号を加算す
るかは制御部6よりの制御信号に基づいて決定される。
FIG. 3 is for showing one embodiment of the present invention, and in the figure 1
is an objective lens, and the electron beam EB focused by this objective lens 1 is irradiated onto the sample S. 2 is electron beam E
This deflection coil 2 is supplied with a sawtooth scanning signal as shown in FIG. 4(a) from a scanning signal generating circuit 3 via a variable magnification circuit 4. D is a large number of backscattered electron detection elements D arranged two-dimensionally.
IIIn (m= 1. 2. 3. 4. n= 1.
2. 3) is a backscattered electron detector consisting of: The output signal from each backscattered electron detection element Dm11 is amplified by a corresponding amplifier, A, mn, and then subjected to arithmetic processing such as signal selection or addition in an arithmetic circuit 5. In this arithmetic circuit 5, the output signals from which detection elements are to be added are determined based on a control signal from the control section 6.

又、制御部6より倍率制御信号が倍率可変回路4に供給
され、観察倍率が制御される。演算回路5の出力信号は
輝度補正回路7に供給されている。8は補正信号発生回
路であり、この補正信号発生回路8には走査信号発生回
路3よりの出力信号が供給されており、補正信号発生回
路8は走査信号発生回路3よりの出力信号に基づいて第
4図(C)に示す如き補正信号を作成する。この補正信
号はスイッチ回路9を介して輝度補正回路7に供給され
ており、輝度補正回路7において、演算回路5よりの出
力信号と加算される。輝度補正回路7よりの出力信号は
陰極線管10のグリッドGに供給されている。この陰極
線管10の偏向コイルCには前記走査信号発生回路3よ
り走査信号が供給される。
Further, a magnification control signal is supplied from the control section 6 to the variable magnification circuit 4, and the observation magnification is controlled. The output signal of the arithmetic circuit 5 is supplied to a brightness correction circuit 7. Reference numeral 8 denotes a correction signal generation circuit, to which the output signal from the scanning signal generation circuit 3 is supplied, the correction signal generation circuit 8 generates a signal based on the output signal from the scanning signal generation circuit 3. A correction signal as shown in FIG. 4(C) is created. This correction signal is supplied to the brightness correction circuit 7 via the switch circuit 9, and is added to the output signal from the arithmetic circuit 5 in the brightness correction circuit 7. The output signal from the brightness correction circuit 7 is supplied to the grid G of the cathode ray tube 10. A scanning signal is supplied to the deflection coil C of the cathode ray tube 10 from the scanning signal generating circuit 3.

