JPS60138029A - Production of metallic powder molding - Google Patents

Production of metallic powder molding

Info

Publication number
JPS60138029A
JPS60138029A JP58246841A JP24684183A JPS60138029A JP S60138029 A JPS60138029 A JP S60138029A JP 58246841 A JP58246841 A JP 58246841A JP 24684183 A JP24684183 A JP 24684183A JP S60138029 A JPS60138029 A JP S60138029A
Authority
JP
Japan
Prior art keywords
alloy
powder
compsn
mixture
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58246841A
Other languages
Japanese (ja)
Inventor
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58246841A priority Critical patent/JPS60138029A/en
Publication of JPS60138029A publication Critical patent/JPS60138029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enable production of a powder molding consisting of an Ni-Ti alloy having high precision in an assembly grade by adding powder of Ni or Ti at a specific value or below according to the compsn. of the Ni-Ti alloy to the powder of said alloy and molding the mixture under pressure. CONSTITUTION:Ni pellets and sponge Ti are mixed and the mixture is melted in a gaseous Ar atmosphere in a plasma melting furnace in the stage of producing an Ni-Ti shape memory alloy contg. 56% Ni and 44% Ti. The molten metal is dropped onto a disc under high-speed rotation and is thus scattered, by which the powder of the Ni-Ti alloy is produced. The compsn. of the powder alloy is analyzed and the insufficient component in the compsn. deviated from the above- mentioned compsn. is added in the form of hydride to the alloy in a <=10% range to adjust the components. The alloy is directly rolled with rolling rolls, by which the plate-shaped molding of the Ni-Ti alloy having high precision with respect to the target compsn. and having an excellent shape memory characteristic is produced.

Description

【発明の詳細な説明】 本発明は金属組成の精密度を高めた金属粉末成形体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal powder compact with improved precision of metal composition.

例えば形状記憶合金では該合金を構成する金属成分の組
成の若干の相違で変態温度が大きく変化する。このよう
な場合には合金を構成する金属組成の精密度を高めるこ
とが必要であることは勿論である。そして例えば形状記
憶合金には硬度が大で冷間加工性や機械的加工性に劣る
ものが多く、このような場合には金属粉末に圧力を及は
して成形を行いその後焼結して直接目的形状を得る粉末
冶金法が賞月される。
For example, in shape memory alloys, the transformation temperature changes greatly depending on slight differences in the composition of the metal components constituting the alloy. In such a case, it is needless to say that it is necessary to improve the precision of the metal composition constituting the alloy. For example, many shape memory alloys have high hardness and poor cold workability and mechanical workability. The powder metallurgy method to obtain the desired shape was awarded.

従来、粉末冶金法において所定の金属組成の成形体を得
るには該成形体を構成する個々の金属成分の粉末を所定
の比率で混合したものを成形材料とする方法、該成形体
を構成する金属成分の二種以上の合金の粉末の二種以上
を所定の比率で混合したものを成形材料とする方法が提
供されている。
Conventionally, in the powder metallurgy method, in order to obtain a molded body with a predetermined metal composition, a method is used in which a mixture of powders of individual metal components constituting the molded body in a predetermined ratio is used as a molding material, and a method is used to form the molded body. A method has been proposed in which a molding material is prepared by mixing two or more kinds of alloy powders of two or more kinds of metal components in a predetermined ratio.

しかし前者は成形後の焼結の際に金属粉末相互の滲透拡
散が起りにくく均一な組成の製品が得られにくいこと、
およびチタンのような活性度の大きい金属では不活性雰
囲気で焼結を行う必要があること等の不具合を有し、後
者は任意の組成の成形体を得るためには種々の組成の合
金を作成しておく必要があると言う不具合がある。更に
所定の組成の合金を作成してこれを粉末化し成形材料と
する方法も考えられるが、溶解法による合金の作成では
最小限組成に0.1%の誤差が存在することは避けられ
ず、しかしながらチタン−ニッケル合金の場合には上記
0.1%の誤差は実に変態温度として15℃の誤差とな
る。
However, with the former, it is difficult to obtain a product with a uniform composition because the metal powders are difficult to penetrate and diffuse into each other during sintering after forming.
Also, highly active metals such as titanium have disadvantages such as the need to sinter in an inert atmosphere, and the latter requires the creation of alloys of various compositions in order to obtain compacts of arbitrary compositions. There is a problem that requires you to do this. Furthermore, it is possible to create an alloy with a predetermined composition and powder it to use as a molding material, but when creating an alloy by the melting method, it is inevitable that there will be a minimum error of 0.1% in the composition. However, in the case of a titanium-nickel alloy, the above-mentioned error of 0.1% actually results in an error of 15° C. in the transformation temperature.

