JPS60138041A - Ceramic-metal composite body and its manufacture - Google Patents

Ceramic-metal composite body and its manufacture

Info

Publication number
JPS60138041A
JPS60138041A JP24575683A JP24575683A JPS60138041A JP S60138041 A JPS60138041 A JP S60138041A JP 24575683 A JP24575683 A JP 24575683A JP 24575683 A JP24575683 A JP 24575683A JP S60138041 A JPS60138041 A JP S60138041A
Authority
JP
Japan
Prior art keywords
metal
raw material
ceramic
ceramic raw
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24575683A
Other languages
Japanese (ja)
Inventor
Takeo Oki
猛雄 沖
Kimio Sugimoto
杉本 公男
Hidetoshi Yamauchi
山内 英俊
Shoji Tanigawa
庄司 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP24575683A priority Critical patent/JPS60138041A/en
Publication of JPS60138041A publication Critical patent/JPS60138041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture efficiently a ceramic-metal composite body by adding a starting material for ceramics to a molten metal contg. a I A or IIA group metal in the periodic table or a compound of the metal as an auxiliary. CONSTITUTION:One or more among Al, Ti, Mg, Fe, Cu, Cr and Ni are melted, and one or more kinds of components selected among Be, Ca, Sr, Ba, Li, Na, K, Rb, Cs and compounds of the metals are added as an auxiliary. To the molten metal is then added a starting material for ceramics such as SiC, SiO2, Si3N4, B4C, BN, AlN, Al2O3, BeO, cordierite, ferrite, thoria, aluminum titanate, carbon or a carbon compound. A ceramic-metal composite body can be efficiently obtd.

Description

【発明の詳細な説明】 本発明はセラミックス−金属複合体とその製造方法に係
り、特に本発明は炭化物、窒化物、酸化物。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic-metal composite and a method for manufacturing the same, and particularly relates to a ceramic-metal composite and a method for manufacturing the same.

硫化物、硼化物又は珪素化合物から選ばれるセラミック
ス原料と各種金属との複合体を製造するに当シ、アルカ
リ金属又はアルカリ土類金属などの助剤を前記金属など
の溶融物中に添加し分散させることを特徴とするセラミ
ックス−金属複合体とその製造方法に関する。
When producing a composite of ceramic raw materials selected from sulfides, borides, or silicon compounds and various metals, auxiliary agents such as alkali metals or alkaline earth metals are added and dispersed in the melt of the metals. The present invention relates to a ceramic-metal composite and a method for manufacturing the same.

近年、各種の使用目的に応じた諸性質を有する新材料を
得るために、各種のセラミックス原料と金属との組合せ
から成る複合体が研究されている。
In recent years, in order to obtain new materials having various properties suitable for various purposes of use, research has been carried out on composites made of combinations of various ceramic raw materials and metals.

そして上記複合体を得る方法として、溶湯処理法、鋳造
法、焼結法、拡散法及び射出法などの各種の方法が考え
られるが各種のセラミックス原料と金属との溶融物は元
来相互に混和しにくい性質がある。
Various methods such as molten metal processing, casting, sintering, diffusion, and injection methods can be used to obtain the above composite, but melts of various ceramic raw materials and metals are inherently miscible with each other. It has a difficult nature.

そこで本発明者らは、前記各種セラミックス原料と金属
との複合体を製造するに当り、これらの溶融物が相互に
混和し易くなるような助剤の有効性を研究し検討してい
たところ、助剤として元素の周期表第1族A又は第1[
Aから選ばれる金属又はその化合物が最適のものであっ
て、しかもこれらは複合体の有効な一組成となシ得ると
の新規な知見を得て、これに基づき、本発明を完成する
に至った。
Therefore, the present inventors have been researching and examining the effectiveness of auxiliary agents that make it easier for these melts to mix with each other when producing composites of the various ceramic raw materials and metals. As an auxiliary agent, the periodic table of elements Group 1 A or Group 1 [
The present invention has been completed based on the new finding that metals selected from A or their compounds are optimal and can also be an effective composition of composites. Ta.

以下、本発明の複合体とその製造力について詳しく説明
する。
Hereinafter, the composite of the present invention and its manufacturing capacity will be explained in detail.

本発明はセラミックス原料と金属との複合体を製造する
に当シ、前記セラミックス原料を構成する元素又は金属
との親和性があシ、しかも化学反応を起こして安定な化
合物を形成し得る助剤を第三の成分としてセラミックス
原料及び又は金属の溶融物中に含有させ分散効果を高め
セラミックス−金属の複合体を効率よく得ることができ
るものである。
In the production of a composite of a ceramic raw material and a metal, the present invention provides an auxiliary agent that has an affinity with the elements or metals constituting the ceramic raw material, and that can cause a chemical reaction to form a stable compound. By incorporating it as a third component into the ceramic raw material and/or metal melt, the dispersion effect is enhanced and a ceramic-metal composite can be efficiently obtained.

