JPS6083000A - Method of decontaminating radioactive contaminated metal - Google Patents

Method of decontaminating radioactive contaminated metal

Info

Publication number
JPS6083000A
JPS6083000A JP19078483A JP19078483A JPS6083000A JP S6083000 A JPS6083000 A JP S6083000A JP 19078483 A JP19078483 A JP 19078483A JP 19078483 A JP19078483 A JP 19078483A JP S6083000 A JPS6083000 A JP S6083000A
Authority
JP
Japan
Prior art keywords
electrolysis
oxide film
metal
contaminated
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19078483A
Other languages
Japanese (ja)
Inventor
龍男 泉田
明彦 野家
河村 文雄
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP19078483A priority Critical patent/JPS6083000A/en
Publication of JPS6083000A publication Critical patent/JPS6083000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放射性汚染金属部材の除染方法に関するもので
あシ、特に、原子力発電所、核悠料濃縮工場等の原子力
施設から発生する表面汚染金属廃真物の除染に好適な方
法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for decontaminating radioactively contaminated metal parts, and in particular, to surface contamination generated from nuclear facilities such as nuclear power plants and nuclear waste enrichment plants. The present invention relates to a method suitable for decontaminating real metal waste.

〔発明の背景〕[Background of the invention]

原子力発電所からは定期検査時や種々の補修改造工事の
際に機器、配管、工具等の放射性汚染金属廃棄物が発生
する。現在、それらの放射性汚染金属はある程度切断し
た後にドラム缶に充填し、原子力発電所内に保管されて
いる。その数は年間150〜200本程度であるが、年
々その累積量は増大しており、また将来予想される原子
力発電所の廃炉解体時には、放射性汚染金属廃棄物だけ
でドラム缶数万本が発生する。そのため放射性汚染金属
部材を除染し、減容することが強く望まれている。
Nuclear power plants generate radioactively contaminated metal waste such as equipment, piping, and tools during periodic inspections and various repair and modification works. Currently, these radioactively contaminated metals are cut to some extent and then filled into drums and stored within nuclear power plants. The number is about 150 to 200 per year, but the cumulative amount is increasing year by year, and when nuclear power plants are decommissioned and dismantled in the future, tens of thousands of drums will be generated from radioactively contaminated metal waste alone. do. Therefore, it is strongly desired to decontaminate and reduce the volume of radioactively contaminated metal parts.

放射性金属碇棄物は大きく分類すると、作業時に持ち込
んだ工具類と発電所内機器からの扉材とに大別できる。
Radioactive metal waste can be broadly classified into tools brought in during work and door materials from equipment inside the power plant.

前者は、定期検査および改造工事中に機器から工具類に
放射性同位元素が付着することによってその表面が汚染
される。一方後者の機器汚染物は炉心に堆積した鉄を主
成分とする酸化物(クラッド)が中性子照射を受けて放
射化し・その放射化したクラッドが一次冷却系および主
蒸気系等の機器まで運ばれ、それらの機器表面に付着堆
積または、放射化金属が酸化皮膜層内に浸透置換するこ
とによって汚染され、る、、量的には後者が圧倒的に多
く −4U年行われる定期検査時には30〜50トン程
度、屏炉解体時には2万トンにも外する。
In the former case, radioactive isotopes adhere to tools from equipment during periodic inspections and modification work, resulting in contamination of their surfaces. On the other hand, the latter type of equipment contamination is caused by the iron-based oxide (crud) deposited in the reactor core being activated by neutron irradiation, and the activated crud is carried to equipment such as the primary cooling system and main steam system. Contamination is caused by deposition on the surface of these devices, or by penetration of radioactive metals into the oxide film layer.Quantitatively, the latter is by far the most common -30 to 30% during periodic inspections conducted every 4U years. Approximately 50 tons will be removed, and up to 20,000 tons will be removed when the furnace is dismantled.

これら表面汚染金線の除染法としてlsl:、高速ジェ
ット水わ(し浄、超音波洗浄等の物理的方法と酸洗い、
7,1:解除染等の化学的方法の二つに大別できる。
Decontamination methods for these surface-contaminated gold wires include physical methods such as LSL, high-speed jet water cleaning, and ultrasonic cleaning;
7.1: Can be roughly divided into two chemical methods such as de-dying.

工具ズQiriその表面に放射化金属が何着し7穎のみ
であるので、物理v<1方法によって容易に除染できる
Since the number of radioactive metals on the surface of the tool is only 7, it can be easily decontaminated by the physical v<1 method.

一方、眠器汚染物は酸化皮膜層内に放射化金属が取り込
まれたものであり、物理的方法のみでは汚染された酸化
皮膜が十分除去されず、化学的方法を用いねに:ならな
い。化学的方法においても、単にis;2洗いのみでは
強固力スピネル型結晶fF4造を有するPe304の口
?化皮膜をpi去するためには長時間ケ要し、実用的で
はない。しかるに電解除染法iri・除染対象′吻を陽
極として電解液中に浸漬通電することによって強制的に
陽極表面を溶M了するものであり、条件によっては短時
間の電解で汚染された口化皮j漠全完全に除去すること
ができる。
On the other hand, the contaminated oxide film is one in which radioactive metals are incorporated into the oxide film layer, and the contaminated oxide film cannot be removed sufficiently by physical methods alone, making it impossible to use chemical methods. Even in the chemical method, if only two washes are used, the mouth of Pe304, which has a strong spinel-type crystal fF4 structure, will be removed. It takes a long time to remove the chemical film and is not practical. However, in the electrolytic decontamination method, the proboscis of the object to be decontaminated is immersed in an electrolytic solution as an anode, and electricity is applied to forcibly dissolve the anode surface. The skin can be completely removed.