本発明は上記従来の欠点を改良して金属組成の精密度の
高い均一な金属粉末成形体を得ることを目的とし、二種
以上の金属からなる合金粉末の一種もしくは二種以上の
混合物に更に該一種もしくは二種以上の合金粉末を構成
する金属成分を与える原料の一種もしくは二種以上を添
加した混合物に圧力を及ぼして成形を行うことを骨子と
する。
The present invention aims to improve the above-mentioned conventional drawbacks and obtain a uniform metal powder molded body with high precision of metal composition. The gist is to apply pressure to a mixture to which one or more raw materials providing the metal components constituting the one or more alloy powders are subjected to molding.

本発明を以下に詳細に説明する。The invention will be explained in detail below.

ジルコニウム、コバルト、クロム、タンタル、バナジウ
ム、モリブデン、ニオブ、パラジウム、白金、マンガン
、鉄等の第三成分の一種もしくは二種以上を含有せしめ
た合金、金−カドミウム合金。
An alloy containing one or more third components such as zirconium, cobalt, chromium, tantalum, vanadium, molybdenum, niobium, palladium, platinum, manganese, iron, etc., and a gold-cadmium alloy.

銀−カドミウム合金9合−銀−カドミウム合金。Silver-Cadmium Alloy 9-Silver-Cadmium Alloy.

銅−アルミニウム−ニッケル合金、銅−亜鉛合金等すべ
ての種類の合金を含むものである。上記例示は本発明を
限定するものではない。該合金は一種もしくは所定の比
率で二種以上混合した混合物として用いられ、成形物の
所定の組成に出来るだけ近い金属組成に々るように調合
するb例えばチタン−ニッケル合金の場合には更に添加
するニッケルおよび/またはチタン原料の添加量がニッ
ケμおよび/またはチタンとして10重量%を越えない
程度にまで近い組成のものとすることが均一な組成の製
品を得る上には望ましい。
It includes all types of alloys such as copper-aluminum-nickel alloy and copper-zinc alloy. The above examples are not intended to limit the invention. The alloy is used either as a single type or as a mixture of two or more types in a predetermined ratio, and is mixed so that the metal composition is as close as possible to the predetermined composition of the molded product.For example, in the case of a titanium-nickel alloy, further addition In order to obtain a product with a uniform composition, it is desirable that the amount of nickel and/or titanium raw materials added does not exceed 10% by weight as nickel μ and/or titanium.

上記合金もしくは合金混合物に添加する原料としては該
合金もしくは合金混合物を構成する金属成分の単体、あ
るいは焼結によって該金属成分を与える化合物がある。
The raw materials added to the above alloy or alloy mixture include a single metal component constituting the alloy or alloy mixture, or a compound that provides the metal component by sintering.

該化合物としては所定の金属の酸化物、塩化物、鉱酸塩
等である。これら化合物は還元雰囲気で焼結すれば夫々
の金属にまで還元される。更に望ましい化合物としては
金属水素化物がある。金属水素化物は焼結の際に水素を
発生し還元雰囲気を形成して不都合な金属酸化を防止し
、かつ上記化合物の還元に関与する。該金属水素化物を
例示すればパラジウム水素化物、チタン水素化物等であ
る。上記例示は本発明を限定するものではない。
Such compounds include oxides, chlorides, mineral acid salts, etc. of certain metals. These compounds are reduced to their respective metals by sintering in a reducing atmosphere. More desirable compounds include metal hydrides. The metal hydride generates hydrogen during sintering, forms a reducing atmosphere, prevents undesirable metal oxidation, and participates in the reduction of the compounds mentioned above. Examples of the metal hydride include palladium hydride and titanium hydride. The above examples are not intended to limit the invention.

上記合金もしくは合金混合物に更に上記原料を混合した
混合物からなる成形材料には所望なれば更にポリビニル
ア〃コーμ、アルギン酸ソーダ。
The molding material made of the above-mentioned alloy or alloy mixture further mixed with the above-mentioned raw materials may further contain polyvinyl alcohol μ and sodium alginate, if desired.

力μポキシメチルセロース、メチルセルロース、エチル
セルロース、メトキシセルロース、エトキシセルロース
、カゼイン、グルテン、アラビアゴム。
Poxymethylcellose, methylcellulose, ethylcellulose, methoxycellulose, ethoxycellulose, casein, gluten, gum arabic.

澱粉、変性澱粉、アクリμ樹脂、7−チレン樹脂。Starch, modified starch, acrylic μ resin, 7-tyrene resin.