すなわち、アルミニウムその他の溶融金属に炭化珪素、
窒化珪素、二酸化珪素などのような炭化物。
In other words, aluminum or other molten metal is mixed with silicon carbide,
Carbides such as silicon nitride, silicon dioxide, etc.

窒化物、酸化物、硼化物等の各種セラミックス原料の微
粉又は粒状物を均一に分散させる方法として、例えばア
ルミニウムその他の溶融金属に金属カルシウムやリチウ
ムのようなアルカリ金属又はアルカリ金属類を助剤とし
て添加すれば前記助剤は直ちに、発熱しな・がら化学反
応を起こしてアルミニウム溶湯中に容易に溶ける。この
とき、アルミニウム溶湯は、特に増粘現象も起こること
もなく、その表面にQ化皮膜及びスラグなどを生成する
。次に、炭化珪素。
As a method for uniformly dispersing fine powders or granules of various ceramic raw materials such as nitrides, oxides, and borides, for example, alkali metals or alkali metals such as metallic calcium or lithium are added to aluminum or other molten metal as an auxiliary agent. Once added, the auxiliary agent immediately undergoes a chemical reaction while generating heat, and easily dissolves into the molten aluminum. At this time, the molten aluminum does not undergo any particular thickening phenomenon, and forms a Q coating, slag, etc. on its surface. Next, silicon carbide.

窒化珪素、二酸化珪素などの各種のセラミックス原料微
粉又は粒状物を前記アルミニウム溶湯中に徐4に添加す
ると最初はアルミニウム溶湯表面上に前記セラミックス
原料は浮上していたが攪拌効果によシ徐々にセラミック
ス原料はアルミニウム溶湯中に溶は込み、時間が経過す
るにつれてアルミニウム溶湯表面上に酸化膜やスラグが
生成してくる。そこで、これらを激しく攪拌を更に続け
ると、前記セラミックス原料の微粉や粒状物はアルミニ
ウム溶湯中に溶は込んでゆき、新規な複合材を製造し得
ることが判った。これは金属複合材料に配合されるセラ
ミックス原料は、一般に溶融金属とのぬれが悪く、また
両者間には比重の差があるため、溶融金属中にセラミッ
クス原料を添加し十分に攪拌しても両者は容易に分散す
ることができず、したがって冷却固化する間に両者が分
離すゐことは避けられなかったものが、本発明によれば
アルカリ土類やアルカリ土類金属などのような助剤を介
在させることによシ金属やセラミックス原料が助剤との
親和力が強く化学反応が起こシ易いこと並びに、分散効
果が促進されて金属とセラミックスとの融和性も向上し
相互に溶融した状態で分散するものと推察される。この
ように分散性を向上させる要因としては、セラミックス
原料及び金属粉体の力学的性質、集合状態、表面の性質
殊に濡れ易さなども関係するものと考えられる。また、
分散条件の制御要因としての温度、圧力、滞留時間。
When various ceramic raw material powders or granules such as silicon nitride and silicon dioxide were slowly added to the molten aluminum, the ceramic raw materials floated on the surface of the molten aluminum at first, but due to the stirring effect, the ceramics gradually formed. The raw material penetrates into the molten aluminum, and as time passes, an oxide film and slag are formed on the surface of the molten aluminum. Therefore, it has been found that if these are continued to be vigorously stirred, the fine powders and granules of the ceramic raw materials are melted into the molten aluminum, and a new composite material can be manufactured. This is because ceramic raw materials mixed into metal composite materials generally have poor wettability with molten metal, and there is a difference in specific gravity between the two, so even if ceramic raw materials are added to molten metal and thoroughly stirred, both However, according to the present invention, auxiliary agents such as alkaline earth metals and alkaline earth metals are used. By intervening, metals and ceramic raw materials have a strong affinity with the auxiliary agent, making it easy for chemical reactions to occur, and the dispersion effect is promoted, improving the compatibility between metals and ceramics, and dispersing them in a mutually molten state. It is assumed that Factors that improve dispersibility in this way are thought to be related to the mechanical properties, aggregation state, and surface properties, particularly wettability, of the ceramic raw material and metal powder. Also,
Temperature, pressure and residence time as controlling factors for dispersion conditions.

