JPS63103039A - Manufacture of metal-base composite material - Google Patents

Manufacture of metal-base composite material

Info

Publication number
JPS63103039A
JPS63103039A JP24935486A JP24935486A JPS63103039A JP S63103039 A JPS63103039 A JP S63103039A JP 24935486 A JP24935486 A JP 24935486A JP 24935486 A JP24935486 A JP 24935486A JP S63103039 A JPS63103039 A JP S63103039A
Authority
JP
Japan
Prior art keywords
metal
composite material
solid lubricant
solid
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24935486A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsuki
浩 大槻
Kenichi Akutagawa
芥川 憲一
Jun Hasegawa
順 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24935486A priority Critical patent/JPS63103039A/en
Publication of JPS63103039A publication Critical patent/JPS63103039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite material in which solid lubricant is uniformly dispersed in a matrix metal, by forming a porous compact by the use of ceramics and either of solid-lubricant constituents and then by impregnating the above with a molten metal containing a matrix metal and the other solid-lubricant constituents. CONSTITUTION:The porous compact consisting of ceramics 4 and one or more kinds among sulfides 5, selenides, and tellurides, as either of solid-lubricant constituents, is placed in a metal mold 8, which is preheated up to about 500 deg.C. Subsequently, the molten metal prepared by melting the matrix metal 1 such as Al, etc., and the other solid-lubricant constituents such as Mo, W, etc., is poured into the above mold, which is pressurized, held under pressure until cooling is started, and then cooled, followed by drawing from the mold. At this time, the constituents such as W, sulfides, etc., are allowed to react to form tungsten disulfide 6, etc., as solid lubricant. It is preferable that the above operations are carried out under the condition kept airtight. In this way, the metal-base composite material suitable for sliding part material can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本と明は、繊維または粉末状のセラミックスと固体r4
滑剤をマトリックス金属中に分散した金属基複合材料の
製造方法に関するもので、この金属基複合材料は潤滑剤
を添加することなく摺動部の材料として巾広い用途を有
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to fiber or powdered ceramics and solid r4
This invention relates to a method for manufacturing a metal matrix composite material in which a lubricant is dispersed in a matrix metal, and this metal matrix composite material has a wide range of uses as a material for sliding parts without adding a lubricant.

[従来の技術] 従来より生産性が高い金属基複合材料の製造方法として
、繊維または粉末状のセラミックスからなる多孔質の成
形体に、マトリックス金属を溶融した金属溶湯を加圧含
浸させる方法が知られていた。さらに、この金属基複合
材料に自己潤滑性を持たせるには、材料内部に固体潤滑
剤を分散させるのが有効であることが知られている。例
えば特開昭61−23704号には焼結固体潤滑”部材
として、黒鉛粉および二硫化モリブデン粉を含有する金
属焼結体が開示されている。この金属焼結体は二硫化モ
リブデン粉を銅で被覆した複合粉末を加圧成形し、分解
アンモニアガス炉中で780℃で30分間の焼結して製
造されている。
[Prior Art] As a method for producing metal matrix composite materials with higher productivity than conventional methods, a method is known in which a porous molded body made of fiber or powdered ceramic is impregnated with a molten metal containing a matrix metal under pressure. It was getting worse. Furthermore, it is known that dispersing a solid lubricant within the material is effective in imparting self-lubricating properties to this metal matrix composite material. For example, JP-A-61-23704 discloses a metal sintered body containing graphite powder and molybdenum disulfide powder as a sintered solid lubricant member. Composite powder coated with is pressure-molded and sintered at 780° C. for 30 minutes in a decomposed ammonia gas furnace.

[発明によって解決される問題点] 前記従来方法は非酸化雰囲気中での焼結のため時間がか
かり生産性が悪くなる。また固体潤滑剤が高温時に酸化
分解を起すため非酸化雰囲気を必要とし繁雑な工程を必
要とするという問題点を有する。
[Problems to be Solved by the Invention] The conventional method is sintered in a non-oxidizing atmosphere, which takes time and reduces productivity. Another problem is that solid lubricants undergo oxidative decomposition at high temperatures, requiring a non-oxidizing atmosphere and requiring complicated processes.

本発明の目的は、上記した非酸化性雰囲気中での焼結を
行うことを必要とせず、マトリックス金属内に固体潤滑
剤が均一に分散した金属基複合材料を製造することであ
る。
An object of the present invention is to produce a metal matrix composite material in which a solid lubricant is uniformly dispersed within a matrix metal without requiring sintering in the non-oxidizing atmosphere described above.