酢酸ビニル樹脂、スチレン−ブタジェン共重合体。Vinyl acetate resin, styrene-butadiene copolymer.

フェノール樹脂、尿素樹脂、メラミン樹脂、ウレタン樹
脂の結着剤の一種もしくは二種以上、脂肪酸塩、シリコ
ンオイル、グリセリン等の潤滑性付与剤等の第三成分を
添加してもよい。上記例示は本発明を限定するものでは
ない。
A third component such as one or more binders such as phenol resin, urea resin, melamine resin, and urethane resin, a lubricating agent such as fatty acid salt, silicone oil, and glycerin may be added. The above examples are not intended to limit the invention.

かくして調合された上記成形材料は例えば金型に充填さ
れてプレス成形されるか圧延ローμによシ圧延されるか
等して圧力を及ぼされて所定の形状に成形され、所望な
れば研削等の後加工を経た後焼結され、その後所望なれ
ば更に研削等の後加工を施して製品とする。
The above-mentioned molding material thus prepared is pressed into a predetermined shape by, for example, being filled into a mold and press-molded or rolled with a rolling mill μ, and if desired, subjected to grinding, etc. After undergoing post-processing, it is sintered, and then, if desired, further post-processing such as grinding is performed to produce a product.

本発明は上記構成を有するから所定の組成の成形物を得
るために種々の組成の合金を作成する必要がなくなシ、
最も簡単には只一種類の合金に上記原料を添加して所定
の組成に微調整することも可能であシ、更にチタン−ニ
ッケル合金ではその粉末は球状に近い形状を有しておシ
粉末相互の絡み合いが生じにくく、したがって成形性が
低いものでありホッtプレスによる成形法が採用されて
いたが本発明によれば、上記チタン−ニッケル合金に更
にチタンおよび/またはニッケルを与える原料を添加し
た結果組成の微調整以外に成形性の向上と言う予想外の
効果が得られたのである。
Since the present invention has the above configuration, there is no need to create alloys with various compositions in order to obtain a molded product with a predetermined composition.
Most simply, it is possible to finely adjust the composition to a desired composition by adding the above raw materials to just one type of alloy, and in the case of titanium-nickel alloys, the powder has a nearly spherical shape. Since mutual entanglement is difficult to occur and therefore formability is low, hot pressing has been used as a forming method, but according to the present invention, a raw material that provides titanium and/or nickel is further added to the titanium-nickel alloy. As a result, in addition to fine-tuning the composition, the unexpected effect of improving moldability was obtained.

以下に本発明を更に具体的に説明するための実施例につ
いて述べる。
Examples for explaining the present invention in more detail will be described below.

実施例1゜ ニッケルが56重量%、チタンが44重量%となるよう
にベレット状ニッケルおよびスポンジ状チタンをそれぞ
れ11.2kq 、 8.8kgで秤量し、これをプラ
ズマ溶解炉によシ出力220kw/atmのアルゴンガ
ス雰囲気下で溶解して径110ar、高さ300順で重
量20#の鋳塊を得た。との鋳塊を切断して約5kqの
材料を得、これを高周波誘導炉に入れアルゴンガヌ雰囲
気中で溶解し、高速で回転している円板上に注湯して、
遠心力により飛散させてチタン−ニラグル合金の粉末を
得た。合金粉末を分析した結果、ニッケ/l156.2
96であった。
Example 1 Weighed 11.2 kq and 8.8 kg of pellet-like nickel and sponge-like titanium, respectively, so that the nickel content was 56% by weight and the titanium content was 44% by weight, and these were put into a plasma melting furnace with a power output of 220kw/. The ingots were melted in an ATM argon gas atmosphere to obtain ingots with a diameter of 110 ar, a height of 300 ar, and a weight of 20 #. Approximately 5 kq of material was obtained by cutting the ingot, which was placed in a high-frequency induction furnace and melted in an argon gas atmosphere, and poured onto a disk rotating at high speed.
It was dispersed by centrifugal force to obtain titanium-niraglu alloy powder. As a result of analyzing the alloy powder, nickel/l156.2
It was 96.

このチタン−ニッケル合金粉末を使用して変態温度(A
f)が50℃の薄板を作るためにチタン粉末1%を添加
混合し、→す←−=該混合物を直接圧延ロールに装入し
て連続的に圧延して0.5tX60wの板状成形体を得
た。該成形体は機械的強度が大でありこのままでも手で
持つことが出来、コイル状に巻き取ることもできた。
Using this titanium-nickel alloy powder, the transformation temperature (A
f) Add and mix 1% titanium powder to make a thin plate at 50°C, →su←−=The mixture is directly charged into a rolling roll and continuously rolled to make a 0.5t x 60w plate-shaped compact. I got it. The molded product had high mechanical strength and could be held in the hand as it was, and could also be wound into a coil.