作用時間などかあシ、これらを最適の条件とすることに
より金属溶湯中にセラミックス原料を添加混和させたと
きの見かけ粘度、流動特性2分散安定性及び経時変化な
どを適正に制御することができる。特に、前記溶湯の分
散過程は系の粘度によって異なるが、本発明によればセ
ラミックス原料と金属との複合体を製造するに当り、助
剤を介在させることによシ溶湯の粘度も適宜調整するこ
とができ、さらには助剤とセラミックス原料を構成する
元素又は金属との反応性が高いことに裁置して両者の親
和力が強くな多分散効果が高められ、複合体の形成に好
都合となるものと考えられる。一方、セラミックス原料
や金属粉体の粒径が小さくなればなるほど、分散相の体
積分率が同じであっても粘度が増すことが考えられる。
By optimizing these conditions such as action time, etc., it is possible to appropriately control the apparent viscosity, flow characteristics, dispersion stability, and changes over time when ceramic raw materials are added and mixed into molten metal. . In particular, the dispersion process of the molten metal differs depending on the viscosity of the system, but according to the present invention, when producing a composite of ceramic raw materials and metal, the viscosity of the molten metal is adjusted appropriately by intervening an auxiliary agent. Furthermore, due to the high reactivity between the auxiliary agent and the elements or metals constituting the ceramic raw material, a polydispersion effect with a strong affinity between the two is enhanced, which is favorable for the formation of composites. considered to be a thing. On the other hand, it is conceivable that the smaller the particle size of the ceramic raw material or metal powder, the higher the viscosity even if the volume fraction of the dispersed phase is the same.

これは粒径が小さくなることによシ、粒子間隙が減少し
、また粒子媒質の界面積が増加するためと考えられる。
This is thought to be because as the particle size becomes smaller, the interparticle gap decreases and the interfacial area of the particle medium increases.

以上説明したように、溶湯の分散は各種の要因によって
支配され制御し得るものであるが、少くとも本発明のよ
うにセラミックス原料と金属との複合体を製造するに当
り、セラミックス原料を構成する元素や金属との親和性
があυ、化学反応性が高い金属やその化合物を助剤とし
て用いることにより、分散効果を高めてセラミックスと
金属との複合体を適宜得ることができることが判明し各
種用途に適した複合体を提供し得る。
As explained above, the dispersion of molten metal is governed by and can be controlled by various factors, but at least when producing a composite of ceramic raw materials and metal as in the present invention, dispersion of molten metal is controlled by various factors. It has been found that by using metals and their compounds with high chemical reactivity and affinity with elements and metals as auxiliary agents, it is possible to improve the dispersion effect and obtain composites of ceramics and metals. A composite suitable for the application can be provided.

以下1本発明の最も代表的な実施例として、金属がアI
レミニウム、セラミックス原料が炭化珪1微粉。
As the most typical embodiment of the present invention, metal is
Reminium, ceramic raw material is silicon carbide 1 fine powder.

助剤が金属カルシウムの場合について具体的に説明する
The case where the auxiliary agent is metallic calcium will be specifically explained.

アルミニウムを溶融しその溶湯中に炭化珪素微粉を添加
混和する溶湯処理法として、第1図の断面図に示すよう
な加熱攪拌装置付きの溶湯ルツボを準備する。
As a molten metal processing method in which aluminum is melted and silicon carbide fine powder is added and mixed into the molten metal, a molten metal crucible equipped with a heating stirring device as shown in the cross-sectional view of FIG. 1 is prepared.

この図において、1は耐熱ルツボ、2は動力、8は撹拌
棒、4は熱電対、5は発熱体、6は小fJlエレマ炉で
ある。
In this figure, 1 is a heat-resistant crucible, 2 is a power source, 8 is a stirring rod, 4 is a thermocouple, 5 is a heating element, and 6 is a small fJl Erema furnace.

そして純度が99.9’%のアルミニウムと高純度α型
炭化珪素微粉と粒径が8〜4鵡の金属力〃シウムをそれ
ぞれ準備する。
Then, aluminum having a purity of 99.9'%, high purity α-type silicon carbide fine powder, and metal powder having a particle size of 8 to 4 mm are respectively prepared.

まず、予め前記溶湯ルツボ内で700〜800℃の温度
でアルミニウムを溶解し、約50Or、p、mでアルミ
ニウムの溶湯を攪拌しつづける。次に金属力Mシウムを
前記アルミニウムの2重量%を添加し、この方Mシウム
がアルミニウム溶湯中に融解し増粘した後に、平均粒径
が40μmのα型炭化珪素微粉(純度約97チ)を前記
アルミニウムの10重量係徐々に添加した。その結果、
炭化珪素は添加直後はアルミニウム溶湯表面に浮上して
いたが、攪拌によシアルミニウム溶湯表面の酸化膜がス
ラグの膜がくずれるに伴い溶湯の渦流中に溶は込んで良
好な分散性を示した。
First, aluminum is melted in advance at a temperature of 700 to 800° C. in the molten metal crucible, and the molten aluminum is continuously stirred at about 50 Or, p, m. Next, 2% by weight of metallic M-sium is added to the aluminum, and after the M-sium melts into the molten aluminum and thickens, α-type silicon carbide fine powder (purity of about 97 cm) with an average particle size of 40 μm is added. 10 parts by weight of the aluminum was gradually added. the result,
Immediately after addition, silicon carbide floated to the surface of the molten aluminum, but as the slag film broke down due to stirring, the oxide film on the surface of the molten aluminum melted into the vortex of the molten metal, showing good dispersibility. .

