JPS60140199A - Method of electrolytically decontaminating radioactive metallic waste - Google Patents

Method of electrolytically decontaminating radioactive metallic waste

Info

Publication number
JPS60140199A
JPS60140199A JP24839883A JP24839883A JPS60140199A JP S60140199 A JPS60140199 A JP S60140199A JP 24839883 A JP24839883 A JP 24839883A JP 24839883 A JP24839883 A JP 24839883A JP S60140199 A JPS60140199 A JP S60140199A
Authority
JP
Japan
Prior art keywords
electrolysis
electrolytic
metal
radioactive
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24839883A
Other languages
Japanese (ja)
Other versions
JPS647359B2 (en
Inventor
明雄 田中
四方 信夫
大沼 務
浩二 加藤
山寺 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP24839883A priority Critical patent/JPS60140199A/en
Publication of JPS60140199A publication Critical patent/JPS60140199A/en
Publication of JPS647359B2 publication Critical patent/JPS647359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、放射性物質を含む酸化皮膜層及び放射性物質
を含む地金部を有する放射性金属廃棄物を電解除染する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolytically decontaminating radioactive metal waste having an oxide film layer containing a radioactive substance and a bare metal portion containing a radioactive substance.

放射性金属廃棄物は、主として配管、バルブ等の廃材で
あり、従来、この種の廃棄物は、細かく切断する等して
ドラム解結めにし、サイト内に保管、貯蔵されている。
Radioactive metal waste is mainly waste materials such as pipes and valves, and conventionally, this type of waste has been cut into small pieces, unpacked into drums, and stored on-site.

しかし、貯蔵中のドラム罐の数は年々増加し、その保管
場所の確保が大きな問題になると考えられている。この
種の廃棄物においては、その表面の酸化皮膜層に大半の
放射性クラッドが存在しているが、地金部分にも放射性
物質が拡散、浸透していたり、放射化されているので、
表面に堆積している酸化皮膜層を除去するだりでは完全
な除染ではなく、従って地金部をも迅速に溶解除去する
必要がある。
However, the number of drums in storage is increasing year by year, and securing storage space is considered to be a major problem. In this type of waste, most of the radioactive cladding is present in the oxide film layer on the surface, but radioactive materials are also diffused, permeated, and activated in the bare metal.
Removing the oxide film layer deposited on the surface is not a complete decontamination; therefore, it is necessary to quickly dissolve and remove the base metal as well.

そのため、表面及び地金部の汚染を迅速に除去し、一般
廃棄物として廃棄できる電解除染法が注目を集めている
。電解除染法としては、電解液としてリン酸を主成分と
する強酸性電解lelを用いる方法と、中性塩系の電解
液を用いる方法が知られている。前者の方法は、濃厚な
強酸水溶液を使用するため、電解液中の放射能濃度が一
定値に達した時点で中和処理し、その後固化するので、
その都度電解液を更新する必要が生じ、二次廃棄物量が
増加するという欠点がある。また、後者の方法では、電
解除染時に溶解した金属イオンが電解液中で金属水酸化
物になるので、その水酸化物フロックを固液分離し、電
解液を再利用することができる。これらの電解液には、
硝酸ナトリウムや塩化ナトリウム等が電解質として使用
されている。
Therefore, the electrostatic dyeing method, which can quickly remove contamination from the surface and metal parts and dispose of it as general waste, is attracting attention. As an electrolytic dedying method, a method using a strongly acidic electrolytic solution containing phosphoric acid as a main component and a method using a neutral salt-based electrolytic solution are known. The former method uses a concentrated strong acid aqueous solution, so once the radioactivity concentration in the electrolyte reaches a certain value, it is neutralized and then solidified.
There is a drawback that the electrolyte needs to be renewed each time, and the amount of secondary waste increases. In addition, in the latter method, the metal ions dissolved during electrolytic de-dying become metal hydroxides in the electrolytic solution, so the hydroxide flocs can be separated into solid and liquid and the electrolytic solution can be reused. These electrolytes include
Sodium nitrate, sodium chloride, etc. are used as electrolytes.

これらの中性塩電解液は、液を容易に再利用できるとい
う利点を有するが、その反面、硝酸ナトリウムにあって
は硝酸根の陽極酸化により酸化皮膜層に対しては除去性
能が悪いという欠点を有する。
These neutral salt electrolytes have the advantage of being easy to reuse, but on the other hand, sodium nitrate has the disadvantage of poor removal performance for oxide film layers due to anodic oxidation of nitrate groups. has.

