JPS63121629A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPS63121629A
JPS63121629A JP26562986A JP26562986A JPS63121629A JP S63121629 A JPS63121629 A JP S63121629A JP 26562986 A JP26562986 A JP 26562986A JP 26562986 A JP26562986 A JP 26562986A JP S63121629 A JPS63121629 A JP S63121629A
Authority
JP
Japan
Prior art keywords
alloy
powder
coated
shape memory
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26562986A
Other languages
Japanese (ja)
Inventor
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP26562986A priority Critical patent/JPS63121629A/en
Publication of JPS63121629A publication Critical patent/JPS63121629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a shape memory alloy compact of direct product shape by coating the powder grains of an Ni-Ti alloy with Cu, Co, Pd, etc., and then by subjecting the above coated powder to compacting and sintering. CONSTITUTION:The powder grains of an Ni-Ti alloy are coated with one or more metals among Cu, Co, and Pd. At this time, the coating weight is regulated to about 2-20wt% based on the alloy. This coated alloy powder is compacted into the prescribed shape by a direct powder rolling method, etc., and the green compact is sintered at about 1,000 deg.C. The resulting sintered compact of Ni-Ti alloy is worked, as necessary, and then heated in a state restrained into the desired shape to undergo shape memory treatment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Ni−7i系形状記憶合金成形体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a Ni-7i shape memory alloy compact.

従来の技術 Ni−7i系形状記憶合金は、優れた形状記憶性を有す
るため、ばね、パイプ接手、その他店範囲の用途に用い
られており、粉末冶金によって製造されている。また、
Ni−1”’i金合金第3の金属を加えて、変態点を移
動させることも提案されている。
BACKGROUND OF THE INVENTION Ni-7i shape memory alloys have excellent shape memory properties and are used in springs, pipe joints, and other commercial applications, and are manufactured by powder metallurgy. Also,
It has also been proposed to add a third metal to the Ni-1''i gold alloy to shift the transformation point.

発明が解決しようとする問題点 しかしながら、Nr−r;形状記憶合金は、全屈間化合
物であるため、成形加工性が悪い。即ち、xr−Ti合
金粉末は、変形しにくく、粉末をそのまま直接、圧延あ
るいはプレス成形しても、通常の条件では成形されず、
所望の形状のものが得られ難い。また、得られた成形製
品も機械加工性が悪く、したがって、価格も非常に高い
ものになっている。又、Ni−Ti合金に、第3の金属
を添加すると、変態点を変化させることができるが、第
3の金属を合金の溶解の段階で加えると、熱間加工性が
悪くなり、R造で割れを生じるという問題があった。
Problems to be Solved by the Invention However, since the Nr-r shape memory alloy is a total bending compound, it has poor formability. In other words, the xr-Ti alloy powder is difficult to deform, and even if the powder is directly rolled or press-formed, it will not be molded under normal conditions.
It is difficult to obtain the desired shape. Furthermore, the resulting molded product also has poor machinability and is therefore very expensive. Also, adding a third metal to the Ni-Ti alloy can change the transformation point, but adding the third metal at the stage of melting the alloy will worsen hot workability and reduce R-forming. There was a problem of cracks occurring.

本発明は、上記従来の技術の問題点に鑑みてなされたも
ので、その目的は、成形加工性の悪いNi−Ti合金粉
末を用いて、直接最終製品、又はそれに近い形状のもの
を容易に得る方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to easily produce final products directly or products with shapes similar to them using Ni-Ti alloy powder with poor moldability. The purpose is to provide a way to obtain

問題点を解決するための手段 本発明のNi−Ti形状記憶合金の製造方法は、Ni−
7i合金の粉末粒子を、Cu、Co及びPdから選択さ
れた1種又はそれ以上の金属で被覆し、被覆処理された
Ni−Ti合金の粉末を成形し、焼結することを特徴と
する。
Means for Solving the Problems The method for producing a Ni-Ti shape memory alloy of the present invention is a method for producing a Ni-Ti shape memory alloy.
The method is characterized in that 7i alloy powder particles are coated with one or more metals selected from Cu, Co, and Pd, and the coated Ni-Ti alloy powder is molded and sintered.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