このようにし得られた複合体を冷却し、その塊状物を切
断し、SEM (走査電子顕微鏡)にて撮影した写真及
びその界面モデル図を第2図及び第8図に示す。この写
真は約150倍のものであるが、カルシウムの添加によ
るア゛ルミニウム溶湯の増粘のために生じたと思われる
気孔が多少ふくらんでおり、第3図に示すようにアVミ
ニウム(2)炭化珪素■との界面にCa5t(Q及びC
a−Al([)が存在していることが判る。
The composite thus obtained was cooled, the agglomerated material was cut, and a photograph taken with an SEM (scanning electron microscope) and a model diagram of its interface are shown in FIGS. 2 and 8. This photograph is about 150 times larger, but the pores that appear to have been caused by the thickening of the molten aluminum due to the addition of calcium are slightly swollen, as shown in Figure 3. Ca5t (Q and C
It can be seen that a-Al([) is present.

このように、本発明によればセラミックス原料と金属と
の複合体を得るに当シ、力〃シウムなどの助剤を用いる
ことによシ、金属溶湯の増粘効果に伴い、金属とセラミ
ックスとの濡れ性を向上させ、相互の混和な均質なもの
とすることができ、さらKは各種のセリミックス原料を
構成する元素又は金属と化学反応して安定な化合物を形
成する第三の成分としての助剤を添加することにより、
助剤を介してセラミックスと金属との分散効果を高め、
さらKは両者の親和性を高めてセラミックスと金属との
特性を有する新規な複合体を得ることができる。前記助
剤としては、力Mシウムのほかに同様の働きをするMg
As described above, according to the present invention, by using an auxiliary agent such as iron to obtain a composite of a ceramic raw material and a metal, the viscosity of the molten metal increases, and the metal and ceramics are bonded together. In addition, K acts as a third component that chemically reacts with the elements or metals constituting various ceramic raw materials to form stable compounds. By adding auxiliary agents,
Enhance the dispersion effect between ceramics and metals through auxiliary agents,
In addition, K increases the affinity between the two, making it possible to obtain a novel composite that has the characteristics of ceramics and metals. As the auxiliary agent, in addition to Mg, Mg, which has a similar function, may be used.
.

Be、 Sr+ Ba、 Ra、などのアVカリ土類元
素やLi。
Alkaline earth elements such as Be, Sr+ Ba, Ra, and Li.

K、 Rb、 Csなどのアルカリ金属が有効であると
考えられる。また、前記金属のアMミニウムのほかにも
Mg+ Sn+ Pb+ Be+ Sir Se、 T
i、 V、 Cr、 Mn、 Fe。
Alkali metals such as K, Rb, and Cs are considered effective. In addition to the metal aluminum mentioned above, Mg+ Sn+ Pb+ Be+ Sir Se, T
i, V, Cr, Mn, Fe.

Go、’ Nt、 Cu、 Nb、 Mo、 Tc、 
Ag、 Cd、 In、 Hf、 Ta。
Go,' Nt, Cu, Nb, Mo, Tc,
Ag, Cd, In, Hf, Ta.

W、 Ir、 Pt、 Au、 TI、 Th、 Pa
、 UISb、 As、 Ru。
W, Ir, Pt, Au, TI, Th, Pa
, UISb, As, Ru.

Rh、 Pd+ Te、 Po、 Re、 Osのうち
から選ばれるいずれか1種又は2種以上のものかあシ、
特にこのうちA1. TL Mg+ Fen Cu、 
Cr+ Niなどが有望な金属材料である。そして、前
記炭化珪素のほかに、特許請求の範囲第3項に列記した
各種の炭化物や特許請求の範囲第4項〜第6項に列記し
た窒化物、酸化物。
Rh, Pd + Te, Po, Re, Os or any one or more selected from among;
Especially A1. TL Mg+ Fen Cu,
Cr+Ni and the like are promising metal materials. In addition to the silicon carbide, various carbides listed in claim 3 and nitrides and oxides listed in claims 4 to 6.

硫化物などがセラミックス原料として有用であることが
判った。
It has been found that sulfides and the like are useful as raw materials for ceramics.