電解によって放射能で汚染された社化皮股、もり、、 
< l−1を金属表面を除染する方法としては、耐酸、
硫酸等の濃厚強酸水溶液中で5H3極電解する方法(特
開昭56−140300 )と中性塩水溶液中で陽極電
解する方法(特開昭57−76500)とがある。強酸
を用(βZ)方法においては、酸化皮膜もしくは金属表
面の除去性能は中性塩よりも優りでいるが、電解によっ
て除去された放射能を含む金属がイオンとなって強酸中
に溶解するため廃酸の処理が複雑化し、そのことがコス
ト上昇、二次廃棄物・の増加の主因ともなっている。一
方、中性塩水溶液を用いる方法においては′1;℃解に
よって除去された酸化皮膜もしくは金属は、水酸化物と
なって沈殿するため廃液処理が容易となる。しかるにこ
の方法においても、原子力発電所様器の環境。
Social leather products contaminated with radioactivity due to electrolysis,
< As a method of decontaminating the metal surface of l-1, acid-resistant,
There are two methods: 5H three-electrode electrolysis in a concentrated strong acid aqueous solution such as sulfuric acid (Japanese Patent Application Laid-open No. 140300/1983), and a method of anodic electrolysis in a neutral salt aqueous solution (Japanese Patent Application Laid-Open No. 57-76500). In the method using strong acids (βZ), the removal performance of oxide films or metal surfaces is superior to that of neutral salts, but because the metal containing radioactivity removed by electrolysis becomes ions and dissolves in the strong acid. Processing of waste acid has become complicated, which is the main cause of increased costs and secondary waste. On the other hand, in the method using a neutral salt aqueous solution, the oxide film or metal removed by decomposition at 1;° C. becomes a hydroxide and precipitates, making waste liquid treatment easier. However, even in this method, the environment is similar to that of a nuclear power plant.

つ′より温度270″C5圧力フ0気圧で生成する強固
力、スピネル構造を有する酸化皮膜(Fe304)を除
去するのが離しいという欠点がある。
Moreover, it has the disadvantage that it is hard to remove the oxide film (Fe304) having a strong strength and a spinel structure which is generated at a temperature of 270''C5 pressure and 0 atmospheres.

即ち対象物を陽極とし7て電解する除染方法においてば
、対象物表面に生じている酸化皮膜それ自体は溶i・1
.¥されるものではなく・この酸化皮膜の下層の金属イ
′iJ、利が溶解することによって酸化皮膜が結果とし
てはく離する現象を利用している・このため、強固な酸
化皮膜内にも容易に浸透する水素イオンやハロゲンイオ
ンを多量に含む溶液中では電解能力が優れているが、硝
酸塩、硫酸塩等の大部分の中性塩溶液で(1にλ化皮膜
の除去能力が極めて悪い。&′↓1図に100μm程度
の厚さのば化皮膜の付いた鉄鋼本を町極電解したときの
結果を示したが、皮j夙を完全除去するためには皮膜重
量の2倍以上の母材を電解せねば々らず、また硫酸ナト
リウム溶液では1時間以上研摩する必要がある。
In other words, in a decontamination method in which electrolysis is performed using the object as an anode, the oxide film formed on the surface of the object itself becomes soluble i.
..・It utilizes the phenomenon in which the oxide film peels off as a result of the melting of the underlying metal layer of the oxide film.・For this reason, it can be easily applied even inside a strong oxide film. It has excellent electrolytic ability in solutions containing large amounts of penetrating hydrogen ions and halogen ions, but in most neutral salt solutions such as nitrates and sulfates (1), the ability to remove the λ film is extremely poor.&'↓Figure 1 shows the results of electrolyzing a steel sheet with a 100 μm thick film, but in order to completely remove the film, a matrix of at least twice the weight of the film is required. The material must be electrolyzed and polished with a sodium sulfate solution for over an hour.

なお中性塩水溶液中で鋼板を交番電解し、酸化皮膜全除
去する方法が提案されているが(特開昭53−1206
37)、このような交番電解法は放射性汚染金属の除染
には適用されてい永い。なお特開昭53 120637
に係る発明は、銅材の圧延、焼鈍等の処理工程において
発生する酸化スケールを除去しようとするものであって
・大気圧、500 ’c以上テ生成した三層(外層” 
Fe203 r中層: Fe3O4+ 内層: li”
 e O)に積み重なった酸化皮膜を機械的なスケール
ブレーキングを施した後に対象物を交@電解するもので
ある。しかるに原子力発電所等から発生する放射性金属
廃棄物は肉厚な配管(10陥以上)やバルブ類が多く。
A method has been proposed in which the steel plate is subjected to alternating electrolysis in a neutral salt aqueous solution to completely remove the oxide film (Japanese Patent Laid-Open No. 53-1206).
37), such alternating electrolysis method has not been applied to the decontamination of radioactively contaminated metals for a long time. In addition, Japanese Patent Application Publication No. 53 120637
The invention relates to the removal of oxidized scale generated during processing steps such as rolling and annealing of copper materials.
Fe203 r middle layer: Fe3O4+ inner layer: li”
After applying mechanical scale breaking to the oxide film accumulated on e O), the object is subjected to alternating current electrolysis. However, radioactive metal waste generated from nuclear power plants and other facilities often consists of thick pipes (more than 10 holes) and valves.