Ni−1i合金インゴットを先ず粉砕して、例えば粒径
100μ程度の粉末粒子を得る。Ni−Ti合金として
は、一般に、Niが53〜57重量%で、残部がTiよ
りなるものが用いられる。
A Ni-1i alloy ingot is first pulverized to obtain powder particles having a particle size of, for example, about 100 microns. As the Ni-Ti alloy, generally used is one containing 53 to 57% by weight of Ni and the remainder being Ti.

得られたNi−Ti合金粉末粒子をCu、Co及びPd
のいずれか一種又はそれ以上の金属を用いて被覆する。
The obtained Ni-Ti alloy powder particles were mixed with Cu, Co and Pd.
coated with one or more of the following metals:

被覆は、どのような方法で行ってもよく、例えば、無電
解メッキ、蒸着、スパッタリング、湿式メッキ等によっ
て行われる。被覆される迅は、合金に対して2〜20重
量%の範囲で、最終製品に求められる性質に応じて適宜
設定される。
The coating may be performed by any method, for example, electroless plating, vapor deposition, sputtering, wet plating, etc. The amount of coating to be applied is in the range of 2 to 20% by weight based on the alloy, and is appropriately set depending on the properties required for the final product.

被覆処理された合金粉末は次に所定の形状、例えば、板
状あるいは円筒状に成形され、1000°C前後の温度
で焼結される。この場合、合金粉末に熱間静水圧をかけ
て、例えば、900’Cで’1000気圧の条件のもと
で、成形と焼結とを同時に行ってもよい。また、合金粉
末をロール間に供給して直接圧延する粉末直接圧延法に
よって成形してもよい。
The coated alloy powder is then formed into a predetermined shape, such as a plate or cylinder, and sintered at a temperature of about 1000°C. In this case, hot isostatic pressure may be applied to the alloy powder to simultaneously perform molding and sintering under conditions of, for example, 900'C and 1,000 atm. Alternatively, the molding may be performed by a powder direct rolling method in which alloy powder is supplied between rolls and directly rolled.

得られたNi−’l’−i合金焼結体は、必要に応じて
、更に加工、例えば、冷間加工した後、所望の形状に拘
束して450〜500℃に加熱し、形状記憶処理を行う
The obtained Ni-'l'-i alloy sintered body is further processed, for example, cold worked, if necessary, and then constrained to a desired shape and heated to 450 to 500°C to undergo shape memory treatment. I do.

本発明において、Ni−Ti合金の粉末粒子をCU、C
oあるいはPdで被覆したものを使用すると、加工性が
改善されるほか、これらの金属がxi−Tr金合金添加
されることによるNi−Ti合金の性状の改変効果もあ
る。すなわち、Cuで被覆すると、Ni−1”i合金の
Ni@量の変化による変態点の変化が小さくなる。また
、COで被覆すると、変態点O′C前後のものが得られ
、Pdで被覆すると、120〜200℃の範囲の変態点
を有するものが得られる。
In the present invention, Ni-Ti alloy powder particles are CU, C
The use of a Ni-Ti alloy coated with O or Pd not only improves workability but also has the effect of modifying the properties of the Ni-Ti alloy by adding these metals to the xi-Tr gold alloy. That is, when coated with Cu, the change in the transformation point due to the change in the amount of Ni in the Ni-1"i alloy becomes smaller. When coated with CO, a transformation point around O'C is obtained, and when coated with Pd, Then, a material having a transformation point in the range of 120 to 200°C is obtained.