一方、セラミックスと金属とQ各種複合体の塊状物を得
る方法としては、前記溶湯処理法のほかに液体鋳造法す
なわち、(a)溶融浸透法、(b)加圧鋳造法。
On the other hand, methods for obtaining lumps of ceramics, metals, and various composites include, in addition to the molten metal treatment method described above, liquid casting methods, such as (a) melt infiltration method, and (b) pressure casting method.

(C)真空鋳造法などの各種の鋳造法、さらには焼結法
(C) Various casting methods such as vacuum casting method, and furthermore, sintering method.

含浸法、拡散接合法などにおいても本発明の原理思想は
有用なものと考えられる。
The principle idea of the present invention is also considered to be useful in impregnation methods, diffusion bonding methods, and the like.

以上のように、本発明によればセラミックスと金属との
複合体を製造するに当シ、従来技術では困難であった濡
れ性や分散性の悪いセラミックスと金属との組合せの複
合体を効率よく合理的に得ることができ、高温の耐熱及
び耐火が要求される各種用途に有用な複合材を提供する
ことができる。
As described above, according to the present invention, it is possible to efficiently produce composites of ceramics and metals with poor wettability and dispersibility, which has been difficult with conventional techniques. It is possible to provide a composite material that can be reasonably obtained and is useful for various applications requiring high-temperature heat resistance and fire resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の複合体の製造装置の一例の断面図、
第2図は本発明のセラミックス−金属複合体の一例の断
面写真、第8図は上記複合体の界面モデル図である。 特許出願人 イビデン株式会社 代表者 多賀潤一部
FIG. 1 is a sectional view of an example of the apparatus for manufacturing a composite of the present invention;
FIG. 2 is a cross-sectional photograph of an example of the ceramic-metal composite of the present invention, and FIG. 8 is an interface model diagram of the composite. Patent applicant IBIDEN Co., Ltd. Representative Jun Taga

Claims (1)