圧延等の機械的なスケールブレーキングを施すこ、とが
難しい。
It is difficult to apply mechanical scale breaking such as rolling.

寸だ・放射性金属廃棄物を対象とした:lン合の特有な
問題点として、いったん刻対象物から除去された放射性
金属の再付着がある。特に交番電解法ニオイては、陰極
電解時にメッキ現象による放射性汚染金属の再付着が生
じるため、それらを防止する必要がある。
One of the unique problems with this method, which targets radioactive metal waste, is the re-deposition of radioactive metals that have been removed from the target object. Particularly in the case of alternating electrolysis, redeposition of radioactive contaminated metals occurs due to plating during cathode electrolysis, so it is necessary to prevent this.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、放射能を含む強固なスピネル型酸化皮
膜(Fe304)を効率的に電B”(除去することがで
きる放射性汚染金属の除染方法を提供することにある。
An object of the present invention is to provide a method for decontaminating radioactive contaminated metals that can efficiently remove a strong spinel-type oxide film (Fe304) containing radioactivity.

〔発明の概要〕[Summary of the invention]

本発明は、中性塩水溶液中で放射性汚染金属表面の放射
能を含む酸化皮膜全第2図に示すような陰極、1賜極お
よび分極電位規制下のイオン拡散のための電解を交互に
縁り返す交番電解によって電解除去するようにしたもの
である。
In the present invention, in a neutral salt aqueous solution, the entire oxide film containing radioactivity on the surface of a radioactively contaminated metal is alternately applied to the cathode, single pole, and electrolysis for ion diffusion under polarization potential regulation as shown in Figure 2. It is designed to be electrolytically removed by repeated alternating electrolysis.

前述のように除汚対象物(汚染金Pシ)を陽4】として
電解した場合には、酸化皮膜の下層の母料が溶解したの
であるが、一方、対象物を陰極として電解した場合は下
式の還元反応が起る。
As mentioned above, when the object to be decontaminated (contaminated gold) was electrolyzed as a positive electrode, the base material in the lower layer of the oxide film was dissolved, but on the other hand, when the object was electrolyzed as a cathode, The reduction reaction of the following formula occurs.

Fe3O4+61(20+e−−)3Fe”+100I
(−+l−I2・・・・・・・・・(1) 2H20+26− −+20I−I−+l−I2 −・
旧・・(2)この(1)式の反応で酸化皮膜が愚兄溶解
するが、その溶解速度は極めて遅く、主要な反応は(2
)式の水の分解である。しかしながら、陰極N尊前のF
e2O3、Fe3O4の酸化皮膜は(3)式ニ示すよ5
に陰極電解によって、還元されてFeOを主体とする軟
質彦酸化皮膜に変質してゆく。
Fe3O4+61(20+e−-)3Fe”+100I
(−+l−I2・・・・・・・・・(1) 2H20+26− −+20I−I−+l−I2 −・
Old... (2) The oxide film dissolves in this reaction of equation (1), but the dissolution rate is extremely slow, and the main reaction is (2)
) is the decomposition of water. However, F before the cathode N
The oxide film of e2O3 and Fe3O4 is shown in equation (3)5.
Then, by cathodic electrolysis, it is reduced and transformed into a soft Hiko oxide film mainly composed of FeO.

Fe3O4+e−→ 軟質化(FeO主体)・・団・(
3)交番電解はこのよう力酸化皮膜の特性を利用するも
のであって、強固な酸化皮膜を陰極還元することによっ
て軟質化し、イオンを浸透しゃすくした後陽極電解を行
う工程を繰シ返すことによって酸化皮膜を効率的に除去
するようにしている。軟質化した酸化皮膜はイオンの浸
透性が高まるので。
Fe3O4+e-→ Softening (FeO main body)... Group...
3) Alternating electrolysis utilizes the characteristics of the oxidized film as described above, and involves repeating the process of softening the strong oxide film by cathodic reduction, making it more permeable to ions, and then performing anodic electrolysis. The oxide film is removed efficiently. The softened oxide film increases the permeability of ions.

次に陽極電解すると金属母材の溶解と共に酸化皮膜がは
く離する。この繰り返しを行うことによって従来よシも
非常に速く放射性汚染金属の酸化皮膜を除去できる。
Next, anodic electrolysis causes the metal base material to dissolve and the oxide film to peel off. By repeating this process, the oxide film of the radioactively contaminated metal can be removed much faster than in the past.