このような構成において、まず、試料Sの高分解能高倍
像を観察しようとする際には、制御部6より特定の高倍
率に倍率を設定するだめの倍率制御信号が倍率可変回路
4に供給される。その結果、第4図(a)に示す如き水
平走査信号及び鋸歯状の垂直走査信号が小さな振幅の信
号に変換された後、偏向コイル2に供給される。そのた
め、試料Sの極めて狭い領域が電子線EBにより二次元
的に走査され、その際発生した反射電子は検出器Dに入
射して検出される。この時、制御部6より演算回路5に
演算制御信号が供給され、演算回路5において、例えば
中央部の検出素子D23よりの出力信号のみを取り出す
ようにされる。又、制御部6よりの制御信号はスイッチ
回路9に供給され、スイッチ回路9は非導通状態にされ
る。そのため、演算回路5よりの検出素子[)23より
の出力信号は輝度補正回路7をそのまま通過して、陰極
線管10に供給される。そのICめ、陰極線管10には
高分解能の高倍像が表示される。次に、試料Sの極低倍
広視野を観察しようとする際には、制御部6より低倍を
指示する倍率制御信号が倍率可変回路4に供給され、走
査信号発生回路3よりの第4図(a)に示す如き走査信
号は、倍率可変回路4において大きな振幅の信号に変換
された後、偏向コイル2に供給される。このとき、制御
部6より演算回路5に制御信号が供給され、その結果、
演算回路5は全ての検出素子Dmnの出力信号を加算し
て出力する。そのため、演算回路5より第4図(b)に
示す如き水平走査に伴って平均レベルが低下した映像信
号が得られる。又、同時に制御部6よりの制御信号はス
イッチ回路9にも供給され、スイッチ回路9は導通状態
にされ、補正信号発生回路8よりの補正信号が輝度補正
回路7に供給されるようにする。補正信号発生回路3に
おいては、走査信号発生回路3よりの走査信号に基づい
て第4図(C)に示す如き補正信号を発生する。そのた
め、演算回路5よりの第4図(b)に示づ如き(g号は
、輝度補正回路7において補正信号発生回路8よりの補
正信号と加算され、第4図(d)に示す如き信号に補正
された後、陰極線管10に供給される。従って、陰極線
管10には明るさムラの無い極低倍広視野反射電子像が
表示される。
In such a configuration, first, when attempting to observe a high-resolution, high-magnification image of the sample S, a magnification control signal for setting the magnification to a specific high magnification is supplied from the control unit 6 to the variable magnification circuit 4. Ru. As a result, the horizontal scanning signal and sawtooth vertical scanning signal as shown in FIG. 4(a) are converted into small amplitude signals and then supplied to the deflection coil 2. Therefore, an extremely narrow area of the sample S is two-dimensionally scanned by the electron beam EB, and the reflected electrons generated at this time are incident on the detector D and detected. At this time, an arithmetic control signal is supplied from the control section 6 to the arithmetic circuit 5, and the arithmetic circuit 5 is configured to take out, for example, only the output signal from the central detection element D23. Further, the control signal from the control section 6 is supplied to the switch circuit 9, and the switch circuit 9 is brought into a non-conducting state. Therefore, the output signal from the detection element [ ) 23 from the arithmetic circuit 5 passes through the brightness correction circuit 7 as it is and is supplied to the cathode ray tube 10 . The IC displays a high-resolution, high-magnification image on the cathode ray tube 10. Next, when attempting to observe a wide field of view with very low magnification of the sample S, a magnification control signal instructing low magnification is supplied from the control unit 6 to the variable magnification circuit 4, and a fourth A scanning signal as shown in FIG. 3(a) is converted into a large amplitude signal in the variable magnification circuit 4 and then supplied to the deflection coil 2. At this time, a control signal is supplied from the control section 6 to the arithmetic circuit 5, and as a result,
The arithmetic circuit 5 adds the output signals of all the detection elements Dmn and outputs the sum. Therefore, the arithmetic circuit 5 obtains a video signal whose average level decreases with horizontal scanning as shown in FIG. 4(b). At the same time, the control signal from the control section 6 is also supplied to the switch circuit 9, so that the switch circuit 9 is rendered conductive so that the correction signal from the correction signal generation circuit 8 is supplied to the brightness correction circuit 7. The correction signal generation circuit 3 generates a correction signal as shown in FIG. 4(C) based on the scanning signal from the scanning signal generation circuit 3. Therefore, the signal g from the arithmetic circuit 5 as shown in FIG. After being corrected, it is supplied to the cathode ray tube 10. Therefore, the cathode ray tube 10 displays an extremely low magnification wide-field backscattered electron image without uneven brightness.

尚、上述した実施例においては、立体角の低減による加
算回路出力の平均レベルの低減を補正するようにしたが
、加算回路の出力信号を増幅する増幅器の増幅率を前記
補正信号発生回路の出力信号に基づいて変化させるよう
にしても良い。
In the above-described embodiment, the reduction in the average level of the output of the adder circuit due to the reduction in the solid angle is corrected, but the amplification factor of the amplifier that amplifies the output signal of the adder circuit is adjusted to the output of the correction signal generation circuit. It may be changed based on the signal.