【特許請求の範囲】 1、 セラミックス原料と、金属と、前記セラミックス
原料を構成する元素又は金属と安定な化合物を形成する
助剤とから実質的になるセラミックス−金属複合体。 2、前記セラミックス原料は、炭化物、窒化物、酸化物
、硫化物、硼化物又は珪素化合物のいずれか1種又は2
種以上であることを特徴とする特許請求の範囲第1項記
載の複合体。 3、前記炭化物は、 SiC+ TiCu Cr5Q+
 ALCs、 BtC+TaC,jJC,HfC,We
、 ZrCのいずれか1種又は2種以上であることを特
徴とする特許請求の範囲第1項又は第2項記載の複合体
。 4− 前記窒化物は+ 5tJJ4. A11th B
N+ Til’L VC+TaNI ZrNのいずれか
1種又は2種以上であることを特徴とする特許請求の範
囲第1項〜第8項のいずれかに記載の複合体。 5、前記酸化物は、 Sin、 Zrへ、 AlmOs
、’Be1l MgO。 フェライト、サイアロン、ジMコン、ベリリア、 トリ
ア、ステアタイト、フォノレステライト、ムライト。 コージェライト、ジMコニア、チタン酸アVミニウム。 リチウム酸化物、炭素又は炭素化合物のいずれか1種又
は2種以上であることを特徴とする特許請求の範囲第1
項〜第4項のいずれかに記載の複合体。 6、前記硫化物は9MoSz、WS*、pbs 、 B
tsSsのいずれか1種又は2種以上であることを特徴
とする特許請求の範囲第1項〜第5項のいずれかに記載
の複合体。 7、前記金属は、 AI 、 Mg、 Sn 、 Pb
、 Be、 Si、 Se。 Ti、 V、 Cr、 Mn、 Fe、 Go、 Ni
、 Cu、 Nb、 Mo、 Tc。 Ag、 Cd、 In、 Hf、 Ta、 WIIr、
 Pt、 Au +T1. Th。 Pa、 tL Sb、 Bi、 As、 Ru、 Rh
、 Pd、Te、 Po、Re。 Osのいずれか1種又は2種以上であることを特徴とす
る特許請求の範囲第1項〜第6項のいずれかに記載の複
合体。 8、前記助剤は、元素の周期表第1族A又は第■族Aか
ら選ばれる金属又はその化合物のいずれか1種又は2種
以上の物質であることを特徴とする特許請求の範囲第1
項〜第6項のいずれかに記載の複合体。 9、前記セラミック原料がSiCu 5LN4+ St
owのいずれかの珪素化合物であり、前記金属がAll
 Ti、 Mg。 Fe + Cu r Cr + Niのいずれか1種又
は2種以上であシ、前記助剤がMg + Be 、Ca
 * Sr * Ba 、Ll 、NarK、 Rb、
 Csのいずれか1種又は2種以上の物質であることを
特徴とする特許請求の範囲第1項記載の複合体。 10、SiCu 5io1.5isNn、B4CI B
NI AINI ALOs+BeO。 コージライト、フェライト、トリア、チタン酸アMミニ
ウム、炭素、炭素化合物のいずれか1種又は2種以上の
セラミックス原料と、 AI 、 Ti 、 Mg、 
Fe。 Cu+Cr+Niのいずれか1種又は2種以上の金属と
、 Be、 Ca、 Mg、 Sr+ Ban Lit
 Na、 K+ Rb4Csのいずれか1種又は2種以
上の助剤とから実質的になる特許請求の範囲第1項記載
の複合体。 11、セラミックス原料と金属との複合体を製造するに
当り、元素の周期表第1族A又は第2族Aから選ばれる
金属又はその化合物のいずれか1種又は2種以上の助剤
を前記セラミックス原料及び又は金属の融成物に含有さ
せ分散させることを特徴とするセラミックス−金属複合
体の製造方法。 12、 5iC−+ 5iOst 51mN5. B4
C,BN、 AINI ALα、Beαコージイト、フ
ェライト、トリア、チタン酸アルミニウム、炭素、炭素
化合物のいずれか1種又は2種以上のセラミックス原料
と、A1.封、 Mg、 FenCu、Cr、Niのい
ずれか1種又は2種以上の金属との複合体を製造するに
当り、Be、 Ca、 Sr+ Ba。 Li、 Na、 K、 Rb、 C8のなかから選ばれ
る金属又はその化合物のいずれか1種又は2種以上の助
剤を前記セラミックス原料及び又は金属の融成物に含有
させ分散させることを特徴とするセラミックス−金属複
合体の製造方法。 13、前記助剤を含む金属又は合金を溶融し、この溶湯
中に前記セラミックス原料を含有させることを特徴とす
るセラミックス−金属複合体の製造方法。
[Claims] 1. A ceramic-metal composite consisting essentially of a ceramic raw material, a metal, and an auxiliary agent that forms a stable compound with the element or metal constituting the ceramic raw material. 2. The ceramic raw material is any one or two of carbides, nitrides, oxides, sulfides, borides, and silicon compounds.
2. The complex according to claim 1, which is composed of more than one species. 3. The carbide is SiC+ TiCu Cr5Q+
ALCs, BtC+TaC, jJC, HfC, We
, ZrC, or two or more thereof. 4- The nitride is +5tJJ4. A11th B
9. The composite according to any one of claims 1 to 8, which is any one or more of N+ Til'L VC+TaNI ZrN. 5. The oxides include: Sin, Zr, AlmOs
,'Be1l MgO. Ferrite, Sialon, Dimcon, Beryllium, Thoria, Steatite, Phonoresterite, Mullite. Cordierite, diconia, aluminum titanate. Claim 1 characterized in that it is any one or more of lithium oxide, carbon, or carbon compounds.
The complex according to any one of Items 1 to 4. 6. The sulfide is 9MoSz, WS*, pbs, B
The complex according to any one of claims 1 to 5, characterized in that it is any one type or two or more types of tsSs. 7. The metals are AI, Mg, Sn, Pb
, Be, Si, Se. Ti, V, Cr, Mn, Fe, Go, Ni
, Cu, Nb, Mo, Tc. Ag, Cd, In, Hf, Ta, WIIr,
Pt, Au +T1. Th. Pa, tL Sb, Bi, As, Ru, Rh
, Pd, Te, Po, Re. The composite according to any one of claims 1 to 6, characterized in that it contains one or more types of Os. 8. Claim 8, characterized in that the auxiliary agent is one or more of metals selected from Group 1 A or Group Ⅰ A of the Periodic Table of Elements or compounds thereof. 1
The complex according to any one of Items 6 to 6. 9. The ceramic raw material is SiCu 5LN4+ St
ow, and the metal is All
Ti, Mg. Any one or more of Fe + Cur Cr + Ni, and the auxiliary agent is Mg + Be, Ca
*Sr*Ba, Ll, NarK, Rb,
2. The complex according to claim 1, which is one or more of Cs. 10, SiCu 5io1.5isNn, B4CI B
NI AINI ALOs+BeO. A ceramic raw material of one or more of cordierite, ferrite, thoria, aluminum aluminum titanate, carbon, and carbon compounds, and AI, Ti, Mg,
Fe. Any one or more metals of Cu+Cr+Ni, Be, Ca, Mg, Sr+ Ban Lit
The complex according to claim 1, which essentially consists of one or more auxiliary agents selected from Na, K+Rb4Cs. 11. In producing a composite of a ceramic raw material and a metal, one or more of the metals selected from Group 1 A or Group 2 A of the Periodic Table of Elements or a compound thereof may be used as an auxiliary agent. 1. A method for producing a ceramic-metal composite, which comprises incorporating and dispersing it in a ceramic raw material and/or metal melt. 12, 5iC-+ 5iOst 51mN5. B4
A1. In producing a composite with one or more metals of Mg, FenCu, Cr, and Ni, Be, Ca, Sr+ Ba. It is characterized by containing and dispersing in the ceramic raw material and/or metal melt one or more kinds of auxiliary agents selected from Li, Na, K, Rb, and C8 or their compounds. A method for manufacturing a ceramic-metal composite. 13. A method for producing a ceramic-metal composite, which comprises melting a metal or alloy containing the auxiliary agent and incorporating the ceramic raw material into the molten metal.
JP24575683A 1983-12-27 1983-12-27 Ceramic-metal composite body and its manufacture Pending JPS60138041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24575683A JPS60138041A (en) 1983-12-27 1983-12-27 Ceramic-metal composite body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24575683A JPS60138041A (en) 1983-12-27 1983-12-27 Ceramic-metal composite body and its manufacture