[問題点を解決するための手段] 本発明の金l1i1基複合材料の製造方法は、繊維また
は粉末状のセラミックスと固体潤滑剤の構成成分である
硫化物、セレン化物、テルル化物の少な(とも1種から
なる一方の固体潤滑剤構成成分とで多孔質の成形体を形
成する成形体形成工程と、得られた該成形体にマトリッ
クスを形成するマトリックス金属とモリブデン、タング
ステンの少なくとも1種からなる他方の固体潤滑剤構成
成分を溶融した金属溶湯を含浸させ該成形体中の該一方
の国体潤滑剤構成成分と該他方の固体潤滑剤構成成分と
を反応させ目的の固体潤滑剤を得るとともに冷却し該マ
トリックス金属中に該セラミックおよび該固体潤滑剤が
分数した金属基複合材料を得る冷却工程とからなること
を特徴とするものである。
[Means for Solving the Problems] The method for producing a gold l1i single-base composite material of the present invention is characterized in that fibers or powdered ceramics and solid lubricants contain a small amount of sulfide, selenide, and telluride. A molded body forming step of forming a porous molded body with one solid lubricant component consisting of one solid lubricant component, and a matrix metal forming a matrix in the obtained molded body, and at least one of molybdenum and tungsten. A molten metal containing the other solid lubricant component is impregnated, and the one national lubricant component and the other solid lubricant component in the molded body are reacted to obtain the desired solid lubricant and cooled. and a cooling step to obtain a metal matrix composite material in which the ceramic and the solid lubricant are contained in the matrix metal.

本発明に係る成形体形成工程で形成する多孔質の成形体
は、!!帷または粉末のセラミックスで形成される。セ
ラミックスとしては、炭化珪素(S+ c ) N窒化
珪素(Si3Na)、酸化アルミニラム(Adz 03
 ) 、ホウ化チタン(TiB2>、リン化チタン(T
iP)、チタン酸カリウム等のウィスカ、炭素繊維、ア
ルミナm帷等の繊維を粉砕したミルドファイバ、炭化珪
素(SiC)、窒化珪素(S + 3 N 4 ) 、
酸化珪素(Sing)、酸化アルミニウム(A + 2
03 ) N窒化ホウ素(BN>等の粒状体の1種また
2種以上が使用できる。固体潤滑剤の構成成分は、固体
潤滑剤である二硫化モリブデン、二硫化タングステン、
セレン化モリブデン、セレン化タングステン、テルル化
モリブデン、テルル化タングステンの非金層元素である
硫黄、セレン、テルルを含有する化合物で、マトリック
ス中で上記の固体潤滑剤を形成する硫化物、セレン化合
物、テルル化合物の少なくとも1種を用いる。硫化物と
しては硫化亜鉛(ZnS)、硫化第一鉄(f−esz)
、硫化第二鉄(Fed) 、硫化第一チタ゛ン(T i
 S t ) 、硫化第二チタン(TizSx)、硫化
水銀(HgS)、硫化カルシウム(Cab)の少なくと
も1種が用いられ、また硫化物の代わりに同様にセレン
化物、テルル化物を使用できる。多孔質の成形体を形成
するには、マトリックス金属に対する要求量のセラミッ
クと適当量の硫化物、セレン化物、テルル化物の少なく
とも1種を混合撹拌したのち、加圧成形によって得られ
る。
The porous molded body formed in the molded body forming process according to the present invention is! ! Made of cloth or powdered ceramics. Ceramics include silicon carbide (S+c)N silicon nitride (Si3Na), aluminum oxide (Adz 03
), titanium boride (TiB2>, titanium phosphide (T
iP), whiskers such as potassium titanate, milled fibers obtained by crushing fibers such as carbon fiber, alumina m-thread, silicon carbide (SiC), silicon nitride (S + 3 N 4 ),
Silicon oxide (Sing), aluminum oxide (A + 2
03) One or more types of granular materials such as N boron nitride (BN>) can be used.The components of the solid lubricant include solid lubricants such as molybdenum disulfide, tungsten disulfide,
Molybdenum selenide, tungsten selenide, molybdenum telluride, a compound containing sulfur, selenium, and tellurium, which are non-gold layer elements of tungsten telluride, sulfides and selenium compounds that form the above solid lubricant in the matrix, At least one type of tellurium compound is used. Sulfides include zinc sulfide (ZnS) and ferrous sulfide (f-esz).
, ferric sulfide (Fed), titanium sulfide (T i
At least one of S t ), titanium sulfide (TizSx), mercury sulfide (HgS), and calcium sulfide (Cab) is used, and selenide and telluride can be similarly used in place of sulfide. In order to form a porous molded body, a required amount of ceramic for the matrix metal and an appropriate amount of at least one of sulfide, selenide, and telluride are mixed and stirred, and then pressure molded.