なお、N i −T i合金の粉末粒子の被覆を、上記
金属の変わりにNiを用いて行うと、Ni−Ti合金の
Ni含量の調整が容易になる。即ち、Ni含量の低いN
i−4r合金を製造した後、Niで被覆することによっ
て、所定量のNi含量の合金を製造することが可能にな
る。
Note that if the powder particles of the Ni--Ti alloy are coated with Ni instead of the above-mentioned metal, the Ni content of the Ni--Ti alloy can be easily adjusted. That is, N with low Ni content
After producing the i-4r alloy, coating it with Ni makes it possible to produce an alloy with a certain amount of Ni content.

作用 本発明においては、Nr−Tr金合金粉末粒子をCu、
CoあるいはPd等の金属によって被覆するから、粉末
粒子を成形し、焼結する際に、上記の金属が粉末粒子間
を満たし、粉末粒子の成形性を向上すると共に、焼結に
際してバインダーとしての役割を果たす。しかもそれ等
Cu、C:、o及びPd等の金属は、Ni−Ti合金の
変態点を変化させる作用も示す。
Function In the present invention, Nr-Tr gold alloy powder particles are made of Cu,
Since it is coated with a metal such as Co or Pd, when the powder particles are formed and sintered, the above metal fills the space between the powder particles, improving the formability of the powder particles, and also plays a role as a binder during sintering. fulfill. Furthermore, metals such as Cu, C:, O, and Pd also exhibit the effect of changing the transformation point of the Ni-Ti alloy.

実施例 以下、本発明を実施例によって説明する。Example Hereinafter, the present invention will be explained by examples.

実施例1 Ni55%−Ti45%合金粉末(粒度≦100μm)
を、5A酸銅水溶液に入れ、ホルムアルデヒドで還元す
る無電解メッキを実施した。
Example 1 55% Ni-45% Ti alloy powder (particle size ≦100 μm)
was placed in a 5A acid copper aqueous solution, and electroless plating was performed by reducing it with formaldehyde.

被覆した銅の割合は、重量%で10%であった。The proportion of coated copper was 10% by weight.

この粉末を、ロール径150mの圧延機により、加圧力
5 ton/cfflで加圧して、直接圧延により、厚
み1.0、幅50#の薄板を得た。この薄板は、fで変
形が可能であるが、未だ、空隙が認められるため、10
50℃で3時間真空焼結を実施した。
This powder was pressed with a pressure of 5 ton/cffl using a rolling mill with a roll diameter of 150 m, and a thin plate having a thickness of 1.0 and a width of 50# was obtained by direct rolling. This thin plate can be deformed at f, but voids are still observed, so 10
Vacuum sintering was performed at 50° C. for 3 hours.

焼結後、冷間圧延によって0.5m厚の薄板とし、−・
部切断してU字型に曲げ、固定して500’Cの形状記
憶処理を施した。
After sintering, it is made into a thin plate of 0.5m thickness by cold rolling, and -
It was cut into parts, bent into a U shape, fixed, and subjected to 500'C shape memory treatment.

これを室温で直線に変形し、加熱したところ、元の形に
完全に回復した。この時の回復温度は、65°Cであっ
た。
When this was deformed into a straight line at room temperature and heated, it completely recovered to its original shape. The recovery temperature at this time was 65°C.

以上の変形−回復を繰返し実施しても、へたり、破断は
みられず、溶製月と全く同一でおることがわかった。
Even when the above deformation-recovery process was repeated, no wear or breakage was observed, and it was found that the moon was exactly the same as the melted moon.

実施例2 Ni55.5%−Ti44.5%合金粉末(粒度≦20
0μm)を、塩化コバルト水溶液に入れ、次亜リン酸ナ
トリウムによって還元して、COを析出させた。被覆し
たコバルトの量は、重量%で、2.2%であった。
Example 2 Ni55.5%-Ti44.5% alloy powder (particle size ≦20
0 μm) was placed in an aqueous cobalt chloride solution and reduced with sodium hypophosphite to precipitate CO. The amount of cobalt coated was 2.2% by weight.