Publications (1)

Publication Number Publication Date
JPS60138041A true JPS60138041A (en) 1985-07-22

Family

ID=17138328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24575683A Pending JPS60138041A (en) 1983-12-27 1983-12-27 Ceramic-metal composite body and its manufacture

Country Status (1)

Country Link
JP (1) JPS60138041A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565565A (en) * 1991-09-09 1993-03-19 Toyo Denka Kogyo Kk Hybrid fiber reinforced metal-based composite material and its production
KR100471649B1 (en) * 2002-09-27 2005-03-08 국방과학연구소 High damping aluminum matrix composite
WO2014121384A1 (en) * 2013-02-11 2014-08-14 National Research Counsil Of Canada Metal matrix composite and method of forming
CN105154745A (en) * 2015-09-07 2015-12-16 南京腾达五金制品有限公司 High strength alloy cutter head and preparation method thereof
CN105861964A (en) * 2016-06-22 2016-08-17 陆志强 High-heat-resistant boride-based cermet mould and preparation method thereof
CN105886874A (en) * 2016-06-23 2016-08-24 王莹 High-strength wear-resistant silicide base metal ceramic bearing and preparation method thereof
CN106086724A (en) * 2016-06-23 2016-11-09 王莹 A kind of high-strength wearable carbide-base ceramics bearing and preparation method thereof
CN106086723A (en) * 2016-06-23 2016-11-09 王莹 A kind of high-strength wearable boride-base cerment bearing and preparation method thereof
CN106119659A (en) * 2016-07-28 2016-11-16 陈林美 A kind of high intensity silicide based ceramic metal liner plate and preparation method thereof
CN106381435A (en) * 2016-08-30 2017-02-08 温州先临左岸工业设计有限公司 3D printing composite powder and preparation method thereof
CN106801225A (en) * 2017-03-02 2017-06-06 重庆理工大学 Laser alloy coating, preparation method and laser alloying method
CN106868500A (en) * 2017-03-02 2017-06-20 重庆理工大学 A kind of surface alloying coating, preparation method and mould electron beam alloyage method
CN106868502A (en) * 2017-03-02 2017-06-20 重庆理工大学 Hot-work die laser alloying coating and preparation method and laser alloying method
CN106868501A (en) * 2017-03-02 2017-06-20 重庆理工大学 A kind of surface alloying coating, preparation method and die surface processing method
CN109536763A (en) * 2018-12-12 2019-03-29 株洲金韦硬质合金有限公司 A kind of sintering process of miniature cemented carbide pellet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141960A (en) * 1980-04-08 1981-11-05 Agency Of Ind Science & Technol Production of ceramic-metal composite body
JPS5747843A (en) * 1980-09-05 1982-03-18 Nissan Motor Co Ltd Damping composite magnesium material with high strength and wear resistance
JPS57203732A (en) * 1981-06-08 1982-12-14 Hitachi Chem Co Ltd Production of graphite-containing aluminum alloy
JPS5891146A (en) * 1981-11-24 1983-05-31 Kyocera Corp Sintered silicon carbide body
JPS58144442A (en) * 1982-01-29 1983-08-27 アルマックス・インコ−ポレィテッド Manufacture of aluminum alloy/granular matter composite formed body and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141960A (en) * 1980-04-08 1981-11-05 Agency Of Ind Science & Technol Production of ceramic-metal composite body
JPS5747843A (en) * 1980-09-05 1982-03-18 Nissan Motor Co Ltd Damping composite magnesium material with high strength and wear resistance
JPS57203732A (en) * 1981-06-08 1982-12-14 Hitachi Chem Co Ltd Production of graphite-containing aluminum alloy
JPS5891146A (en) * 1981-11-24 1983-05-31 Kyocera Corp Sintered silicon carbide body
JPS58144442A (en) * 1982-01-29 1983-08-27 アルマックス・インコ−ポレィテッド Manufacture of aluminum alloy/granular matter composite formed body and device therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565565A (en) * 1991-09-09 1993-03-19 Toyo Denka Kogyo Kk Hybrid fiber reinforced metal-based composite material and its production
KR100471649B1 (en) * 2002-09-27 2005-03-08 국방과학연구소 High damping aluminum matrix composite
US9945012B2 (en) 2013-02-11 2018-04-17 National Research Council Of Canada Metal matrix composite and method of forming
WO2014121384A1 (en) * 2013-02-11 2014-08-14 National Research Counsil Of Canada Metal matrix composite and method of forming
CN105154745A (en) * 2015-09-07 2015-12-16 南京腾达五金制品有限公司 High strength alloy cutter head and preparation method thereof
CN105861964A (en) * 2016-06-22 2016-08-17 陆志强 High-heat-resistant boride-based cermet mould and preparation method thereof
CN105886874A (en) * 2016-06-23 2016-08-24 王莹 High-strength wear-resistant silicide base metal ceramic bearing and preparation method thereof
CN106086724A (en) * 2016-06-23 2016-11-09 王莹 A kind of high-strength wearable carbide-base ceramics bearing and preparation method thereof
CN106086723A (en) * 2016-06-23 2016-11-09 王莹 A kind of high-strength wearable boride-base cerment bearing and preparation method thereof
CN106119659A (en) * 2016-07-28 2016-11-16 陈林美 A kind of high intensity silicide based ceramic metal liner plate and preparation method thereof
CN106381435A (en) * 2016-08-30 2017-02-08 温州先临左岸工业设计有限公司 3D printing composite powder and preparation method thereof
CN106381435B (en) * 2016-08-30 2018-05-22 温州先临左岸工业设计有限公司 A kind of 3D printing composite material powder and preparation method thereof
CN106801225A (en) * 2017-03-02 2017-06-06 重庆理工大学 Laser alloy coating, preparation method and laser alloying method
CN106868500A (en) * 2017-03-02 2017-06-20 重庆理工大学 A kind of surface alloying coating, preparation method and mould electron beam alloyage method
CN106868502A (en) * 2017-03-02 2017-06-20 重庆理工大学 Hot-work die laser alloying coating and preparation method and laser alloying method
CN106868501A (en) * 2017-03-02 2017-06-20 重庆理工大学 A kind of surface alloying coating, preparation method and die surface processing method
CN109536763A (en) * 2018-12-12 2019-03-29 株洲金韦硬质合金有限公司 A kind of sintering process of miniature cemented carbide pellet