使用するセラミックスの形状は繊維状の場合は直径0.
05〜1.5μ、長さ10〜200μをミドルファイバ
ーは直径7μ、平均長さ180μを用い粒状物で粒径2
00μ以下のものを使用する。また硫化物粉末は粒径2
00μ以下である。
When the shape of the ceramic used is fibrous, the diameter is 0.
The middle fiber has a diameter of 7μ and an average length of 180μ, and the granular material has a particle size of 2.
Use one with a diameter of 00μ or less. In addition, the sulfide powder has a particle size of 2
00μ or less.

含浸冷却工程とは、該多孔質成形体に金属溶湯を含瞬冷
却し該マトリックス金属を固化させる工程で溶湯鋳造法
が用いられる。溶湯鋳造法は、成形型内に多孔質成形体
を配置しこの成形型内にマトリックス金属溶湯を加圧下
にて注入含浸冷fA凝固させる方法である。加圧手段は
ガス、プランジャ、パンチ等を種々選択できる。加圧力
は500kQ10102〜1000ko/cm”で行う
The impregnation cooling process is a process in which the porous molded body is impregnated with molten metal and cooled to solidify the matrix metal, and a molten metal casting method is used. The molten metal casting method is a method in which a porous molded body is placed in a mold, and a matrix metal molten metal is injected under pressure into the mold and impregnated with cold fA solidification. Various pressurizing means can be selected, such as gas, plunger, punch, etc. The pressing force is 500kQ10102 to 1000ko/cm''.

マトリックス金属の冷却工程では、加圧下、高温で空気
と遮断された状態で多孔質成形体中に分散した硫化物と
金属溶湯に溶融した固体潤滑剤の構成成分とが接触し反
応して目的の固体潤滑剤を生成し系内に分散した状態で
固化する。
In the cooling process of the matrix metal, the sulfide dispersed in the porous molded body contacts and reacts with the constituent components of the solid lubricant melted in the molten metal under pressure, high temperature, and isolated from air. A solid lubricant is produced and solidified in a dispersed state within the system.

マトリックスを形成するマトリックス金属は、アルミニ
ウム、亜鉛、銅、マグネシウムの少なくとも1種からな
る。従って合金であってもよい。
The matrix metal forming the matrix is made of at least one of aluminum, zinc, copper, and magnesium. Therefore, it may be an alloy.

マトリックス金属中に溶融する他方の固体潤滑剤構成成
分は、金属元素で、モリブデン、タングステンの少なく
とも1種からなる。この他方の固体潤滑剤構成成分を該
マトリックス金属に溶融して金属溶湯とする。この金属
溶湯はるつぼ内で液相単相とじ溶湯内の固体潤滑剤構成
成分のタングステンまたはモリブデンが、多孔質成形体
中の他の固体潤滑剤構成成分の硫化物と接触してすみや
かに反応を進行させる。以下にマトリックス金属がアル
ミニウムで固体潤滑剤としてWSgが分散した金属基複
合材料を製造する場合を例にあげて説明する。第7図に
は、A+−W合金の状態図を示す。高温で液相単相とな
っている合金溶湯が、温度が低下し液相1i1以下にな
ると、δ相の固相が析出し始める。この同相の析出は、
熱容量の大きいセラミックや硫化物の周囲から起るため
セラミックスの周囲に析出したδ相中の固体、1’、l
 l剤構成成分は目的の反応に関与せず無駄に消費され
ることになり固体潤滑剤の歩留りが低下する。従って溶
湯温度は液相線より十分高いことが必要である。
The other solid lubricant component that is melted into the matrix metal is a metal element and is composed of at least one of molybdenum and tungsten. This other solid lubricant component is melted into the matrix metal to form a molten metal. This molten metal is melted into a single liquid phase in a crucible, and the solid lubricant component tungsten or molybdenum in the molten metal contacts with the sulfide of other solid lubricant components in the porous molded body and reacts quickly. Let it proceed. The following is an example of manufacturing a metal matrix composite material in which the matrix metal is aluminum and WSg is dispersed as a solid lubricant. FIG. 7 shows a phase diagram of the A+-W alloy. When the temperature of the molten alloy, which is a single liquid phase at a high temperature, decreases to below the liquid phase 1i1, a solid phase of δ phase begins to precipitate. This in-phase precipitation is
Solids in the δ phase precipitated around ceramics, 1', l because they originate from around ceramics and sulfides with large heat capacities.
The l-agent constituents do not take part in the intended reaction and are wasted, resulting in a decrease in the yield of the solid lubricant. Therefore, the temperature of the molten metal must be sufficiently higher than the liquidus line.