また、塩化ナトリウムにあっては、塩素イオンの還元力
により酸化皮膜の除去性能が優れ、その腐食性により地
金の熔解能力が優れているが、その腐食性故に、孔食が
発生しやすく、金属表面が荒れ、効率の良い除染を行う
ことができず、更には溶解した金属地金が被除染面に水
酸化物又は酸化物スラッジとして付着、残留するという
問題がある。また、塩素イオンに起因するステンレス鋼
に対する応力腐食割れへの考慮から、洗浄液への多大な
配慮が必要になるという欠点もある。
In addition, sodium chloride has excellent ability to remove oxide films due to the reducing power of chlorine ions, and excellent ability to melt base metal due to its corrosive nature, but due to its corrosive nature, pitting corrosion is likely to occur. There is a problem in that the metal surface becomes rough and efficient decontamination cannot be performed, and furthermore, the molten metal base metal adheres and remains on the surface to be decontaminated as hydroxide or oxide sludge. Another drawback is that great consideration must be given to the cleaning solution in view of stress corrosion cracking of stainless steel caused by chlorine ions.

本発明の目的は、前記の従来技術の欠点を解消し、二次
廃棄物量が少なく、放射性物質を含む酸化皮膜層及び地
金部を迅速かつ完全に除去でき、しかも電解液の取り扱
い上の問題のない放射性金属廃棄物の除染方法を提供す
ることを目的とする。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to reduce the amount of secondary waste, to quickly and completely remove the oxide film layer and base metal containing radioactive materials, and to solve the problem in handling the electrolyte. The purpose is to provide a decontamination method for radioactive metal waste that is free from decontamination.

この目的は本発明によれば、温度及び電流密度を適切に
選択して交番電解と陽極電解を順次行うごとによって達
成される。
This objective is achieved according to the invention by sequential alternating and anodic electrolysis with appropriate selection of temperature and current density.

即ち、本発明方法は、電解液の温度と金属に印加する電
流密度を活性熔解域になるように保持して交番電解する
第一電解工程と、電解液の温度と金属に印加する電流密
度を過不動態域になるように保持して陽極電解する第二
電解工程とから成ることを特徴とする。
That is, the method of the present invention consists of a first electrolytic step in which the temperature of the electrolytic solution and the current density applied to the metal are maintained in an active melting region and electrolysis is carried out in an alternating manner; It is characterized by comprising a second electrolytic step in which anodic electrolysis is carried out while maintaining the method in a hyperpassive region.

本発明は、中性塩電解液で電解除染を行う場合に、活性
溶解域での熔解反応(電流効率100%)と過不動態域
での酸素ガス発生及び溶解反応(電流9J>率約5%)
とを利用し、迅速でがっ効果的な電解除染を行うもので
ある。
In the present invention, when electrolytic de-dying is performed using a neutral salt electrolyte, the dissolution reaction in the active dissolution region (current efficiency 100%) and the oxygen gas generation and dissolution reaction in the hyperpassive region (current 9 J > rate approx. 5%)
This method utilizes the following methods to perform quick and effective de-dying.

本発明には中性塩電解液を使用するが、硫酸ナトリウム
溶液が有利である。
Although neutral salt electrolytes are used in the present invention, sodium sulfate solutions are preferred.

以下、説明を簡明にするため、中性塩とし゛(硫酸ナト
リウムを使用した場合を例にとって、図面を参照して記
載する。
Hereinafter, in order to simplify the explanation, an example in which a neutral salt (sodium sulfate) is used will be described with reference to the drawings.

20重量%硫酸ナトリウム水溶液中で配管等の材料であ
る炭素鋼の分極状態を調べ、その分極曲線を第1図に示
す。分極曲線は電解液中での金属の陽極溶解特性を表す
もので、鉄の活性溶解域(電流効率100%)、鉄の不
動態皮膜生成域及び水の電気分解による酸素発生と若干
の鉄の熔解の起こる過不動態域(電流効率的5%)に分
けられろ。本発明は、活性f4解域での鉄の溶解速度が
大きいこと、過不動態域で酸素ガス発生と鉄の熔解が起
き、表面付着物の除去効果が大きいことを利用し、放射
性金属廃棄物の汚染を効率良く除染しようとするもので
ある。
The polarization state of carbon steel, which is a material for piping, etc., was investigated in a 20% by weight aqueous sodium sulfate solution, and the polarization curve is shown in FIG. The polarization curve represents the anodic dissolution characteristics of metals in an electrolyte, including the active dissolution region of iron (current efficiency 100%), the region of passive film formation of iron, and the generation of oxygen due to electrolysis of water and a small amount of iron. Divide into a hyperpassive region (current efficiency 5%) where melting occurs. The present invention utilizes the fact that the dissolution rate of iron is high in the active f4 decomposition region, and that oxygen gas generation and iron melting occur in the hyperpassive region, which has a great effect on removing surface deposits, and removes radioactive metal waste. This is an attempt to efficiently decontaminate contamination.