陰極電解による酸化皮膜の還元および陽極電解による金
属母材の溶解反応は共に電解液の温度に依存し、高温側
で反応は促進される。このことから通常は電解液の温度
を上昇させることによって放射性汚染金属の酸化皮膜の
除去速度を向上できるものと予想されるが、交番電解特
有の問題として、高温になるといったん除去された金属
が放射性金属廃文物の表面に再付着する現象を見出した
Both the reduction of the oxide film by cathodic electrolysis and the dissolution reaction of the metal base material by anodic electrolysis depend on the temperature of the electrolytic solution, and the reactions are accelerated at high temperatures. Based on this, it is expected that the removal rate of the oxide film of radioactively contaminated metals can be improved by raising the temperature of the electrolyte, but a problem unique to alternating electrolysis is that once the temperature reaches a high temperature, the removed metal becomes radioactive. We discovered the phenomenon of redeposition to the surface of metal waste.

第3図に酸化皮膜の付着した鉄鋼材を交番電解したとき
の再付着量を示した。再付着量は、電解液温度が高くな
るにつれて増加し、また電流密度が増大するにつれて減
少する。図3に従うと・電解液温度才たは電流密度のい
づれか一方から再付着を防止する条件を決めることがで
きる。
Figure 3 shows the amount of re-deposition when steel materials with oxide films were subjected to alternating electrolysis. The amount of redeposition increases as the electrolyte temperature increases and decreases as the current density increases. According to FIG. 3, conditions for preventing redeposition can be determined from either the electrolyte temperature or current density.

ム′54図に硫15i2すトリウム(1’Ja25O4
) 20wt%電解液中での鉄鋼制の分極電位を示した
。分極電位は、電π液と電極(鉄(同材)界面の状況を
反映するものであり、陽極として電流を流すと第4図に
示したごとく、鉄の溶解、鉄の不働態皮膜形成。
Figure '54 shows sulfur 15i2 thorium (1'Ja25O4
) Shows the polarization potential of steel in a 20wt% electrolyte. The polarization potential reflects the situation at the interface between the π liquid and the electrode (iron (the same material)), and when a current is applied as an anode, as shown in Figure 4, iron dissolves and a passive film of iron forms.

水の分解による酸素発生領域に分けられる。分極電位は
温度に依存して変化するが、第3図に示した再付着防止
の条件は全て分極電位1.5■以上の領域、す々わち水
の分解領域に和尚する。このことから、交番ML JQ
’6時の放射性金属の再付着を防止するためには、陽極
電解時の分極電位を1.5V以上に保ち、水の分解を行
なわせることが一般的な条件である。これは、前述した
交番電解の機構。
It is divided into oxygen generation areas due to water decomposition. Although the polarization potential changes depending on the temperature, the conditions for preventing re-adhesion shown in FIG. 3 all fall within the region of polarization potential of 1.5 square centimeters or more, which means that water decomposes. From this, police box ML JQ
In order to prevent the redeposition of radioactive metals at 6:00, the general condition is to maintain the polarization potential at 1.5 V or higher during anodic electrolysis and to allow water to decompose. This is the alternating electrolysis mechanism mentioned above.

ず方わぢ陰極電解により軟質化した酸化皮膜を陽極iE
解によってはく離する過程において、鉄の溶解を低くお
さえて水の一分解による酸素ガスの発生を主流にすべき
ことを意味する。陰極電解によって軟質化した酸化皮膜
を同極電解によってはく離するためには酸化皮膜界面の
金属母材を溶解する必要があるが、廃棄物賃の増大およ
び再付着防止の点で最小にすべきである。へる14にお
ける鉄の溶解領域においては、鉄が100チの電流効率
で溶解するため溶解した鉄イオンが電極界面に滞留し・
次の陰極電解時にメッキ現象によシ再び電極上に再付着
する。一方水分の分解領域においては、鉄の溶解の効率
が数チ、水の分解の効率が90チ以上であるため、鉄イ
オンのパh留濃度が少々<、かつ水の分解による酸素ガ
スによって拡散されるため、次の陰極電解時の再付着は
ほとんどない。
The oxide film softened by cathode electrolysis is used as an anode iE.
This means that in the process of stripping by solution, the dissolution of iron should be suppressed to a low level and the generation of oxygen gas by one decomposition of water should be the main stream. In order to peel off the oxide film softened by cathodic electrolysis by homopolar electrolysis, it is necessary to dissolve the metal base material at the interface of the oxide film, but this should be minimized in terms of increasing waste costs and preventing redeposition. be. In the iron dissolution region in Heru 14, iron is dissolved at a current efficiency of 100 cm, so dissolved iron ions remain at the electrode interface.
During the next cathode electrolysis, it re-deposit onto the electrode due to the plating phenomenon. On the other hand, in the water decomposition region, the dissolution efficiency of iron is several orders of magnitude, and the efficiency of water decomposition is over 90 orders of magnitude, so the iron ion concentration is slightly less than 100%, and the oxygen gas from water decomposition diffuses. Therefore, there is almost no re-deposition during the next cathode electrolysis.