Similar Documents

Publication Publication Date Title
US4800065A (en) Process for making ceramic-ceramic composites and products thereof
JPS60138041A (en) Ceramic-metal composite body and its manufacture
JP2617752B2 (en) Abrasive material and method for producing the same
KR950014105B1 (en) Process for forming metal-second phase composites and product thereof
US4772452A (en) Process for forming metal-second phase composites utilizing compound starting materials
US5127969A (en) Reinforced solder, brazing and welding compositions and methods for preparation thereof
US4915905A (en) Process for rapid solidification of intermetallic-second phase composites
US4985202A (en) Process for forming porous metal-second phase composites
JPS6383239A (en) Production of metal-ceramic composite
US4917964A (en) Porous metal-second phase composites
US5015534A (en) Rapidly solidified intermetallic-second phase composites
US3963449A (en) Sintered metallic composite material
JPH06172054A (en) Preformed ceramic molding, method for its production and application thereof
JPS59205401A (en) Ceramics-metal composite fine powder
JPS60131943A (en) Heat-and wear-resistant aluminum alloy reinforced with dispersed particles and its manufacture
JPH0132297B2 (en)
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
EP0324799B1 (en) Isothermal process for forming porous metal-second phase composites and porous product thereof
JPS61136605A (en) Joining method of sintered hard material and metallic material
JP2864391B2 (en) Hypereutectic Al-Si alloy composite material and method for producing the same
JP4178691B2 (en) Low friction ceramics and manufacturing method thereof
JPS63134565A (en) Diamond dintered body and manufacture
JPS63103039A (en) Manufacture of metal-base composite material
JP3358040B2 (en) Nozzle for continuous casting
JPH08176704A (en) Production of in situ al and mg composite material