この粉末を用いて、内径15J71ffi、外径25m
の二重化の中に入れ、二重化の中を脱気、封孔して、1
000’Cで1時間、1000気圧で熱間静水圧プレス
を行った。焼結後の試料を、スェージングにより外径1
2m(内径10m>まで加工した後、二重化を機械加工
で除去して、パイプ継手を作成した。この継手は、−4
0’Cぐらいで軟化し、0℃以上で元の形に戻ることが
わかった。
Using this powder, the inner diameter is 15J71ffi and the outer diameter is 25m.
Put it in the duplex, deaerate and seal the inside of the duplex, 1
Hot isostatic pressing was carried out at 1000 atm for 1 hour at 000'C. After sintering, the sample is swaged to reduce the outer diameter to 1
2 m (inner diameter 10 m>), the duplication was removed by machining to create a pipe joint. This joint was -4
It was found that it softens at about 0'C and returns to its original shape at temperatures above 0C.

実施例3 Ni54%−Ti46%粉末(粒径≦200μ′rrL
)を容器に入れ、塩化パラジウムと水素気流中で、化学
蒸着を行い、粉末の表面に、パラジウム膜を形成した。
Example 3 Ni54%-Ti46% powder (particle size ≦200μ'rrL
) was placed in a container, and chemical vapor deposition was performed in a flow of palladium chloride and hydrogen to form a palladium film on the surface of the powder.

被覆パラジウム母は、重囲で3%でめった。The coated palladium matrix was found to be 3% heavy.

この粉末をプレス成型してφ25X300.Qの棒状に
し、1050’Cで5時間真空焼結を行った。
This powder was press-molded to a diameter of φ25×300. It was made into a Q rod shape and vacuum sintered at 1050'C for 5 hours.

焼結後、熱間圧延−伸線加工により、1.0#径の線材
を製造した。この線材を、直線に固定して、500’C
で熱処理を実施した。室温で変形した後、加熱して行く
と、145℃で元の直線形状へ回復した。
After sintering, a wire rod with a diameter of 1.0# was manufactured by hot rolling and wire drawing. Fix this wire in a straight line and heat it to 50'C.
Heat treatment was carried out. After being deformed at room temperature, when heated, it recovered to its original linear shape at 145°C.

発明の効果 本発明は、前記のようにCu、CO及びPdから選択さ
れた金属で被覆したNi−Ti合金粉末粒子を成形し、
焼結するものであるから、成形加工性の悪いNi−Ti
合金を、その粉末から直接、最終製品又はそれに近い形
状のものにすることができる。したがって、所望の形状
及び変態点を有するNi−Ti形状記憶合金を容易に!
!造することが可能になる。
Effects of the Invention The present invention forms Ni-Ti alloy powder particles coated with a metal selected from Cu, CO and Pd as described above,
Ni-Ti has poor moldability because it is sintered.
The alloy can be made directly from the powder into a final product or a shape close to it. Therefore, it is easy to create a Ni-Ti shape memory alloy with a desired shape and transformation point!
! It becomes possible to build.

Claims (2)

【特許請求の範囲】[Claims] (1)Ni−Ti合金の粉末粒子を、Cu、Co及びP
dから選択された1種又はそれ以上の金属で被覆し、被
覆処理されたNi−Ti合金の粉末を成形し、焼結する
ことを特徴とするNi−Ti系形状記憶合金成形体の製
造方法。
(1) Ni-Ti alloy powder particles are mixed with Cu, Co and P.
A method for producing a Ni-Ti-based shape memory alloy molded body, which comprises coating with one or more metals selected from d, molding and sintering the coated Ni-Ti alloy powder. .
(2)被覆処理されたNi−Ti合金の粉末を、粉末直
接圧延法によって成形する特許請求の範囲第1項に記載
のNi−Ti系形状記憶合金成形体の製造方法。
(2) The method for producing a Ni-Ti-based shape memory alloy molded body according to claim 1, wherein the coated Ni-Ti alloy powder is molded by a direct powder rolling method.
JP26562986A 1986-11-10 1986-11-10 Manufacture of shape memory alloy Pending JPS63121629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26562986A JPS63121629A (en) 1986-11-10 1986-11-10 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26562986A JPS63121629A (en) 1986-11-10 1986-11-10 Manufacture of shape memory alloy