前記のように、除染対象廃棄物の汚染は表面の酸化皮膜
層に大半が取り込まれているが、本発明は、その酸化皮
膜層の除去に交番電解を応用するものである。第2図に
は、酸化皮膜除去曲線を示すが、曲線aとして電流密度
0.3 A / aR1電解温度60℃で陰極30秒、
陽極30秒の交番条件で交番電解した場合を示し、曲線
すとして電解温度を25℃とした以外はaと同様に交番
電解を行った場合を示し、曲線Cとして温度60℃で陽
極電解を行った場合を示す。この第2図から判るように
、陽極電解を行った場合に比べて、交番電解を行った場
合の酸化皮膜除去効果は極めて大きく、厚さ40μm、
組成Pe404の酸化皮膜を15〜20分で除去するこ
とができた。
As mentioned above, most of the contamination of waste to be decontaminated is captured in the oxide film layer on the surface, and the present invention applies alternating electrolysis to remove the oxide film layer. Figure 2 shows the oxide film removal curve, and curve a shows a current density of 0.3 A/aR1 at a cathode temperature of 60°C for 30 seconds;
Curve C shows the case where alternating electrolysis was carried out under alternating conditions for 30 seconds at the anode.Curve C shows the case where alternating electrolysis was carried out in the same manner as in a except that the electrolysis temperature was 25°C.Curve C shows the case where anodic electrolysis was carried out at a temperature of 60°C. This shows the case where As can be seen from Fig. 2, the effect of removing the oxide film by alternating electrolysis is much greater than that by anodic electrolysis.
The oxide film with composition Pe404 could be removed in 15 to 20 minutes.

しかし、放射能除染効果はスプレー水による水洗後にも
第3図に示すように、aの60℃及びbの25℃のいず
れの交番電解の場合でも、放射能汚染のない通常の状態
(バンクグラウンド)にまで放射能の除染はなされてい
なかった。aの60℃における交番電解の場合は、皮膜
除去終了後の表面を観察すると、11着物が沈着してお
り、これが放射能除染’JJ果を妨げている。一方、b
の25°Cにおける交番電解の場合は、皮膜は完全に除
去され、付着物も観察されなかったことから、地金部分
の放射能がまだ残留しているためと考えられる。そこで
、a及びbo)酸化皮膜除去後の試料を更に、陽極電解
する。
However, as shown in Figure 3, the radioactive decontamination effect remains even after washing with spray water, under normal conditions without radioactive contamination (bank The ground) had not been decontaminated from radioactivity. In the case of alternating electrolysis at 60° C. in a, when the surface after film removal was observed, 11 particles were deposited, which hindered the radioactive decontamination effect. On the other hand, b
In the case of alternating electrolysis at 25°C, the film was completely removed and no deposits were observed, which is thought to be due to the radioactivity still remaining in the bare metal. Therefore, a and bo) the samples after the oxide film removal are further subjected to anodic electrolysis.

この陽極電解の結果、第4図に示すように、aを25℃
で陽極電解した場合(図中、a−25で示す)には、1
分間にハックグラウンドまで除染でき、イ」着物の存在
も認められなかった。また、aを60゛Cで陽極電解し
た場合(図中、a−60で示す)では、付着物は除去さ
れず、5分後にもほとんど放射能除染が行われていなか
った6bを60°Cで陽極電解した場合(図中、b−6
0で示す)には、新たに付着物が生じ、放射能除染効果
も少なかった。また、bを25℃で陽極電解した場合(
図中、b−25で示す)には、付着物は生じなかったが
、除染効果は少なかった。
As a result of this anodic electrolysis, as shown in FIG.
In the case of anodic electrolysis (indicated by a-25 in the figure), 1
Hack grounds could be decontaminated in minutes, and even the presence of Kimono was not recognized. In addition, when a was subjected to anodic electrolysis at 60°C (indicated by a-60 in the figure), the deposits were not removed, and even after 5 minutes, 6b, which had hardly been decontaminated with radioactivity, was heated to 60°C. In the case of anodic electrolysis with C (in the figure, b-6
(indicated by 0), new deposits were formed and the radioactivity decontamination effect was low. In addition, when b is anodic electrolyzed at 25°C (
Although no deposits were observed (indicated by b-25 in the figure), the decontamination effect was low.