一方アルミニウム合金溶湯は1000℃以上となると酸
化が著しくなるため溶湯温度は1000〜900℃が好
ましい。従って合金中のタングステン量は10重囚%が
限度となり、よって生成する二硫化タングステン量は体
積含有率として5.5%が上限となる。一方加圧成形さ
れた多孔質成形体は、上記の如く熱容量が大きいため反
応を十分に進行させるために予熱しておくことが好まし
い。
On the other hand, the temperature of the molten aluminum alloy is preferably 1000 to 900°C because oxidation becomes significant when the temperature exceeds 1000°C. Therefore, the upper limit of the amount of tungsten in the alloy is 10%, and therefore the upper limit of the amount of tungsten disulfide produced is 5.5% in terms of volume content. On the other hand, since the pressure-molded porous molded body has a large heat capacity as described above, it is preferable to preheat it in order to allow the reaction to proceed sufficiently.

多孔質成形体は、型に収容され加圧下に金属溶湯が注入
含浸される。注入完了後加圧下で放冷される。その間外
界と遮断され固体潤滑構成成分同志が接触し、硫化物と
してZnSを用いた場合、次式の反応が進行してマトリ
ックス中に均一に分散する。
The porous molded body is housed in a mold and molten metal is injected and impregnated under pressure. After the injection is completed, it is left to cool under pressure. During this time, the solid lubricant components are isolated from the outside world and come into contact with each other, and when ZnS is used as the sulfide, the following reaction proceeds and is uniformly dispersed in the matrix.

W+22nS−+WS2+22n この含浸冷却工程により固体潤滑剤が分散した金属基複
合材料が1りられる。
W+22nS-+WS2+22n A metal matrix composite material in which a solid lubricant is dispersed is obtained through this impregnation cooling process.

〔実施例] 第1図より第6図にわたる工程図に基づいて実施例を説
明する。
[Example] An example will be described based on process diagrams from FIG. 1 to FIG. 6.

マトリックス金属1にはA l−5wt%W(アルミニ
ウムとタンゲス、テン)の合金の溶湯で、黒鉛るつぼで
約950℃に加熱された液相単相とする(第1図)。金
型8には、炭化珪素(SiC)ウィスカ(直径0.05
〜1.5μ、長さ10〜200μ)を金属基複合材料に
対する体積含有率が20%のセラミックス4と、硫化物
5として硫化亜鉛粉体(粒径150μ)を金属基複合材
料に対する体積含有率が3%となるようにそれぞれ秤量
しこれらを撹拌混合して加圧成形した多孔質成形体(第
3図)を収納し約500℃に予熱する(第2図)。これ
に前記のマトリックス金属溶湯を注ぎ込んだ(第4図)
後すみやかにプランジャ9により500kQ/ct2の
圧力で加圧し、十分冷却するまで加圧を保持(第5図)
したのち加圧を除き脱型する。この注湯および加圧保持
中に合金溶湯のもつ熱量を利用して、合金中のタングス
テンと硫化亜鉛との反応が起り、固体潤滑剤二硫化タン
グステン6を形成する(第6図)。また金型内は注湯の
際、空気と遮断されるため生成した二硫化タングステン
の酸化分解は起らない。この方法により固体潤滑剤二硫
化タングステンを体積含有率で2%含有する金属基複合
材料を製造した。
The matrix metal 1 is a molten metal of an alloy of Al-5wt%W (aluminum and tungsten) heated to about 950° C. in a graphite crucible to form a single liquid phase (FIG. 1). The mold 8 includes silicon carbide (SiC) whiskers (diameter 0.05
~1.5μ, length 10~200μ) with a volume content of 20% in the metal matrix composite material 4, and as sulfide 5 zinc sulfide powder (particle size 150μ) in the volume content of the metal matrix composite material A porous molded body (Fig. 3) obtained by stirring and mixing the mixture and press-molding the porous molded products (Fig. 3) is stored and preheated to about 500°C (Fig. 2). The above-mentioned molten matrix metal was poured into this (Figure 4)
Immediately after that, pressurize with plunger 9 at a pressure of 500 kQ/ct2 and maintain the pressurization until it is sufficiently cooled (Fig. 5).
After that, the pressure is removed and the mold is removed. During this pouring and pressurization, the heat of the molten alloy is utilized to cause a reaction between tungsten in the alloy and zinc sulfide to form solid lubricant tungsten disulfide 6 (FIG. 6). Furthermore, since the inside of the mold is isolated from air during pouring, oxidative decomposition of the generated tungsten disulfide does not occur. By this method, a metal matrix composite material containing 2% by volume of the solid lubricant tungsten disulfide was manufactured.