Publications (1)

Publication Number Publication Date
JPS63121629A true JPS63121629A (en) 1988-05-25

Family

ID=17419789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26562986A Pending JPS63121629A (en) 1986-11-10 1986-11-10 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS63121629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297696A (en) * 1988-10-04 1990-04-10 Shinko Kosen Kogyo Kk Ni-ti-based alloy material and production thereof
CN107008905A (en) * 2017-02-25 2017-08-04 河北工业大学 The preparation method of TiNiCu marmem based damping composite materials
CN112760511A (en) * 2020-12-24 2021-05-07 先导薄膜材料(广东)有限公司 Preparation method of titanium-nickel-palladium alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073803A (en) * 1973-11-01 1975-06-18
JPS5893803A (en) * 1981-11-12 1983-06-03 テイツセン・イングウストリ−・アクチエンゲゼルシヤフト Production of press article by press-forming fregile granular alloy powder
JPS60138029A (en) * 1983-12-27 1985-07-22 Daido Steel Co Ltd Production of metallic powder molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073803A (en) * 1973-11-01 1975-06-18
JPS5893803A (en) * 1981-11-12 1983-06-03 テイツセン・イングウストリ−・アクチエンゲゼルシヤフト Production of press article by press-forming fregile granular alloy powder
JPS60138029A (en) * 1983-12-27 1985-07-22 Daido Steel Co Ltd Production of metallic powder molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297696A (en) * 1988-10-04 1990-04-10 Shinko Kosen Kogyo Kk Ni-ti-based alloy material and production thereof
CN107008905A (en) * 2017-02-25 2017-08-04 河北工业大学 The preparation method of TiNiCu marmem based damping composite materials
CN112760511A (en) * 2020-12-24 2021-05-07 先导薄膜材料(广东)有限公司 Preparation method of titanium-nickel-palladium alloy
CN112760511B (en) * 2020-12-24 2022-07-12 先导薄膜材料(广东)有限公司 Preparation method of titanium-nickel-palladium alloy

Similar Documents

Publication Publication Date Title
CN103906850B (en) Form the NiTi rare earth of sintering(Ni‑Ti‑RE)The method of alloy
TWI591192B (en) Copper alloy
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
WO2006001976A2 (en) High purity target manufacturing methods
JP3330963B2 (en) High corrosion resistant titanium alloy
US5466311A (en) Method of manufacturing a Ni-Al intermetallic compound matrix composite
AT406349B (en) METHOD FOR PRODUCING A METAL POWDER WITH AN OXYGEN CONTENT LESS THAN 300 PPM, AND METHOD FOR PRODUCING MOLDED POWDER METALURGICAL METAL PRODUCTS FROM THIS METAL POWDER
JPS63121629A (en) Manufacture of shape memory alloy
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
EP0260101B1 (en) Production of flat products from particulate material
US5152959A (en) Sinterless powder metallurgy process for manufacturing composite copper strip
JP2001518143A (en) Method of manufacturing parts from particulate ferrous material
JPS62287028A (en) High-strength titanium alloy and its production
JPS62224602A (en) Production of sintered aluminum alloy forging
JPS63286537A (en) Manufacture of grain dispersion-type composite material
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
US3963485A (en) Method of producing sintered titanium base articles
JPH0325499B2 (en)
JP4703843B2 (en) Composite metal powder for powder metallurgy, sintered body obtained by sintering the powder, and bearing comprising the sintered body
US6869566B1 (en) Method of fabricating metallic glasses in bulk forms
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS61159539A (en) Manufacture of shape memory alloy
Minabe et al. Development of high density sintered titanium alloys using a sinter-HIP process
JPS60145349A (en) Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPH0811802B2 (en) Manufacturing method of fine grain alloy