JPS6013930A - Vibration damping apparatus for multi-cylinder internal-combustion engine - Google Patents

Vibration damping apparatus for multi-cylinder internal-combustion engine

Info

Publication number
JPS6013930A
JPS6013930A JP12144083A JP12144083A JPS6013930A JP S6013930 A JPS6013930 A JP S6013930A JP 12144083 A JP12144083 A JP 12144083A JP 12144083 A JP12144083 A JP 12144083A JP S6013930 A JPS6013930 A JP S6013930A
Authority
JP
Japan
Prior art keywords
engine
cylinder
cylinders
vibration
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12144083A
Other languages
Japanese (ja)
Inventor
Shunichi Aoyama
俊一 青山
Manabu Kato
学 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12144083A priority Critical patent/JPS6013930A/en
Publication of JPS6013930A publication Critical patent/JPS6013930A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/24Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce the vibration of an engine capable of changing the number of cylinders to be operated at the time of its partial-cylinder operation, by providing centrifugal resonators having respective pivotal points in the plane perpendicular to the main shaft of the engine at the positions thereof spaced radially outward from the center of a turning shaft. CONSTITUTION:A flywheel 2 is fixed to the rear end of the main shaft of an engine which is designed to be capable of changing the number of cylinders to be operated, and centrifugal resonators 4 are disposed at the intervals of 120 deg. in the plane 3 of the flywheel 2 located on the side of the cylinders in the manner that they have respective pivotal points B at the positions spaced radially outward from the center of a turning shaft 1 by a distance R and the distance from the point B to the center G of gravity of each resonator 4 is (r). In respect of the formula, n<2>=R/r, representing resonance of the resonators 4, the degree n of harmonic oscillation is selected to be 1-2. By employing such an arrangement, it is enabled to absorb and reduce vibration of the engine at the time of its partial-cylinder operation.

Description

【発明の詳細な説明】 (技術分野) 本発明は、機関軽負荷運転域で一部気筒の作亜を休止さ
せ部分気筒運転を行なう、いわゆる気「数制御を行なう
多気筒内燃機関の振動低減装置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to vibration reduction in a multi-cylinder internal combustion engine that performs so-called air count control, in which the operation of some cylinders is stopped in the engine light load operating range to perform partial cylinder operation. Regarding equipment.

(従来技術) ? ) 減少し、むしろトルク変動が増加し、回転の円滑さが著
しく損われる。
(Prior art)? ), rather the torque fluctuation increases, and the smoothness of rotation is significantly impaired.

このため、休止時に休止側気筒の吸気弁を下死点近傍で
開いて給気を行なうことにより、筒内圧力の低下を回避
するようにした内燃機関が提案されている(特開昭57
−115002号)。
For this reason, an internal combustion engine has been proposed that avoids a drop in cylinder pressure by opening the intake valve of the cylinder on the idle side near the bottom dead center when the engine is idle to supply air.
-115002).

これは、休止時の休Iに側気筒の筒内圧力の確保による
トルク変動低下の効果が最も顕著に得られる4気筒機関
について提案されたもので、4気筒機関ではピストンの
作動が互いに同位相である2つの気筒(1番気筒と4番
気筒もしくは2番気筒と3番気筒)の吸排気弁を閉止し
た場合、この休止側の2つの気筒ではクランク角360
度毎に互いに同時に、かつ稼動側気筒とは180度ずれ
た位相で圧縮作用がなされ、しかもそのピーク値の総和
が作動側の1つの気筒の燃焼ピーク値と同程度になるの
で〈第1図参照)、前記圧縮作用が確実になされるかぎ
り、2気筒だけの部分気筒運転であっても4気筒同時運
転と同等の滑らかさが得られものである。
This was proposed for 4-cylinder engines, where the effect of reducing torque fluctuations by securing in-cylinder pressure in the side cylinders is most noticeable during the rest I period, and in 4-cylinder engines, the pistons operate in the same phase. When the intake and exhaust valves of two cylinders (1st and 4th cylinders or 2nd and 3rd cylinders) are closed, the crank angle of the two cylinders on the idle side is 360.
The compression action is performed at the same time and 180 degrees out of phase with the operating cylinder, and the sum of the peak values is approximately the same as the combustion peak value of one operating cylinder. As long as the above-mentioned compression action is performed reliably, even partial cylinder operation with only two cylinders can provide the same smoothness as simultaneous operation with four cylinders.