二硫化タングステンの存在はX線回折法により確認し、
EPMAで定量を行い2%を確認した。
The presence of tungsten disulfide was confirmed by X-ray diffraction method,
Quantification was performed using EPMA and 2% was confirmed.

他の実施例として溶湯にA I −3wt%MO合金を
用い上側と同様に金属基複合材料に対する体積含有率で
20%、硫化亜鉛粉末を体積含有率で3%分散した多孔
質成形体に注湯加圧し二硫化モζ」アゾンを体積含有率
で2%含有した金属基複合材料を製造した。
As another example, an AI-3wt% MO alloy was used as the molten metal, and as in the case above, it was poured into a porous molded body in which the metal matrix composite material had a volume content of 20% and zinc sulfide powder was dispersed at a volume content of 3%. A metal matrix composite material containing 2% by volume of disulfide molybdenum azone was produced by pressurizing hot water.

[効果] 本発明の製造方法によって得た金kIJk基複合材料と
従来法によるものとの製造時間および潤滑性を摩擦特性
により比較したのが第1表である。N01は炭化珪素(
SiC)ウィスカのみ体積含有率で20%含有し固体潤
滑剤構成成分を添加せず水沫で製造した。NO2は二硫
化タングステンを体積含有率で2%および炭化珪素ウィ
スカを体積含有率で20%残りA1粉末の混合粉を約5
00℃で非酸化雰囲気で焼結したものである。No3は
水沫で製造した上記実施のものである。
[Effects] Table 1 compares the manufacturing time and lubricity of the gold-kIJk-based composite material obtained by the manufacturing method of the present invention and that by the conventional method in terms of friction properties. N01 is silicon carbide (
It contained only SiC (SiC) whiskers at a volumetric content of 20% and was produced in the form of water droplets without adding any solid lubricant components. NO2 is a mixture of tungsten disulfide with a volume content of 2% and silicon carbide whiskers with a volume content of 20% and the remainder A1 powder of about 5%.
It was sintered at 00°C in a non-oxidizing atmosphere. No. 3 is the above-mentioned product manufactured using water droplets.

水沫で製造したものは、焼結法の様な非酸化雰囲気を必
要とせず、また製造時間も短時間となり、さらに分散し
た固体潤滑剤の粒子径が小さくなるため摩擦係数が焼結
法より小さくなっている。
Products manufactured using water droplets do not require a non-oxidizing atmosphere unlike the sintering method, the manufacturing time is shorter, and the particle size of the dispersed solid lubricant is smaller, so the coefficient of friction is smaller than that of the sintering method. It has become.

第  1  表 第  2  表 なお実験条件は、相手材は鋳鉄(FCD40)で面接触
、周速2m/Sec、荷11kg/c1、無潤滑である
Table 1 Table 2 The experimental conditions were: the mating material was cast iron (FCD40), surface contact, peripheral speed 2 m/Sec, load 11 kg/c1, and no lubrication.

第2表は水沫で製造した金属基複合材料の二硫化タング
ステン含有量を種々変化させたものの摩擦係数を測定し
た結果である。
Table 2 shows the results of measuring the friction coefficients of metal matrix composite materials produced using water droplets with various tungsten disulfide contents.