このような現象は、単に前記の条件下でのみ起こる現象
ではなく、電解温度及び電流密度を適切に設定すること
により効果的な除染を行うことができることが判った。
It has been found that such a phenomenon does not simply occur under the above conditions, and that effective decontamination can be achieved by appropriately setting the electrolysis temperature and current density.

即ち、一定電流密度では、第5図に示すように、ある電
解温度をしきい値として急激に鉄溶解量が増加する。こ
の鉄/8解量の増加した範囲は、第1図で述べた活性熔
解域であり、溶解速度が早いという特徴を有する。しか
しながら、鉄溶解量が大きく、被除染面近傍に鉄水酸化
物が多量に存在し、更に酸素ガス発生による撹乱作用が
ないことから、陽極溶解にあっても、アノード沈着現象
によりイ」着物を生じる。この付着物は通常の攪拌程度
では除去できない。一方、逆に、温度を下げると、過不
動態域の反応により酸素ガス発生と若干の鉄溶解反応が
起きて、イ」着物は生じず、付着物を除去する効果が大
である。
That is, at a constant current density, as shown in FIG. 5, the amount of iron dissolution increases rapidly with a certain electrolytic temperature as a threshold value. This range in which the amount of iron/8 dissolved is increased, which is the active melting region described in FIG. 1, and is characterized by a high dissolution rate. However, since the amount of iron dissolved is large, a large amount of iron hydroxide exists near the surface to be decontaminated, and there is no disturbing effect due to the generation of oxygen gas, even in anodic dissolution, the anodic deposition phenomenon causes occurs. This deposit cannot be removed by ordinary stirring. On the other hand, when the temperature is lowered, oxygen gas generation and a slight iron dissolution reaction occur due to the reaction in the hyperpassive region, so that no deposits are formed and the effect of removing deposits is great.

電流密度及び電解411度を種々に変化さゼ、活性溶解
域及び過不動懸域をめ、結果を第6図に示す。第6図に
基づいて、活性溶解域で交番電解を行い、大部分の酸化
皮膜を除去すると共に、地金を迅速に溶解することによ
り大部分の除染を行うことができ、その(&過不動態域
で陽極電解を行うと、交番電解中に生じた付着物を容易
に除去することができ、放射能を完全に除染することが
できる。
The results are shown in FIG. 6 when the current density and the electrolytic temperature were variously changed, and the active solubility region and the overly immobile suspension region were determined. Based on Figure 6, most of the decontamination can be carried out by performing alternating electrolysis in the active dissolution zone, removing most of the oxide film, and quickly dissolving the bare metal. When anodic electrolysis is performed in the passive region, deposits generated during alternating electrolysis can be easily removed and radioactivity can be completely decontaminated.

gA7図は本発明方法を実施するため好適な装置の系統
図である。この装置は、主として直流電源1、交番制御
装置2、第一電解槽3、対極4、第二電閘槽5、洗浄槽
6、遠心脱水機7及びセメント固化装置8から成る。放
射性金属廃棄物9はヒータ11により所定の温度に保持
された硫酸ナトリウム電解液12の充填された第一電解
槽3に浸漬され、対極4と共に交番電解される。電解液
の温度は、始めに所定の温度に加熱すれば、その後の定
富運転時には電解時の発熱によって保持されるので、加
熱を続ける必要はない。電解時間は酸化間膜厚によって
左右され、40μm程度の皮膜に対しては15〜20分
が好適である。
Figure gA7 is a system diagram of an apparatus suitable for carrying out the method of the invention. This device mainly consists of a DC power supply 1, an alternating control device 2, a first electrolytic cell 3, a counter electrode 4, a second electrostatic cell 5, a cleaning bath 6, a centrifugal dehydrator 7, and a cement solidifying device 8. The radioactive metal waste 9 is immersed in a first electrolytic tank 3 filled with a sodium sulfate electrolyte 12 maintained at a predetermined temperature by a heater 11, and subjected to alternating electrolysis together with a counter electrode 4. If the temperature of the electrolytic solution is initially heated to a predetermined temperature, it will be maintained by the heat generated during electrolysis during subsequent constant-rich operation, so there is no need to continue heating. The electrolysis time depends on the thickness of the oxidized film, and is preferably 15 to 20 minutes for a film of about 40 μm.