すなわら、4気筒の合成トルクは、2気筒だけの部分気
筒運転にもかかわらず、4気筒同時運転のように、クラ
ンク角180度毎にトルク変動を生じている(第2図の
実線)。なお、同図の破線は休止側気筒の筒内圧力がブ
ローバイにより減少した場合のトルク変動で、クランク
角360度毎にしかトルク変動を生じていない。
In other words, even though only two cylinders are in partial cylinder operation, the combined torque of the four cylinders causes torque fluctuations for every 180 degrees of crank angle, just like when all four cylinders are operated at the same time (solid line in Figure 2). . Note that the broken line in the figure shows the torque fluctuation when the in-cylinder pressure of the cylinder on the idle side decreases due to blow-by, and the torque fluctuation occurs only every 360 degrees of crank angle.

ところで、爆発圧力による加振力は、クランク軸にかか
るトルクの反力としてシリンダブロックに作用するため
、機関回転に従って周期的に変化する強制振動を生じさ
せる。
Incidentally, the excitation force caused by the explosion pressure acts on the cylinder block as a reaction force of the torque applied to the crankshaft, and therefore causes forced vibrations that periodically change as the engine rotates.

この強制振動のうち特に体感されるものは1次の振動成
分、すなわち機関1回転(クランク角360度)を1周
期とした振動であるが、通常の4気筒機関では、前述の
ように機関1回転に2回の爆発圧力を生ずるために、こ
の1次成分はほとんど生じない。
Among these forced vibrations, what is especially felt is the first-order vibration component, that is, the vibration with one cycle of one engine revolution (360 degrees of crank angle). Since the explosion pressure is generated twice in rotation, this primary component is hardly produced.

ところが、2気筒による部分気筒運転になると、機関1
回転に1回しか爆発圧力を生じないため、1次成分が極
めて大きくなり(振動エネルギにおいては他の2次以上
の成分よりも大きくなってしまう)、体感される振動を
生じてしまうのであるが、前述のように、休止側気筒に
吸気を補給して筒内圧力を確保するものにあっては、機
関1回転に2回の圧縮圧力を発生されているため、1次
成分の振動は大幅に低減され、したがって、この4気筒
機関では、トルク変動を低減するばかりでなく、体感さ
れる振動を減少させる効果をも生じている。
However, when it comes to partial cylinder operation with two cylinders, engine 1
Since the explosion pressure is generated only once per rotation, the first-order component becomes extremely large (in terms of vibration energy, it becomes larger than other second-order or higher-order components), causing the vibration that can be felt. As mentioned above, in systems that supply intake air to the cylinder on the idle side to maintain cylinder pressure, compression pressure is generated twice per engine revolution, so the vibration of the primary component is greatly reduced. Therefore, in this four-cylinder engine, not only the torque fluctuation is reduced, but also the vibration that is felt is reduced.

ところで、このような部分気筒運転時における振動の1
次成分は、圧縮圧力の生じる周期が長い機関低回転域に
特に問題となるものである。
By the way, one of the vibrations during such partial cylinder operation is
The next component is particularly problematic in the engine's low rotational speed range, where the period in which compression pressure occurs is long.

人間の感覚は対数的であるため、振動エネルギが例えば
10分の1と減少しても感覚的には半減した程度にしか
感じないため、全気筒運転時に比較すれば不満が残る。
Since human senses are logarithmic, even if the vibration energy is reduced by, for example, one-tenth, it only feels like it has been halved, and this leaves some dissatisfaction when compared to full-cylinder operation.

しかも、機関1回転に2回の圧縮圧力を生じさけたため
に、機関1回転を2周期とする2次成分がかなり大きく
なっており、この2次成分は、振動としてにりも車室内
騒音の増大という形で問題が生じてくる。
Furthermore, since compression pressure is not generated twice per engine revolution, the second-order component, which has two cycles per engine revolution, becomes quite large, and this second-order component becomes a vibration that contributes to the noise inside the cabin. Problems arise in the form of growth.