このように、交番電解時の再付着を防止するためには、
陽極電解時における金11母材溶解の効率を10襲以下
にし、残りを水の分解にする必要があるが、この金属母
材の溶解と水の分解の効率は、電解液温度、電解液の種
類によって変化する。電解液の温度に関しては、温度上
昇によって金属母材の溶解の効率が増大するが、水の分
解を促進する物質、たとえば硝酸ナトリウム、リン酸ナ
トリウム特の中性塩を加えることによって低下させるこ
とができる。例えば、硫酸ナトリウム電解液において第
5図に示した如く、金属母材の溶解の効率が10チ以下
で再付着のない領域が・硝酸ナトリウム5チを加えるこ
とによって拡大されることがわかる。また硝酸ナトリウ
ムを30チ以上にすると、金属母材の溶解の効率があt
bに小さくなり、酸化皮膜の除去効率が大きく低下する
ため、この場合、3〜20チの範囲が望ましい。
In this way, in order to prevent redeposition during alternating electrolysis,
During anodic electrolysis, it is necessary to reduce the efficiency of dissolving the gold-11 base material to 10 times or less, and decompose the remaining water into water, but the efficiency of dissolving the metal base material and decomposing water depends on the temperature of the electrolyte and the electrolyte temperature. Varies depending on type. Regarding the temperature of the electrolyte, the efficiency of dissolving the metal matrix increases with increasing temperature, but it can be lowered by adding substances that promote the decomposition of water, such as neutral salts such as sodium nitrate and sodium phosphate. can. For example, in a sodium sulfate electrolyte, as shown in FIG. 5, it can be seen that the area where the efficiency of dissolving the metal base material is 10 cm or less and there is no redeposition is expanded by adding 5 cm of sodium nitrate. Also, when the amount of sodium nitrate is 30% or more, the efficiency of dissolving the metal base material increases.
In this case, the range of 3 to 20 inches is desirable because the removal efficiency of the oxide film is greatly reduced.

このように1分極型位による電解領域の設定もしくは水
の分解促進剤を加えることによって・溶解した金属の再
付着を防止することができるが・60CO,59FC等
の放射性金属はほんの数量の再付着によっても除染効果
を低下させるため、再付着の防止をさらに徹底するのが
望ましい。そこで・陽極電解によって溶解した微量な金
属イオンを後の陰極電解が始捷る前に溶液中に拡散させ
てしまうのが効果的である。図2に示した如く、陽極電
解と陰極電解の間に分極電位制御の補助的な電解時間を
設けた。溶解した金属イオンの再付着は下式に示す金属
の電析(メッキ)によるものである。
In this way, by setting an electrolytic region based on a single polarization type position or adding a water decomposition accelerator, it is possible to prevent the re-deposition of dissolved metals, but only a small amount of radioactive metals such as 60CO and 59FC re-deposit. It is desirable to take even more thorough measures to prevent re-deposition, as this will also reduce the decontamination effect. Therefore, it is effective to diffuse trace amounts of metal ions dissolved by anodic electrolysis into the solution before the subsequent cathodic electrolysis begins. As shown in FIG. 2, an auxiliary electrolysis time for polarization potential control was provided between anodic electrolysis and cathodic electrolysis. Redeposition of dissolved metal ions is due to metal electrodeposition (plating) as shown in the following formula.

M”+28 −+ M ・・・・・=・(4)この反応
の起る電位(標準電極電位)は金属の種類によって異な
るが、F e ” ” + C”0” rへPがそれぞ
れ−0,44,−0,28,−0,25V程度であり、
それ以下の電位で(4)式の反応が進行する。よって、
陽極電解の後、分極電位を刻金F≦イオンの標準電極電
位以上に保って電解し、溶液をかくはんすることによっ
て、陽極電解によって溶解した金属イオンを再付着する
ことなく、拡散できる。また分極電位が高すぎると金属
の溶解が起るので、−〇、1V以下に保つのが有効であ
る。また上記の分極電位を規制した溶解金属イオンを拡
散させるための電解時間は、イオンの拡散が充分達せら
れるように、20〜30秒程贋が望せしい。
M”+28 −+ M ・・・・・・=・(4) The potential at which this reaction occurs (standard electrode potential) differs depending on the type of metal, but P to Fe ” ” + C”0” r is - It is about 0,44, -0,28, -0,25V,
At a potential lower than that, the reaction of formula (4) proceeds. Therefore,
After the anodic electrolysis, electrolysis is carried out while keeping the polarization potential at or above the standard electrode potential of the engraving F≦ions, and by stirring the solution, the metal ions dissolved by the anodic electrolysis can be diffused without being redeposited. Furthermore, if the polarization potential is too high, metal dissolution will occur, so it is effective to keep it below -0.1V. Further, the electrolysis time for diffusing the dissolved metal ions with the above-mentioned polarization potential regulated is desirably about 20 to 30 seconds so that the ions can be sufficiently diffused.

第6図に厚さ10μm程度のhλ化皮膜をもつ炭素鋼を
50′cの硫酸ナトリウム20Wt係・硝酸ナトリウム
2wt%の水溶液中で、分(a電位を規制した金属イオ
ンを拡散させるための電解を設けた交番電解をしたとき
の結果を示す。第6図より従来の陰極、陽極のみの交番
電解を行なったときより、溶解した金属イオンの再付着
がないため皮膜の除去量が飛躍的に増加し、約15分の
電解で酸化皮膜は完全に除去されることが認られる。こ
の方法においては、15分間で15mg/α2の汚染金
属および酸化皮膜を除去することによって放射能強度が
バンクグラウンドまで除染することができる。
Figure 6 shows that carbon steel with a hλ coating of about 10 μm thick was heated in an aqueous solution containing 20 Wt of sodium sulfate and 2 wt% of sodium nitrate at 50'C for a minute (a). Figure 6 shows the results obtained when alternating electrolysis was performed with a It is confirmed that the oxide film is completely removed in about 15 minutes of electrolysis.In this method, the radioactivity intensity is reduced to the bank ground level by removing 15 mg/α2 of the contaminated metal and oxide film in 15 minutes. It is possible to decontaminate up to