交番電解によって除去された汚染物は水酸化物又は酸化
物となって沈毅し、遠心脱水機7に送られ、スラツジと
して配管10によりセメント固化装置8へ送られ、ドラ
ム解結めされる。一方、脱水後の脱水液は再び電解液と
して再使用される。
The contaminants removed by the alternating electrolysis are precipitated as hydroxides or oxides, and sent to the centrifugal dehydrator 7, and then sent as sludge via piping 10 to the cement solidification device 8, where it is deconsolidated in a drum. On the other hand, the dehydrated solution after dehydration is reused as an electrolyte.

放射性金属廃棄物9ば交番電解によって大部分除染され
ているが、若干の伺着物を有し、次に、第二電解槽5で
陽極電解される。
Although most of the radioactive metal waste 9 has been decontaminated by alternating electrolysis, it still contains some debris, and is then subjected to anodic electrolysis in the second electrolytic cell 5.

陽極電解によって除染された廃棄物13は洗浄槽6にお
いてスプレー洗浄機14によって水洗することによって
除染され、放射能強度GJハックグラウンド領域になる
The waste 13 that has been decontaminated by anodic electrolysis is decontaminated by being washed with water by a spray washer 14 in the cleaning tank 6, and becomes a radioactive intensity GJ hack ground area.

このように構成することによって、本発明によれば、極
めて効果的に除染することができ、交番電解中に生しる
付着物も完全に除去することができ、また電解液として
中性塩の硫酸すI・リウムを用いることにより、構成機
器、周辺機器への腐食の心配がなく、特にBWR発電所
にあっては通常発生している廃液、例えばイオン交換樹
脂の再生廃液の主成分と同一であるので、この再生廃液
を電解液として利用できる。また、洗浄液は放射能レヘ
ルを低下して通常の廃液処理系で処理することができる
With this configuration, according to the present invention, it is possible to decontaminate extremely effectively, to completely remove deposits generated during alternating electrolysis, and to use neutral salts as the electrolyte. By using lithium sulfate, there is no need to worry about corrosion to component and peripheral equipment, and it can be used as the main component of waste liquid normally generated at BWR power plants, such as recycled waste liquid of ion exchange resin. Since they are the same, this recycled waste liquid can be used as an electrolyte. In addition, the cleaning liquid can be treated with a normal waste liquid treatment system by reducing its radioactivity level.

次に、実施例に糸づいて本発明を詳述するが、本発明は
これに限定されるものではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 原子力発電所で放射能で汚染された鋼製配管を第7図に
示した装置を用い、20重量%硫酸ナトリウム水溶液を
電解液とし、SUSを対極として電解温度70℃、電流
密度0.4A/c+d、陽極電解30秒、陰極電解30
秒で交番電解を約10分行った。これにより酸化皮膜層
を完全に除去でき、除染係数102を達成することがで
きた。交番電解後の配管を次に第二電解槽で電解温度2
5℃、電流密度0.3 A / ctKで1分間陽極電
解し、更に洗浄を行ったところ、除染係数(汚染除去の
前後の放射能レベル又は濃度の比)103が得られ、バ
ンクグラウンドまで除染できた。
Example 1 Steel piping contaminated with radioactivity at a nuclear power plant was electrolyzed at a temperature of 70°C and a current density of 0 using a 20% by weight aqueous sodium sulfate solution as an electrolyte and SUS as a counter electrode using the apparatus shown in Figure 7. .4A/c+d, anodic electrolysis 30 seconds, cathode electrolysis 30 seconds
Alternating electrolysis was performed for about 10 minutes. As a result, the oxide film layer could be completely removed and a decontamination coefficient of 102 could be achieved. After the alternating electrolysis, the piping is then electrolyzed at a temperature of 2 in the second electrolytic tank.
When anodic electrolysis was performed at 5°C for 1 minute at a current density of 0.3 A/ctK and further cleaning was performed, a decontamination coefficient (ratio of radioactivity level or concentration before and after decontamination) of 103 was obtained, and it was reduced to bank ground. Decontamination was possible.