そこで、この振動の2次成分をさらに低減するには、例
えばフライボイルの慣性質量の増大などが考えられ、部
分気筒運転時にi確かに振動を低減できる効果があるも
のの、全気筒運転に切換えられると、大きな慣性質量は
不要であるばかりでなく、加速性能の低下や燃費の悪化
などを招いてしまう。
Therefore, in order to further reduce the secondary component of this vibration, for example, increasing the inertial mass of the flyboiler can be considered.While it is true that vibration can be reduced during partial cylinder operation, it is difficult to switch to full cylinder operation. Therefore, not only is a large inertial mass unnecessary, but it also causes a decline in acceleration performance and fuel efficiency.

また、同じく部分気筒運転を行なう6気筒機関にあって
は、休止時の休止側気筒に吸気を補給しても、もっばら
オイル上がりの防(にという効果が生じるのみで、トル
ク変動の低減という効果は生じない。
Furthermore, in the case of a 6-cylinder engine that similarly performs partial cylinder operation, even if intake air is supplied to the cylinder on the idle side when the engine is at rest, it will only have the effect of preventing oil buildup, and will only reduce torque fluctuations. No effect occurs.

これは、たとえば、半数気筒(1,2,3番気筒または
4.5−.6番気筒)を休止側気筒となし、その休止時
に補助給気を行なうと、休止側気筒の筒内圧力のピーク
はいずれも120度の位相差を持ってずれ、互いに重な
り合うことがなく、しかも稼動側気筒の爆発圧力のピー
クに休止側気筒の何れか1つの圧縮ピークが必ず重畳す
るので、むしろトルク変動を助長するためである。
For example, if half of the cylinders (cylinders 1, 2, and 3 or cylinders 4, 5, and 6) are set to be inactive, and auxiliary air supply is performed during the inactive period, the in-cylinder pressure of the inactive cylinders will decrease. The peaks are all shifted with a phase difference of 120 degrees and do not overlap each other, and since the compression peak of any one of the cylinders on the idle side is always superimposed on the peak of the explosion pressure of the cylinder on the active side, it is rather possible to reduce torque fluctuations. This is for the purpose of promoting it.

したがって6気筒機関にあっては、部分気筒運転に移行
したときの振動はもともと大きく、この場合には1.5
次数分が問題となってくる。
Therefore, in a 6-cylinder engine, the vibration when shifting to partial cylinder operation is originally large, and in this case, 1.5
The order becomes a problem.

(発明の目的) そこで本発明は、多気筒内燃機関について、部分気筒運
転時に顕著どなる振動につきその低次の成分を除去して
部分気筒運転時の振動低減を図る装置を12供すること
を目的とする。
(Object of the Invention) Therefore, an object of the present invention is to provide a device for reducing vibrations during partial cylinder operation of a multi-cylinder internal combustion engine by removing low-order components of vibrations that are noticeable during partial cylinder operation. do.

(発明の(構成及び作用) 本発明は軽負荷運転域で吸気弁及び排気弁の開作動を規
制づ゛る手段を有する体1L側気筒と、常時作動する稼
動側気筒とを形成した多気筒内燃機関に以下のものを追
加して構成する。
(Structure and Effects of the Invention) The present invention provides a multi-cylinder body having a 1L side cylinder having a means for regulating the opening operation of intake valves and exhaust valves in a light load operating range and an operating side cylinder that is always operated. Configure the internal combustion engine by adding the following:

すなわち、機関の主軸又は主軸に同期する回転軸の直角
な平面内に、回転軸の中心より半径方向外側にRだG″
J離れたB点を支点とし、この支点から重心Gまでの距
離がrである共振式遠心力振子を設け、共振の式n’=
R/rのうら、調和振動の次数nを1〜2に設定する。
In other words, within a plane perpendicular to the main shaft of the engine or a rotating shaft synchronized with the main shaft, there is a radius radially outward from the center of the rotating shaft.
A resonant centrifugal pendulum is set up with point B, which is located J away, as a fulcrum, and the distance from this fulcrum to the center of gravity G is r, and the resonance formula n'=
Behind R/r, the order n of harmonic vibration is set to 1 to 2.