上述したように、本発明の走査電子顕微鏡においては、
反射電子の発生位置の変化に応じて、各検出素子を加粋
した信号を補正して、この位置の変化に伴う信号の平均
レベルの変化を補填するようにしているため、明るさム
ラの無い極低倍広視野反射電子像を表示することができ
る。
As mentioned above, in the scanning electron microscope of the present invention,
The signal obtained by adding each detection element is corrected according to the change in the position where the backscattered electrons are generated, and the change in the average level of the signal due to the change in position is compensated for, so there is no unevenness in brightness. It is possible to display ultra-low magnification wide-field backscattered electron images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の走査電子顕微鏡の欠点を説明
Jるための図、第3図は本発明の一実施例を示づための
図、第4図は第2図に示した一実施例の各回路素子j、
りの出力信号を例示するための図である。 EB:電子線、S:試料、D:検出器、1:対物レンズ
、2:偏向コイル、3:走査信号発生回路、4:18率
可変回路、5:演算回路、6:制御部、7:輝度補正回
路、8:補正信号発生回路、9:スイッチ回路、[) 
mn :検出素子、:Amn:増幅器。 特許出願人 日本電子株式会社 代表者 伊藤 −夫 第4図
Figures 1 and 2 are diagrams for explaining the drawbacks of conventional scanning electron microscopes, Figure 3 is a diagram for showing an embodiment of the present invention, and Figure 4 is the same as that shown in Figure 2. Each circuit element j of one embodiment,
FIG. 3 is a diagram for illustrating another output signal. EB: Electron beam, S: Sample, D: Detector, 1: Objective lens, 2: Deflection coil, 3: Scanning signal generation circuit, 4: 18 rate variable circuit, 5: Arithmetic circuit, 6: Control unit, 7: Brightness correction circuit, 8: Correction signal generation circuit, 9: Switch circuit, [)
mn: detection element, :Amn: amplifier. Patent applicant JEOL Ltd. Representative Ito-husband Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)試料上において電子線を二次元的に走査する手段
と、該電子線の照射によって試料より散乱する反射電子
を検出するための二次元的に配列された複数の検出素子
より成る反射電子検出器と、該電子線の試料上における
走査領域の大きさを変化させることにより観察倍率を切
換えるための倍率切換手段と、該倍率切換手段による倍
率切換えに連動して使用する検出素子の個数を切換える
ための手段と、前記電子線と同期走査され該反射電子検
出素子の出力信号に基づいて試料像を表示するための手
段とを備えた装置において、該電子線の走査に伴う該出
力信号の平均レベルの変化を補償り゛るための手段を具
備していることを特徴とする走査電子顕微鏡。
(1) Backscattered electrons consisting of a means for two-dimensionally scanning an electron beam over a sample, and a plurality of two-dimensionally arranged detection elements for detecting backscattered electrons scattered from the sample by irradiation with the electron beam. A detector, a magnification switching means for switching the observation magnification by changing the size of the scanning area of the electron beam on the sample, and a number of detection elements used in conjunction with the magnification switching by the magnification switching means. In an apparatus comprising means for switching, and means for displaying a sample image based on an output signal of the backscattered electron detection element that is scanned in synchronization with the electron beam, A scanning electron microscope characterized in that it is equipped with means for compensating for changes in average level.
(2)該電子線の走査に伴う該出力信号の平均レベルの
変化を補償するだめの手段は、前記電子線を走査するた
めの信号に基づいて補正信号を発生ずるための回路と、
該回路よりの補正信号に基づいて前記出力信号のレベル
又は増幅ゲインを変化させるための回路とより成る特許
請求の範囲第(1)項記載の走査電子顕微鏡。
(2) The means for compensating for changes in the average level of the output signal due to scanning of the electron beam includes a circuit for generating a correction signal based on the signal for scanning the electron beam;
A scanning electron microscope according to claim 1, further comprising a circuit for changing the level or amplification gain of the output signal based on a correction signal from the circuit.
(3)前記使用する検出素子の個数の切換えに連動して
、該電子線の走査に伴う該出力信号の平均レベルの変化
を補償するための手段の動作状態を切換えるための手段
を具備する特許請求の範囲第く1)項記載の走査電子顕
微鏡。
(3) A patent comprising means for switching the operating state of the means for compensating for changes in the average level of the output signal due to scanning of the electron beam in conjunction with switching the number of detection elements used. A scanning electron microscope according to claim 1).
JP24664583A 1983-12-28 1983-12-28 Scanning electron microscope Granted JPS60140642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24664583A JPS60140642A (en) 1983-12-28 1983-12-28 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24664583A JPS60140642A (en) 1983-12-28 1983-12-28 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPS60140642A true JPS60140642A (en) 1985-07-25
JPH0234424B2 JPH0234424B2 (en) 1990-08-03

Family

ID=17151489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24664583A Granted JPS60140642A (en) 1983-12-28 1983-12-28 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPS60140642A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138675A (en) * 1977-05-10 1978-12-04 Mitsubishi Electric Corp Scan-type electronic microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138675A (en) * 1977-05-10 1978-12-04 Mitsubishi Electric Corp Scan-type electronic microscope

Also Published As

Publication number Publication date
JPH0234424B2 (en) 1990-08-03

Similar Documents

Publication Publication Date Title
US7817105B2 (en) Image forming method and charged particle beam apparatus
JPH0294345A (en) Scanning type electron microscope
JPH09330679A (en) Scanning microscope
JPS60140642A (en) Scanning electron microscope
JP2000036276A (en) Charged particle beam device
JP2002343294A (en) Complex electron microscope
JPH07262950A (en) Scanning electron microscope
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JP2775812B2 (en) Charged particle beam equipment
GB2086182A (en) A charged particle beam scanning device
JP2870894B2 (en) Scanning electron microscope
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPH0343650Y2 (en)
JPH0696711A (en) Display method for image of scanning electron microscope
JP3790629B2 (en) Scanning charged particle beam apparatus and method of operating scanning charged particle beam apparatus
JPS62198043A (en) Three-dimensional observation device
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JP2838799B2 (en) Charged particle beam equipment
KR830002860Y1 (en) Scanning apparatus for scanning electron microscope and similar devices
JPH0238367Y2 (en)
JPH07130321A (en) Scanning electron microscope
JPS63205042A (en) Scanning electron microscope
JPS614146A (en) Electron beam device
JPH0935676A (en) Electron microscope
JPH11144664A (en) Electron beam device