実施例2 原子力発電所で放射能で汚染されたwI製製管管第7図
に示した装置を用い、20重量%硫酸ナトリウム水溶液
を電解液とし、SUSを対極として電解温度50°C1
電流密度0.2A/cれ陽極電解30秒、陰極電解30
秒で交番電解を約10分行った。これにより酸化皮膜層
を完全に除去でき、除染係数5X102を達成すること
ができた。交番電解後の配管を次に第二電解槽で電1η
″温度25℃、電流密度0.2A/CJAで1分間陽極
電解し、更に洗浄を行ったところ、除染係数104が得
られ、バックグラウンドまで除染できた。
Example 2 Using the equipment shown in Figure 7 for pipes manufactured by wI, which were contaminated with radioactivity at a nuclear power plant, electrolysis temperature was set at 50°C with a 20% by weight aqueous sodium sulfate solution as the electrolyte and SUS as the counter electrode.
Current density 0.2A/c, anodic electrolysis 30 seconds, cathodic electrolysis 30 seconds
Alternating electrolysis was performed for about 10 minutes. As a result, the oxide film layer could be completely removed and a decontamination coefficient of 5×102 could be achieved. After the alternating electrolysis, the piping is then subjected to an electric current of 1η in the second electrolytic tank.
When anodic electrolysis was carried out for 1 minute at a temperature of 25° C. and a current density of 0.2 A/CJA, and further cleaning was performed, a decontamination coefficient of 104 was obtained, and decontamination to the background level was achieved.

なお、前記実施例において硫酸すl・リウム溶液を20
重量%とじて説明したが、飽和溶解度以下の濃度であれ
ば任意の濃度であってよく、使用電力量を考慮すると、
活性溶解域と過不動態域の電解条件を守れば、できるだ
け高濃度とし1、液抵抗を低くする方が望ましい。
In addition, in the above example, the sulfuric acid sulfuric acid solution was
Although the explanation was given as weight %, it may be any concentration as long as it is below the saturation solubility, and considering the amount of electricity used,
As long as the electrolytic conditions in the active dissolution region and the overpassive region are maintained, it is desirable to have the concentration as high as possible1 and to lower the liquid resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は20重量%硫酸すトリウム−炭素鋼系の分極曲
線図、第2図は酸化皮映除去率の経時変化図、第3図は
電解による放射能強度変化図、第4図は陽極電解による
放射能強度変化図、第5図は電解温度に対する熔解型変
化図、第6図は反応種の状態図、第7図は本発明方法を
実施する装置の系統図である。 2・・・交番制御装置、3・・・第一電解槽、4・・・
対極、5・・・第二電解槽、9・・・放射性金属廃棄物
。 特許出願人 日立プラント建設株式会社 第1図 電 竹(VvsSCE ) 第2図 電解時間(min ) 第3図 電 解時間(min ) 第4図 隔稙電帥峙瞥(min) 第5図 @ M 温 庖(0C) 第6図 電 l!l! 温 度(0C) 第71
Figure 1 is a polarization curve diagram of 20 wt% sodium sulfate-carbon steel system, Figure 2 is a diagram of changes in oxide film removal rate over time, Figure 3 is a diagram of changes in radioactivity intensity due to electrolysis, and Figure 4 is a diagram of anode FIG. 5 is a diagram of changes in radioactivity intensity due to electrolysis, FIG. 5 is a diagram of changes in melting type with respect to electrolysis temperature, FIG. 6 is a state diagram of reactive species, and FIG. 7 is a system diagram of an apparatus for carrying out the method of the present invention. 2... Alternating control device, 3... First electrolytic cell, 4...
Counter electrode, 5...Second electrolytic cell, 9...Radioactive metal waste. Patent Applicant: Hitachi Plant Construction Co., Ltd. Figure 1: Electrolysis time (VvsSCE) Figure 2: Electrolysis time (min) Figure 3: Electrolysis time (min) Figure 4: View of electric field (min) Figure 5 @M Wen Ying (0C) Figure 6 Electric l! l! Temperature (0C) 71st

Claims (2)