遠心力振子は、トルク変動によって弾性体であるクラン
ク軸に発生するねじり振動を低減するものであるが、n
≧3である高次の振動成分を低減する通常のものではな
く、n=1〜2の低次の振動成分を低減することになる
Centrifugal force pendulums reduce torsional vibrations that occur in the crankshaft, which is an elastic body, due to torque fluctuations.
This is not a normal method that reduces high-order vibration components of ≧3, but reduces low-order vibration components of n=1 to 2.

(実施例) 以下図示実施例に基づいて説明する。(Example) The following description will be given based on the illustrated embodiment.

第3図は本発明の一実施例の正面図、第4図は第3図の
X−x断面図である。
FIG. 3 is a front view of one embodiment of the present invention, and FIG. 4 is a sectional view taken along the line X-x in FIG. 3.

図中2は機関の主軸1〈クランク軸)後端に取付けられ
るフライホイルで、フライホイル2のシリンダ側平面3
上には、回転軸1の中心J、り半径方向外側にR(回転
半径という)だけ離れたB点を支点とし、このB点から
重心Gまでの距離がrである共振式遠心力振子4を12
0度毎に配設する。な゛お5はクラッチ部分である。
2 in the figure is a flywheel attached to the rear end of the main shaft 1 (crankshaft) of the engine, and the cylinder side plane 3 of flywheel 2
Above is a resonant centrifugal pendulum 4 whose fulcrum is a point B which is located radially outward from the center J of the rotating shaft 1 by a distance R (referred to as the radius of rotation), and whose distance from this point B to the center of gravity G is r. 12
Arranged every 0 degrees. Note that 5 is the clutch part.

この共振式遠心力振子4はダイナミックダンパの1種で
、機械的バネを有する一般のダイナミックダンパは、バ
ネと質■の仕様から共振周波数が一義的に定まってしま
うため、特定の回転数においてのみねじり振動を減少す
ることができるが、他の回転数範囲では、むしろ逆に共
振を起こしてねじり振動が増大するなどの問題があり、
自動車用の内燃機関のように広範囲の回転数領域で運転
を行なう場合には不適当である。
This resonant centrifugal force pendulum 4 is a type of dynamic damper.General dynamic dampers with mechanical springs have a resonant frequency that is uniquely determined by the specifications of the spring and quality. Although it is possible to reduce torsional vibration, in other rotation speed ranges, there are problems such as resonance and an increase in torsional vibration.
It is unsuitable when operating over a wide range of rotational speeds, such as in internal combustion engines for automobiles.

一方、遠心力振子4は、回転体(フライホイル2)の回
転に伴い、振子4の重心Gに遠心力r(I)′<ωはフ
ライホイル2の角振動数)が作用する。
On the other hand, in the centrifugal pendulum 4, as the rotating body (flywheel 2) rotates, a centrifugal force r(I)'<ω is the angular frequency of the flywheel 2) acts on the center of gravity G of the pendulum 4.

このJ:つな遠心力rω2の場にある振子4の動作は、
重力Qの場にある単振子の振舞と同様に考えればよく、
したがって中端子の固有角振動数ωnはωn=(L−)
’T(/は単振子の支点と重心までの距離)で与えられ
るため、この式の重力9を遠心力rω′で冒き換えるこ
とにより、遠心力振子4の固有角振動数0〕1)がωn
−ωf1−フ′2−とめられる。
The motion of the pendulum 4 in the field of this J:tsuna centrifugal force rω2 is
You can think of it in the same way as the behavior of a simple pendulum in a field of gravity Q,
Therefore, the natural angular frequency ωn of the middle terminal is ωn=(L-)
'T (/ is the distance between the fulcrum and the center of gravity of the simple pendulum), so by replacing the gravity 9 in this equation with the centrifugal force rω', the natural angular frequency of the centrifugal pendulum 4 is 0]1) ωn
-ωf1-F'2- is stopped.

この式が意味するところは、遠心力振子4の固有振動数
がフライホイル2の振動数(回転数)に比例する(角振
動数ωn、ωはそれぞれの振動数ホイル2の回転数が変
化すると、これに追従して遠心力振子4の固有振動数(
共振周波数)が変化するため、フライホイル2の広い回
転数範囲にわたって遠心力振子4が振動吸収能力を持つ
ことになる。
What this formula means is that the natural frequency of the centrifugal pendulum 4 is proportional to the frequency (rotation speed) of the flywheel 2 (the angular vibration frequencies ωn and ω change as the rotation speed of the flywheel 2 changes). , following this, the natural frequency of the centrifugal pendulum 4 (
Since the resonance frequency (resonance frequency) changes, the centrifugal pendulum 4 has the ability to absorb vibrations over a wide rotational speed range of the flywheel 2.