なお、除染によって除去された放射性汚染物は電解液中
に残されているが、中性塩水溶液中ではそれら全てが水
酸化物もしくは酸化物として沈殿し、水溶液は放射能に
よって全く汚染されない。
Although the radioactive contaminants removed by decontamination remain in the electrolyte, all of them precipitate as hydroxides or oxides in the neutral salt aqueous solution, and the aqueous solution is not contaminated by radioactivity at all.

水沫の交番電解では、金属母材の溶解と酸化皮j莫のは
く離が同時に進行するが、はく離した酸化皮膜は溶解す
ることなくそのまま沈殿し、金属母材の溶解によって溶
出した金属イオンは下式に示すような(1)、 (2)
式で生成した水酸イオンと反応して全て水酸化物となっ
て沈殿する。
In the alternating electrolysis of water droplets, the dissolution of the metal base material and the peeling off of the oxide film proceed simultaneously, but the peeled off oxide film does not dissolve and precipitates as it is, and the metal ions eluted by the dissolution of the metal base material are expressed by the following formula. (1), (2) as shown in
It reacts with the hydroxide ion produced by the formula, and all of it becomes hydroxide and precipitates.

Fe3””+30H−→Fe(OH)3 −−−(4)
才だ(1)〜(4)までの反応式に見られるように、電
解反応で消費されるのは水のみであって中性塩は消費さ
れず、水を補給するだけで電解液を連続して使用するこ
とができる。
Fe3””+30H-→Fe(OH)3 ---(4)
As seen in the reaction equations (1) to (4), only water is consumed in the electrolytic reaction, not neutral salts, and the electrolyte can be continuously supplied by simply replenishing water. and can be used.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第6図は本発明方法を実施するに好適な装置の構成図で
ある。この装置は、電源1.電解槽2゜対照電極4、洗
浄漬8.遠心脱水機11、混合槽15の主装誼より成る
。放射性廃棄物5は中性塩水溶液3の充填された電解槽
2に浸漬され、対照電極4と共に交番電解する。電解時
間は10〜20分間が望ましい。交番電解によって除去
された汚染物は酸化物もしくは水酸化物6となって沈殿
し、遠心脱水機11に送られ、含水率80チ程度まで脱
水されたスラッジ13となり混合機15に送られる。一
方脱水後の脱水液はフィルター12を通して再び電解液
として再使用される。混合機に送られた脱水スラッジは
重量比2〜3倍の水ガラス14と共にかくはん機16に
よってかくはん混合した後・ ドラム缶17に充填する
。ドラム缶内の充填物は、48〜72時間で固化する。
Embodiment 1 FIG. 6 is a block diagram of an apparatus suitable for carrying out the method of the present invention. This device has a power supply of 1. Electrolytic bath 2° Reference electrode 4, cleaning soak 8. It consists of a centrifugal dehydrator 11 and a mixing tank 15 as main components. The radioactive waste 5 is immersed in an electrolytic bath 2 filled with a neutral salt aqueous solution 3, and subjected to alternating electrolysis together with a reference electrode 4. The electrolysis time is preferably 10 to 20 minutes. Contaminants removed by alternating electrolysis precipitate as oxides or hydroxides 6, and are sent to a centrifugal dehydrator 11, where they become sludge 13 dehydrated to a water content of about 80 cm and sent to a mixer 15. On the other hand, the dehydrated liquid after dehydration is passed through the filter 12 and reused as an electrolyte. The dehydrated sludge sent to the mixer is stirred and mixed with water glass 14 of 2 to 3 times the weight by a stirrer 16, and then filled into a drum 17. The filling in the drum solidifies in 48 to 72 hours.

なお電解によって除染された廃棄物は、洗浄梠8におい
てスプレー洗浄様10によって通常の水道水9によシ洗
浄することによって、その放射能強にはバックグラウト
領域1で低減される。
The radioactivity of the waste decontaminated by electrolysis is reduced in the back grout area 1 by washing it with normal tap water 9 in the washing basin 8 by spray washing 10.

しかしてこのように描成された装置を用い、硫酸ナトリ
ウム2Qwtチの水溶液を電解液とし、カーボンを対極
として、陰極電解60秒、電流密度0.3A/an2、
イオン拡散のための電解30秒、電流密度0〜土0.0
5A/cm2、陽極電解30秒、上流密度0.3A/α
2全約20分行なうことにより、汚染酸化皮膜を完全に
除去できた。さらに沈殿物を400 Orpmの遠心分
?i:?機で含水率80%まで脱水した後1重量比2倍
の水ガラスと混合し固化したところ、除染前に比し約1
715に減容できた。
However, using the apparatus described above, cathodic electrolysis was carried out for 60 seconds using an aqueous solution of 2Qwt sodium sulfate as the electrolyte and carbon as the counter electrode, with a current density of 0.3A/an2,
Electrolysis for ion diffusion 30 seconds, current density 0 to 0.0
5A/cm2, anodic electrolysis for 30 seconds, upstream density 0.3A/α
2. The contaminating oxide film could be completely removed by carrying out the process for about 20 minutes. Furthermore, the precipitate was centrifuged at 400 Orpm? i:? After being dehydrated in a machine to a water content of 80%, it was mixed with twice the weight of water glass and solidified.
The volume was reduced to 715.