固体潤滑剤WS2の含有量が体積含有率で1%以上のと
ぎ潤滑効果があることを示している。
This shows that the solid lubricant WS2 has a lubrication effect with a volume content of 1% or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はるつぼ、内の金属溶湯であり、第2図は多孔性
成形体を金型内に配置した状態であり、第3図は多孔性
成形体の栴造の拡大模式図で、第4図は金属溶湯の注入
工程であり、第5図は含浸冷却工程であり、第6図は本
発明金属基複合材料の拡大模式図であり、第7図はアル
ミニウムータングステン合金の状態図である。 1・・・A I −W合金溶湯  2・・・多孔質成形
体3・・・金属基複合材料   4・・・セラミックス
5・・・硫化物       6・・・WSx7・・・
るつぼ       8・・・金型9・・・プランジャ 10・・・マトリックス金属 特許出願人   日本電装株式会社 代理人    弁理士 大川 宏 同     弁理士 丸山明夫 第4図 第5図 $7図 At         1o         201
OW
Figure 1 shows the molten metal inside the crucible, Figure 2 shows the porous molded body placed in the mold, and Figure 3 is an enlarged schematic diagram of the porous molded body. Figure 4 shows the injection process of molten metal, Figure 5 shows the impregnation cooling process, Figure 6 is an enlarged schematic diagram of the metal matrix composite material of the present invention, and Figure 7 is a phase diagram of the aluminum-tungsten alloy. be. 1...A I-W alloy molten metal 2...Porous molded body 3...Metal matrix composite material 4...Ceramics 5...Sulfide 6...WSx7...
Crucible 8...Mold 9...Plunger 10...Matrix metal Patent applicant Nippondenso Co., Ltd. Agent Patent attorney Hirodo Okawa Patent attorney Akio Maruyama Figure 4 Figure 5 Figure $7 At 1o 201
OW

Claims (5)

【特許請求の範囲】[Claims] (1)繊維または粉末状のセラミックスと固体潤滑剤の
構成成分である硫化物、セレン化物、テルル化部の少な
くとも1種からなる一方の固体潤滑剤構成成分とで多孔
質の成形体を形成する成型体形成工程、 得られた該成形体にマトリックスを形成するマトリック
ス金属とモリブデン、タングステンの少なくとも1種か
らなる他方の固体潤滑剤構成成分とを溶融した金属溶湯
を含浸させ該成形体中の該一方の固体潤滑剤構成成分と
該他方の固体潤滑剤構成成分とを反応させ目的の固体潤
滑剤を得るとともに冷却し該マトリックス金属中に該セ
ラミックスおよび該固体潤滑剤が分散した金属基複合材
料を得る含浸冷却工程とからなることを特徴とする金属
基複合材料の製造方法。
(1) Forming a porous molded body with fiber or powdered ceramics and one of the solid lubricant constituents consisting of at least one of sulfides, selenides, and telluride moieties, which are constituent constituents of the solid lubricant. Molded body forming step, impregnating the obtained molded body with a molten metal in which a matrix metal forming a matrix and the other solid lubricant component consisting of at least one of molybdenum and tungsten are melted. One of the solid lubricant components is reacted with the other solid lubricant component to obtain the desired solid lubricant and cooled to form a metal matrix composite material in which the ceramic and the solid lubricant are dispersed in the matrix metal. 1. A method for producing a metal matrix composite material, comprising an impregnating and cooling step.
(2)セラミックスは、SiC、Si_3N_4、Al
_2O_3、TiB_2、TiP、チタン酸カリウムの
ウィスカ、炭素繊維、アルミナ繊維を粉砕したミルドフ
ァイバー、SiC、Si_3N_4、SiO_2、Al
_2O_3、BNの粒子の1種または2種以上からなる
特許請求の範囲第1項記載の金属基複合材料の製造方法
(2) Ceramics include SiC, Si_3N_4, Al
_2O_3, TiB_2, TiP, potassium titanate whisker, carbon fiber, milled fiber made from crushed alumina fiber, SiC, Si_3N_4, SiO_2, Al
The method for producing a metal matrix composite material according to claim 1, comprising one or more types of particles of _2O_3 and BN.
(3)硫化物は、ZnS、FeS_2、FeS、TiS
_2、Ti_2S_3、HgS、CaSの1種からなる
特許請求の範囲第1項記載の金属基複合材料の製造方法
(3) Sulfides include ZnS, FeS_2, FeS, TiS
_2, Ti_2S_3, HgS, and CaS. The method for producing a metal matrix composite material according to claim 1.
(4)マトリックス金属はアルミニウム、亜鉛、銅、マ
グネシウムの少なくとも1種からなる特許請求の範囲第
1項記載の金属基複合材料の製造方法。
(4) The method for producing a metal matrix composite material according to claim 1, wherein the matrix metal is at least one of aluminum, zinc, copper, and magnesium.
(5)含浸冷却工程は金属溶湯を加圧下に含浸後冷却さ
れる特許請求の範囲第1項記載の金属基複合材料の製造
方法。
(5) The method for manufacturing a metal matrix composite material according to claim 1, wherein in the impregnation cooling step, the molten metal is impregnated under pressure and then cooled.
JP24935486A 1986-10-20 1986-10-20 Manufacture of metal-base composite material Pending JPS63103039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24935486A JPS63103039A (en) 1986-10-20 1986-10-20 Manufacture of metal-base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24935486A JPS63103039A (en) 1986-10-20 1986-10-20 Manufacture of metal-base composite material