このような遠心力振子4の原理については公知であり、
多気筒内燃機関のクランク軸のねじり振動吸収に用いら
れた例がある(昭和45年8月、コロナ社発行、機械振
動論、第241頁参照)。
The principle of such a centrifugal pendulum 4 is well known;
There is an example of its use in absorbing torsional vibrations of the crankshaft of a multi-cylinder internal combustion engine (see Mechanical Vibration Theory, published by Corona Publishing, August 1970, p. 241).

この例に゛よると、遠心力振子4に対し、前)ホのR,
rを使用して共振の式が次のように与えられる。
According to this example, for the centrifugal pendulum 4,
The resonance equation using r is given as follows.

n2=R/r・・・(1) この式(1)でnは調和振動の次数であり、式(1)の
意味するところは、たとえば振動の1次数分を除くには
n−1として上式に代入し、1−R,/rとなるように
Rとrを設計すればよい。
n2=R/r...(1) In this equation (1), n is the order of harmonic vibration, and the meaning of equation (1) is, for example, to remove the first order of vibration, use n-1 as n-1. By substituting it into the above equation, R and r can be designed to be 1-R,/r.

ところが通常の多気筒内燃機関では、n=1〜2のよう
な低次の振動成分は多気筒化によって容いるように、n
は最小でも3であり、通常はもつと高い値として観察さ
れる。したがってn≧3の振動成分を対象に振子4を設
計することになる。
However, in a normal multi-cylinder internal combustion engine, low-order vibration components such as n = 1 to 2 are accommodated by increasing the number of cylinders.
is at least 3, and is usually observed as a high value. Therefore, the pendulum 4 is designed for vibration components of n≧3.

たとえば、n=3に対して9=R/rを満足するように
Rlrを選択するとなると、回転半径Rを大きくしなけ
ればならないが、Rを大きくすることはフライボイル2
の大型化を意味し、場所的制限からRを大ぎくすること
は困難である。それならrを小さくすればよいかという
と、rは遠心力振子4の支点(B点)から重心Gまでの
距離であるため、大ぎな質量の振子を取付けられなくな
る。
For example, if Rlr is selected to satisfy 9=R/r for n=3, the radius of rotation R must be increased, but increasing R means that the flyboil 2
This means increasing the size of R, and it is difficult to increase R due to space limitations. In that case, it would be better to make r smaller, but since r is the distance from the fulcrum (point B) of the centrifugal pendulum 4 to the center of gravity G, it becomes impossible to attach a pendulum with a large mass.

n=3に対して既にこのような設計上の難点を有するた
め、n≧4に対しては押して知るべしで、したがって通
常の多気筒機関に対して、この遠心力振子4が取付けら
れた例はあっても、n≧3を対象とする限り問題を残し
ていたといえる。
Since n = 3 already has such a design difficulty, it should be ignored for n ≧ 4. Therefore, an example where this centrifugal pendulum 4 is installed in a normal multi-cylinder engine Even so, it can be said that as long as n≧3 is the target, there remains a problem.

ところが、本発明においては、この遠心力振子4を適用
するについては、n≧3ではなく、n=1〜2での適用
を行なうのである。
However, in the present invention, the centrifugal pendulum 4 is applied not when n≧3 but when n=1 to 2.

すなわち、前述のように、部分気筒運転時に問題となる
のは、(1)休止時に休止側気筒に吸気(又は排気)を
補給しない4気筒機関について、部分気筒運転に移行後
の1次成分、(2)休止時に休止側気筒に吸気(又は1
)1気)を補給する4気筒機関について、部分気筒運転
に移行後の1次成分もしくは2次成分、(3)6気筒1
幾関について半数気筒による部分気筒運転に移行後の1
.(5次成分で、いずれも部分気筒運転移行後に問題ど
なる振動はn=1〜2と低次の成分である。
That is, as mentioned above, the problems during partial cylinder operation are: (1) For a four-cylinder engine that does not replenish intake air (or exhaust air) to the cylinder on the idle side during shutdown, the primary component after transition to partial cylinder operation; (2) Intake (or 1
) 1st air), the primary component or secondary component after transition to partial cylinder operation for a 4-cylinder engine replenishing 1 air), (3) 6 cylinder 1
1 after transition to partial cylinder operation with half cylinders for Ikoseki
.. (The fifth-order component is a low-order component of n=1 to 2, and the vibrations that occur after the transition to partial cylinder operation are both components.