このコイルを真空炉に入れ、1050℃で4時間の焼結
を行った後、冷間圧延によ、90.2tx60wの薄板
を得た。
This coil was placed in a vacuum furnace and sintered at 1050°C for 4 hours, followed by cold rolling to obtain a thin plate of 90.2t x 60w.

この薄板の変態温度を測定したところAf=52℃であ
シ、目標値に極めて近いものが得られた。
When the transformation temperature of this thin plate was measured, Af=52° C., which was extremely close to the target value.

特許出願人 大同特殊鋼株式会社Patent applicant: Daido Steel Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)二種以上の金属からなる合金粉末の一種もしくは
二種以上の混合物に更に該一種もしくは二種以上の合金
粉末を構成する金属成分を与える原料の一種もしくは二
種以上を添加した混合物に圧力を及ぼして成形を行うこ
とを特徴とする金属粉末成形体の製造方法
(1) A mixture in which one or two or more types of alloy powder consisting of two or more metals is further added with one or more types of raw materials that provide the metal components constituting the one or more types of alloy powder. A method for producing a metal powder compact, characterized by forming by applying pressure.
(2)該成形は混合物を直接圧延することKよって行わ
れる「特許請求の範囲(J)」に記載の金属粉末成形体
の製造方法
(2) The method for producing a metal powder compact according to claim (J), wherein the shaping is performed by directly rolling the mixture.
(3)該合金はニッケルとチタンを特徴とする特許請求
の範囲(1)および(2)」に記載の金属粉末成形体の
製造方法
(3) The method for producing a metal powder compact according to claims (1) and (2), wherein the alloy is characterized by nickel and titanium.
(4)該原料はニッケルおよびlまたはチタン成分を与
えるものであシ、ニッケルおよび/lたはチタンとして
添加量が混合物の10重量%を越えない1−特許請求の
範囲(3)」に記載の金属粉末成形体の製造方法
(4) The raw material provides nickel and/or titanium components, and the added amount of nickel and/or titanium does not exceed 10% by weight of the mixture as described in 1-Claim (3). Method for manufacturing a metal powder compact
(5)該原料の一部もしくは全部が金属水素化物である
「特許請求の範囲(1)」に記載の金属粉末成形体の製
造方法
(5) A method for producing a metal powder compact according to claim (1), wherein part or all of the raw material is a metal hydride.
JP58246841A 1983-12-27 1983-12-27 Production of metallic powder molding Pending JPS60138029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58246841A JPS60138029A (en) 1983-12-27 1983-12-27 Production of metallic powder molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58246841A JPS60138029A (en) 1983-12-27 1983-12-27 Production of metallic powder molding

Publications (1)

Publication Number Publication Date
JPS60138029A true JPS60138029A (en) 1985-07-22

Family

ID=17154495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58246841A Pending JPS60138029A (en) 1983-12-27 1983-12-27 Production of metallic powder molding

Country Status (1)

Country Link
JP (1) JPS60138029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121629A (en) * 1986-11-10 1988-05-25 Daido Steel Co Ltd Manufacture of shape memory alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121629A (en) * 1986-11-10 1988-05-25 Daido Steel Co Ltd Manufacture of shape memory alloy

Similar Documents

Publication Publication Date Title
US5754937A (en) Hi-density forming process
JP3952006B2 (en) Raw material powder for sintering or granulated powder for sintering and sintered body thereof
JP5535576B2 (en) Iron-based sintered alloy, method for producing the same, and iron-based sintered alloy member
US6066191A (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
JPH0689365B2 (en) Atomized prealloyed steel powder for powder metallurgy
GB1449978A (en) Refractory metal-containing bodies
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JPS60138029A (en) Production of metallic powder molding
US11759857B2 (en) Material obtained by compaction and densification of metallic powder(s)
CN108500276A (en) The method that metal oxide manufactures part
JPS62235458A (en) Method and composition improving corrosion resistance of stainless steel powder molded body
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPS631361B2 (en)
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH0142341B2 (en)
JPH01129903A (en) Production of green compact sintered body of metal
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JP2639812B2 (en) Magnetic alloy powder for sintering
JPH1030136A (en) Manufacture of sintered titanium alloy
JPS5823450B2 (en) Production method of C↓o-based sintered alloy for decorative parts with good machinability