実施例2 実施例1の装置に第7図に示した分極電位測定装置18
および制御用コンピュータ19を付加した自動ft1l
j御とする。分極電位測定装置18によシ放射性表面汚
染金属50分極電位を測定し、陽極電解時は、分極電位
1.5重以上で電解し、イオンの拡散のための電解時は
分極電位を放射性表面汚染全屈の標準電極電位以上にし
て電解する。電解途中に適宜分極電位を測定し、上記栄
件からはずれた」5合は、制御コンピュータ19(でよ
って電解時の電流を制御することによって、常に最適々
分極電位領域で電解できるようにする。
Example 2 The polarization potential measuring device 18 shown in FIG. 7 was added to the device of Example 1.
Automatic ft1l with additional control computer 19
Please take care of me. The polarization potential of 50 radioactive surface-contaminated metals is measured using the polarization potential measuring device 18. During anodic electrolysis, electrolysis is performed at a polarization potential of 1.5 times or more, and during electrolysis for ion diffusion, the polarization potential is measured to radioactive surface contamination. Electrolyze at a standard electrode potential of full bending or higher. During the electrolysis, the polarization potential is appropriately measured, and if it deviates from the above conditions, the control computer 19 controls the current during electrolysis so that electrolysis can always be carried out in the optimal polarization potential range.

このような分極電位を規制した電解によって、除染残渣
の再付着を完全に防止できる。
Such electrolysis with controlled polarization potential can completely prevent decontamination residue from re-deposition.

¥施例3 実施例1または実施例2の装置凸′を用いて、Na28
0420 wt % (7)電解液に、3〜20wt%
加えた電解液を用い、放射性汚染金属を電極として電流
密度0.2〜0.5 A/ an2.30〜75ででイ
オン拡散のだめの電解(電流密度0〜0.05A/an
2.時間30秒)を陰極電解(60S)と陽極電解(3
0S)の間に行う交番電解によって除染した。その結果
、除染残渣の再付着は一切なく約20分で完全にバック
グラウンドまで除染された。
¥Example 3 Using the device convex of Example 1 or 2, Na28
0420 wt% (7) 3 to 20 wt% to the electrolyte
Using the added electrolyte solution, conduct electrolysis to prevent ion diffusion at a current density of 0.2 to 0.5 A/an with a radioactively contaminated metal as an electrode (current density of 0 to 0.05 A/an).
2. time 30 seconds), cathodic electrolysis (60S) and anodic electrolysis (30 seconds).
Decontamination was carried out by alternating electrolysis during 0S). As a result, there was no re-deposition of any decontamination residue, and the decontamination was completed to the background level in about 20 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射能汚染された酸化皮膜層を交番電
解により確実に除去することができる。
According to the present invention, a radioactively contaminated oxide film layer can be reliably removed by alternating electrolysis.

甘たこの電解に際し汚染されていない金属母材の溶解も
(モめで少量とすることができるため・二次尻乗物量を
著しく減容することが可能である。また電解液として中
性塩水溶液を用いることにより・電解除染工程とそtに
より発生する水酸化物等の除去工程が同時にできるので
、電解処理時間の短縮化が図れると共に、’Eji j
Ij1液に供する薬品コストを低減する効果がある。
During the electrolysis of sweet octopus, the uncontaminated metal base material can be dissolved (because it can be done in a small amount with mome, and the volume of secondary particles can be significantly reduced. Also, a neutral salt aqueous solution can be used as the electrolyte). By using ・The electrolytic dedying process and the process of removing hydroxides etc. generated by the process can be performed at the same time, so the electrolytic treatment time can be shortened and
This has the effect of reducing the cost of chemicals used in Ij1 liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1区は電解時間と研摩tλとの関係線図、第2図は分
極電位と電解時間の関係程図、第3図は再封;’jj量
と電力了液温度の関係線図、第4図は電流密度と分極電
位の関係図、第5図は電流密度と電解液温度の関係図、
第6図、第7図は電解除染システムの概略図である。 1・・・電源、2・・・電解槽、8・・・洗浄槽、15
・・・混合槽・ 奉 / 囚 電解時開(7?Ljn)(特上) 第 2 口 第 3 固 常 丙♀敗温度 (”cつ 早 4 国 分% 電4’l (V y、s NHす第 5 凶 、電解大温度(°り 奉 6 口
The first section is a relationship diagram between electrolysis time and polishing tλ, Figure 2 is a relationship diagram between polarization potential and electrolysis time, and Figure 3 is a relationship diagram between resealing; Figure 4 is a diagram of the relationship between current density and polarization potential, Figure 5 is a diagram of the relationship between current density and electrolyte temperature,
FIGS. 6 and 7 are schematic diagrams of the electrolytic dedying system. 1... Power supply, 2... Electrolytic tank, 8... Cleaning tank, 15
・・・Mixing tank・Hou / Prison electrolysis time open (7? Ljn) (Special) 2nd mouth 3rd solid state C 5th evil, electrolytic high temperature (° Riho 6 mouths