具体的には、(1)の場合に1=R/r、(2>の場合
に4 = R/ r、(3)の場合に2.25−R/r
となるようにR11゛を選択する。このJ:うなR,r
に対しては遠心力振子4の取付は容易であり、第3図に
は1 =R/rの場合を示す。
Specifically, in the case of (1), 1 = R/r, in the case of (2>, 4 = R/r, and in the case of (3), 2.25-R/r
Select R11' so that. This J: Una R, r
It is easy to attach the centrifugal pendulum 4 to , and FIG. 3 shows the case where 1 = R/r.

さらにこのような遠心力振子4を120度毎に設けてい
るのは、平面内のすべての振動をバランスよく減少させ
るためである。
Furthermore, the reason why such centrifugal force pendulums 4 are provided every 120 degrees is to reduce all vibrations in a plane in a well-balanced manner.

したがって、以上のように構成されると、通常の多気筒
機関において、全気筒運転時には、n−1〜2のような
低次の振動成分がもともと少ないために、遠心力振子4
の効果は生じないが、軽負荷域に部分気筒運転に移行す
ると、この状態で新たに発生する低次の振動成分を遠心
振子4が大幅に低減することになる。このときの遠心力
振子4−は、対象とづる振動成分に関して無限に大きな
慣性質量として作用し、他の振動成分に関しては有限の
質量どして作用する一方、機関回転数の変動に対しても
追従して振動を吸収するため、フライホイル2の慣性質
量を増大さけるだけの対策について生じる加速性能の低
下や燃費の悪化を招くことはない。
Therefore, with the above configuration, in a normal multi-cylinder engine, when all cylinders are operated, the centrifugal pendulum 4
However, when shifting to partial cylinder operation in a light load range, the centrifugal pendulum 4 significantly reduces the low-order vibration components newly generated in this state. At this time, the centrifugal pendulum 4- acts as an infinitely large inertial mass with respect to the target vibration component, and acts as a finite mass with respect to other vibration components, while also acting as a finite mass against fluctuations in engine speed. Since the vibrations are absorbed by following the vibration, there is no deterioration in acceleration performance or deterioration in fuel efficiency that would occur if the measures were taken only to avoid increasing the inertial mass of the flywheel 2.

なお、第3図では遠心力振子4をフライホイル2に取(
=Iけでいるが、機関主軸に同期する回転軸に取付けて
もよい。
In addition, in Fig. 3, the centrifugal pendulum 4 is attached to the flywheel 2 (
=I, but it may also be attached to a rotating shaft that is synchronized with the engine main shaft.

(発明の効果) 以上のように本発明によれば、部分気筒運転を行なう多
気筒機関の主軸又は主軸に同期する回転軸の直角な平面
内に低次の振動成分を吸収する共振式遠心力振子を設け
たので、部分気筒運転時に発生する振動を大幅に低減で
きるという効果が得られる。
(Effects of the Invention) As described above, according to the present invention, a resonant centrifugal force that absorbs low-order vibration components in a plane perpendicular to the main shaft of a multi-cylinder engine that performs partial cylinder operation or a rotating shaft synchronized with the main shaft is provided. Since the pendulum is provided, it is possible to significantly reduce vibrations that occur during partial cylinder operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直列4気筒機関の稼動側気9及び休止側
気筒の筒内圧力変化を表す指圧線図、第2図は合成トル
ク特性を示ザ図である。 第3図は本発明の一実施例の正面図、第4図にl第3の
x−X断面図である。 1・・・主軸、2・・・フライホイル、3・・・平面、
4・・・共振式遠心力振子。 特許出願人 日産自動車株式会社
FIG. 1 is an acupressure diagram showing changes in the cylinder pressures of the active side air 9 and the idle side cylinders of a conventional in-line four-cylinder engine, and FIG. 2 is a diagram showing the composite torque characteristics. FIG. 3 is a front view of one embodiment of the present invention, and FIG. 4 is a third XX sectional view. 1... Main shaft, 2... Flywheel, 3... Plane,
4...Resonant centrifugal pendulum. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] n’=R/l゛のうち、調和振動の次数0を1〜≦Of n'=R/l゛, the harmonic vibration order 0 is 1~≦
JP12144083A 1983-07-04 1983-07-04 Vibration damping apparatus for multi-cylinder internal-combustion engine Pending JPS6013930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12144083A JPS6013930A (en) 1983-07-04 1983-07-04 Vibration damping apparatus for multi-cylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12144083A JPS6013930A (en) 1983-07-04 1983-07-04 Vibration damping apparatus for multi-cylinder internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6013930A true JPS6013930A (en) 1985-01-24