Publications (1)

Publication Number Publication Date
JPS63103039A true JPS63103039A (en) 1988-05-07

Family

ID=17191779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24935486A Pending JPS63103039A (en) 1986-10-20 1986-10-20 Manufacture of metal-base composite material

Country Status (1)

Country Link
JP (1) JPS63103039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013078A1 (en) * 2014-07-24 2016-01-28 日清紡ブレーキ株式会社 Friction material
CN111979454A (en) * 2020-07-02 2020-11-24 俞光锋 Tungsten-aluminum alloy and preparation method thereof
CN112961723A (en) * 2021-02-26 2021-06-15 陕西科技大学 MXene-based loaded COFs/liquid metal-based lubricating additive, and preparation method, application and composite material thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013078A1 (en) * 2014-07-24 2016-01-28 日清紡ブレーキ株式会社 Friction material
CN106574680A (en) * 2014-07-24 2017-04-19 日清纺制动器株式会社 Friction material
CN111979454A (en) * 2020-07-02 2020-11-24 俞光锋 Tungsten-aluminum alloy and preparation method thereof
CN111979454B (en) * 2020-07-02 2021-04-16 陕西普德尔新材料科技有限公司 Tungsten-aluminum alloy and preparation method thereof
CN112961723A (en) * 2021-02-26 2021-06-15 陕西科技大学 MXene-based loaded COFs/liquid metal-based lubricating additive, and preparation method, application and composite material thereof
CN112961723B (en) * 2021-02-26 2022-07-01 陕西科技大学 MXene @ COFs/liquid metal-based lubricating additive, and preparation method, application and composite material thereof

Similar Documents

Publication Publication Date Title
US4800065A (en) Process for making ceramic-ceramic composites and products thereof
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US4772452A (en) Process for forming metal-second phase composites utilizing compound starting materials
US4985202A (en) Process for forming porous metal-second phase composites
JPS6383239A (en) Production of metal-ceramic composite
US5791397A (en) Processes for producing Mg-based composite materials
US4917964A (en) Porous metal-second phase composites
US4943413A (en) Process for producing an aluminum/magnesium alloy
KR20000071110A (en) Method for producing ceramic-metal composite bodies, ceramic-metal composite bodies and their use
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
US3326676A (en) Method of producing coherent bodies of metallic particles
EP0380973B1 (en) Reinforced materials
JPS63103039A (en) Manufacture of metal-base composite material
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JP4352472B2 (en) Magnesium matrix composite
US3189444A (en) Metallic composition and method of making
JP3777878B2 (en) Method for producing metal matrix composite material
JPH0633164A (en) Production of nitride dispersed al alloy member
US20030145685A1 (en) Process for producing titanium carbide, titanium nitride, or tungsten carbide hardened materials
Liuzhang et al. Fabrication and microstructure of in situ Al2O3 decomposed from Al2 (SO4) 3-reinforced aluminum matrix composites
EP0324799B1 (en) Isothermal process for forming porous metal-second phase composites and porous product thereof
US4735922A (en) Porous refractory hard metal compositions and method of forming same
JPS61136642A (en) Production of alloy by oxidation-reduction reaction
JPH09324229A (en) Production of titanium carbide particle dispersion type metal-matrix composite material
JP4048581B2 (en) Method for producing aluminum matrix composite material