Claims (1)

【特許請求の範囲】 1、放射性物質によシ表面を汚染された金属を電解除染
する方法において・中性塩の水溶液に酸化性の化合物を
加えた水溶液′f:電解液として用いて。 陽極電解時および陰極電解時のいずれの電流よりも小さ
な電流を通電する電解を、陽極電解と陰極電解の間に設
けた交番電解によシ除染対象金属表面の放射能で汚染さ
れた酸化皮膜層および金属表面を除去することを特徴と
する放射性汚染金属の除染方法。
[Claims] 1. In a method for electrolytically dedying a metal whose surface has been contaminated with a radioactive substance - an aqueous solution 'f prepared by adding an oxidizing compound to an aqueous solution of a neutral salt: used as an electrolytic solution. Oxide films contaminated with radioactivity on the surface of metals to be decontaminated can be removed by alternating electrolysis between anodic electrolysis and cathodic electrolysis, which passes a current smaller than both the anodic electrolysis and cathodic electrolysis. A method for decontaminating radioactively contaminated metals, characterized by removing layers and metal surfaces.
JP19078483A 1983-10-14 1983-10-14 Method of decontaminating radioactive contaminated metal Pending JPS6083000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19078483A JPS6083000A (en) 1983-10-14 1983-10-14 Method of decontaminating radioactive contaminated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19078483A JPS6083000A (en) 1983-10-14 1983-10-14 Method of decontaminating radioactive contaminated metal

Publications (1)

Publication Number Publication Date
JPS6083000A true JPS6083000A (en) 1985-05-11

Family

ID=16263675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19078483A Pending JPS6083000A (en) 1983-10-14 1983-10-14 Method of decontaminating radioactive contaminated metal

Country Status (1)

Country Link
JP (1) JPS6083000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628176A (en) * 2012-04-21 2012-08-08 广东白云国际科学研究院有限公司 Electrolyte capable of removing nuclear pollution and movable cathode electrochemical cleaning device
CN104979032A (en) * 2015-05-15 2015-10-14 沈阳理工大学 Electrolyte for removing nuclear pollutants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323245A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Multiprocessor system having sensory memory
JPS53120637A (en) * 1977-03-30 1978-10-21 Agency Of Ind Science & Technol Electrolytic descaling method for steel strip or wire
JPS5776500A (en) * 1980-10-30 1982-05-13 Hitachi Ltd Method of decontaminating metallic material contaminated with radioactivity
JPS5822390A (en) * 1981-08-02 1983-02-09 ケーデーケー株式会社 Aluminum corrosion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323245A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Multiprocessor system having sensory memory
JPS53120637A (en) * 1977-03-30 1978-10-21 Agency Of Ind Science & Technol Electrolytic descaling method for steel strip or wire
JPS5776500A (en) * 1980-10-30 1982-05-13 Hitachi Ltd Method of decontaminating metallic material contaminated with radioactivity
JPS5822390A (en) * 1981-08-02 1983-02-09 ケーデーケー株式会社 Aluminum corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628176A (en) * 2012-04-21 2012-08-08 广东白云国际科学研究院有限公司 Electrolyte capable of removing nuclear pollution and movable cathode electrochemical cleaning device
CN104979032A (en) * 2015-05-15 2015-10-14 沈阳理工大学 Electrolyte for removing nuclear pollutants

Similar Documents

Publication Publication Date Title
EP1220233B1 (en) Chemical decontamination method
KR900000343B1 (en) Method for decontaminating metals contaminated with radioactive substances
JPH02503600A (en) How to decontaminate surfaces
JP4083607B2 (en) Radioactive chemical decontamination method and apparatus
JP3849925B2 (en) Chemical decontamination method
JPS6083000A (en) Method of decontaminating radioactive contaminated metal
EP0859671A1 (en) Method for decontamination of nuclear plant components
US11342092B2 (en) Electrolyte for electrochemical decontamination and preparation method and application thereof
JPH0765204B2 (en) Method for dissolving and removing iron oxide
JP2010151596A (en) Method for treating radioactive metal waste
EP0874067B1 (en) Apparatus and method for removing metal or mineral contaminants, especially for oil drilling equipments
Pražská et al. Actual situation on the field of decontamination in Slovak and Czech NPPs
JPH0222597A (en) Chemical decontamination method for radioactive metal waste
JP2010101762A (en) Method for decontaminating radioactive metal waste
JPH01138497A (en) Method for decontaminating radiation metal waste
Partridge et al. Chemical decontamination of metals
JP3175522B2 (en) How to remove radioactive materials
JPS60106998A (en) Electrolytic decontamination method
Wedman et al. Electrolytic decontamination of conductive materials for hazardous waste management
JPH0527092A (en) Removal of contamination of radioactive metallic waste
JPS60140199A (en) Method of electrolytically decontaminating radioactive metallic waste
JPH03216599A (en) Chemical decontamination method of radioactive metallic waste
JP2014020835A (en) Method for chemically decontaminating radioactive contaminated object
JPH02171696A (en) Decontamination equipment of radioactive metallic waste
JPH0438499A (en) Treatment of decontamination waste liquid