【特許請求の範囲】[Claims] (1)放射性物質を含む酸化皮膜層及び放射性物質を含
む地金部を有する放射性金属廃棄物の電解除染方法にお
いて、電解液の温度と金属に印加する電流密度を活性溶
解域になるように保持して交番電解する第一電解工程と
、電解液の温度と金属に印加する電流襟度を過不動態域
になるように保持して陽極電解する第二電解工程とから
成ることを特徴とする放射性金属廃棄物の電解除染方法
(1) In a method for electrolytically dedying radioactive metal waste that has an oxide film layer containing a radioactive substance and a bare metal part containing a radioactive substance, the temperature of the electrolytic solution and the current density applied to the metal are set to be in the active dissolution region. It is characterized by consisting of a first electrolytic step in which the temperature of the electrolytic solution and the degree of current applied to the metal are maintained in a hyperpassive region and conducts anodic electrolysis. A method for electrolytic decontamination of radioactive metal waste.
(2)金属廃棄物が炭素鋼であり、電解液が10〜20
重量%硫酸ナトリウム溶液であり、第一電解工程を40
〜80℃で電流密度0.1〜0.4A/cmlで実施し
、第二電解工程を20〜60℃で電流密度0.2〜0.
5 A / cnlで実施する特許請求の範囲第1項記
載の電解除染方法。
(2) The metal waste is carbon steel and the electrolyte is 10 to 20%
wt% sodium sulfate solution, and the first electrolytic step was carried out at 40% by weight.
The second electrolysis step was carried out at ~80°C with a current density of 0.1-0.4 A/cml, and the second electrolysis step was performed at 20-60°C with a current density of 0.2-0.
5 A/cnl.
JP24839883A 1983-12-28 1983-12-28 Method of electrolytically decontaminating radioactive metallic waste Granted JPS60140199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24839883A JPS60140199A (en) 1983-12-28 1983-12-28 Method of electrolytically decontaminating radioactive metallic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24839883A JPS60140199A (en) 1983-12-28 1983-12-28 Method of electrolytically decontaminating radioactive metallic waste

Publications (2)

Publication Number Publication Date
JPS60140199A true JPS60140199A (en) 1985-07-25
JPS647359B2 JPS647359B2 (en) 1989-02-08

Family

ID=17177509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24839883A Granted JPS60140199A (en) 1983-12-28 1983-12-28 Method of electrolytically decontaminating radioactive metallic waste

Country Status (1)

Country Link
JP (1) JPS60140199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657564A1 (en) * 1993-12-09 1995-06-14 Dario Felisari Process for cleaning and conditioning the surface of an electrolytically oxidizable metal alloy by hyperanodizing said surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120352A (en) * 1991-01-19 1993-05-18 Nippon Tv Video:Kk Information registering and providing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657564A1 (en) * 1993-12-09 1995-06-14 Dario Felisari Process for cleaning and conditioning the surface of an electrolytically oxidizable metal alloy by hyperanodizing said surface

Also Published As

Publication number Publication date
JPS647359B2 (en) 1989-02-08

Similar Documents

Publication Publication Date Title
KR900000343B1 (en) Method for decontaminating metals contaminated with radioactive substances
US5340505A (en) Method for dissolving radioactively contaminated surfaces from metal articles
KR20180040017A (en) Electrolytic decontamination method capable of regenerative electrolyte
JPS60140199A (en) Method of electrolytically decontaminating radioactive metallic waste
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
US4839100A (en) Decontamination of surfaces
CN112176393A (en) Electrochemical decontamination electrolyte and preparation method and application thereof
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPS6020720B2 (en) Decontamination method for metal materials contaminated with radioactivity
JPS5915900A (en) Method of decontaminating radioactive metal waste
JPH0527092A (en) Removal of contamination of radioactive metallic waste
JPS5942498A (en) Method of decontaminating radioactive metal waste
JPS60106998A (en) Electrolytic decontamination method
JPH0527093A (en) Processing of radioactive metallic sludge
JPS603593A (en) Method of electrolytically decontaminating radioactive metallic waste
JPS6246297A (en) Method of processing radioactive waste liquor and radioactive metallic waste
JPH03158800A (en) Electrolytic decontamination method for radioactive metallic waste
JPH0231838B2 (en)
JPS60249097A (en) Decontamination device for radioactive contaminated metal
Partridge et al. Chemical decontamination of metals
JPS6083000A (en) Method of decontaminating radioactive contaminated metal
Wedman et al. Electrolytic decontamination of conductive materials for hazardous waste management
JPS6225300A (en) Method of dissolving oxide
JPS6093999A (en) Method of treating chemically decontaminated waste liquor
JPH08240695A (en) Treatment method of radioactive waste liquid