Family

ID=14811186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12144083A Pending JPS6013930A (en) 1983-07-04 1983-07-04 Vibration damping apparatus for multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6013930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115039U (en) * 1988-01-28 1989-08-02
JPH01115040U (en) * 1988-01-28 1989-08-02
JPH05272182A (en) * 1990-12-21 1993-10-19 Nichias Corp Fireproof coating forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536853A (en) * 1978-09-07 1980-03-14 Ishihara Sangyo Kaisha Ltd Electrophotographic material
JPS57181943A (en) * 1981-04-30 1982-11-09 Toyota Motor Corp Movable valve system for variable cylinder type internal combustion engine
JPS5758152B2 (en) * 1977-06-25 1982-12-08 Toyo Seikan Kaisha Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758152B2 (en) * 1977-06-25 1982-12-08 Toyo Seikan Kaisha Ltd
JPS5536853A (en) * 1978-09-07 1980-03-14 Ishihara Sangyo Kaisha Ltd Electrophotographic material
JPS57181943A (en) * 1981-04-30 1982-11-09 Toyota Motor Corp Movable valve system for variable cylinder type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115039U (en) * 1988-01-28 1989-08-02
JPH01115040U (en) * 1988-01-28 1989-08-02
JPH05272182A (en) * 1990-12-21 1993-10-19 Nichias Corp Fireproof coating forming method
JPH0759832B2 (en) * 1990-12-21 1995-06-28 ニチアス株式会社 Fireproof coating formation method

Similar Documents

Publication Publication Date Title
US6688272B2 (en) Crankshaft assembly for enabling engine cylinder deactivation
US20140102398A1 (en) Drive system for a vehicle
US5560267A (en) Camshaft vibration damper
US10113611B2 (en) Torsional vibration damper and engine assembly including the same
US5197352A (en) Flywheel for an internal combustion engine
JPS58128546A (en) Flywheel for use in four-cylinder engine arranged in series
JPS6013930A (en) Vibration damping apparatus for multi-cylinder internal-combustion engine
US3056312A (en) Dynamic vibration absorber
RU2769415C1 (en) Internal combustion piston engine with generator
Lee et al. Torsional vibration reduction in internal combustion engines using centrifugal pendulums
GB2556896A (en) An engine assembly
JPS61149635A (en) Crank pulley for internal-combustion engine
JP2019015316A (en) Vibration reducing device of internal combustion engine
JPH01312245A (en) Constant order type dynamic damper
JPS63111241A (en) Cover structure for engine transmission system
JP6866996B2 (en) engine
KR200352594Y1 (en) Crank shaft of single cylinder engine
KR101449526B1 (en) Opened coil spring type torsional vibration damper
JP2007285495A (en) Internal combustion engine
JPS6237509A (en) Crankshaft of multi-cylinder internal combustion engine
JPH01116331A (en) Oscillation suppressing device for crankshaft of internal combustion engine
JP2021110371A (en) Design method of flywheel
JP3731352B2 (en) Power plant balancer equipment
Paillot et al. Hybrid crankshaft control: Reduction of torsional vibrations and rotational irregularities under non-stationary operation
GB2397360A (en) A flywheel for use in an internal combustion engine including a plurality of centrifugal pendulum masses