JPS60137942A - Production of microporous membrane - Google Patents

Production of microporous membrane

Info

Publication number
JPS60137942A
JPS60137942A JP58250499A JP25049983A JPS60137942A JP S60137942 A JPS60137942 A JP S60137942A JP 58250499 A JP58250499 A JP 58250499A JP 25049983 A JP25049983 A JP 25049983A JP S60137942 A JPS60137942 A JP S60137942A
Authority
JP
Japan
Prior art keywords
methanol
membrane
alkyl group
microporous membrane
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58250499A
Other languages
Japanese (ja)
Inventor
Yukihiro Saito
斉藤 幸廣
Midori Kawahito
川人 美登利
Shiro Asakawa
浅川 史朗
Takafumi Kajima
孝文 鹿嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58250499A priority Critical patent/JPS60137942A/en
Publication of JPS60137942A publication Critical patent/JPS60137942A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To produce a microporous membrane having excellent gas-permeability and gas-separability, by forming a homogeneous membrane from a mixture of a methanol-insoluble polymer and a methanol-soluble three-dimensionally crosslinked silicon copolymer, and immersing the membrane in methanol, etc. to form microscopic pores. CONSTITUTION:A thin film made of a mixture of (A) a methanol-insoluble polymer such as a three-dimensionally crosslinked copolymer of polyhydroxystyrene (or novolak resin)-polysulfone-polydimethyl-siloxane and (B) a methanol-soluble three-dimensionally crosslinked silicone copolymer such as polyhydoxystyrene- polyorganosiloxane copolymer, is formed on a porous substrate to obtain a composite membrane, which is immersed in or contacted with methanol or ethanol to form microscopic pores in the membrane and obtain the objective microporous membrane. The density of the micropores in the homogeneous membrane can be selected arbitrarily by controlling the production condition. The membrane can be used effectively for separating gases having close or much different molecular weights.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は2種以上の混合ガスから特定のガス成分を効率
よく富化または分離する微孔質膜の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a microporous membrane that efficiently enriches or separates specific gas components from a mixture of two or more gases.

従来例の構成とその問題点 膜を用いてガス混合物より特定のガスを・吊化捷たは分
離する方法はすでによく知られている。これらの方法は
用いる膜の構造によって2つ14分類することができる
。1つは膜中に孔のない均質)換を用いる方法である。
Conventional configurations and their problems Methods of suspending or separating specific gases from gas mixtures using membranes are already well known. These methods can be classified into two or fourteen categories depending on the structure of the membrane used. One is a method using a homogeneous membrane without pores.

これは膜中に空孔をほとんど含まず、空孔率はほとんど
Oである。カスは均質膜中へ溶解、拡散して膜を透過す
る0従って、ガスの膜への溶解度、拡散速度の相異によ
って混合ガスの分離が起る。もう1つの方法は多孔質膜
を用いる方法で、多孔質膜には100八I)’+5後の
孔が多数存在し、ガス分子がこの孔中を拡散する過程で
、そのガス分子の平均自由行程の差によって分離が行な
われる。一般的に後者は前者の方法に比較してガス透過
性にすぐれるが選択性が低い。
This membrane contains almost no pores, and the porosity is almost O. The scum dissolves and diffuses into the homogeneous membrane and permeates through the membrane. Therefore, separation of the mixed gas occurs due to the difference in solubility and diffusion rate of the gas in the membrane. Another method is to use a porous membrane, in which there are many pores in the porous membrane, and in the process of gas molecules diffusing through these pores, the average freedom of the gas molecules is Separation is achieved by the difference in stroke. Generally, the latter method has superior gas permeability but lower selectivity than the former method.

特に分子量がほとんど同じガスの分離は後者の場合不可
能である。従って後者の場合の用途に分子量の差の大き
いガス混合物から特定のガスを分離するのが主で、分子
量が接近した例えば酸素と窒素の分離は前者の均質膜に
よる方法でなければならない。しかしながらこの場合は
所望の透過流量が得られない欠点があった。
In particular, separation of gases with almost the same molecular weight is not possible in the latter case. Therefore, in the latter case, the main purpose is to separate a specific gas from a gas mixture with a large difference in molecular weight, and the separation of oxygen and nitrogen, which have close molecular weights, for example, must be performed using the former method using a homogeneous membrane. However, in this case, there was a drawback that the desired permeation flow rate could not be obtained.

発明の目的 本発明は上記従来の欠点を解消し、気体透過性と気体分
離性に優t’L ft微孔質膜の製造方法を提供するも
のである。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks and provides a method for producing a t'L ft microporous membrane having excellent gas permeability and gas separation properties.

発明の構成 本発明の要旨とする所はメタノール不溶性ポリマーとメ
タノール[lJJ’溶な3次元化シリコーン共重合体の
ブレンドから成る薄膜を多孔質支持体上に形成させ複合
化した後、メタノールもしくはエタノール中にこの複合
膜を浸漬するかもしくは接触させることにより多孔質支
持体上の均質な薄膜中にピンホールを生成させ微孔質膜
を製造する方法である。この様にして得られる膜にその
製造条件により均質膜中のピンホールの濃度を任意の状
態に変化することができる。例えばメタノール可溶性の
高分子を重量%で2%以下に押えるとその複合膜はメタ
ノールもしくはエタノール中vc浸漬しても98%以上
を占めるメタノール不溶性ポリマーの気体透過特性と殆
んど変わらず、分子量の接近した酸素と窒素の分離性を
示す。さらに濃度?増し2%から10−%の範囲になる
とメタノール不溶性ポリマーの持つ選択性が低下し除々
に多孔質膜の特性に成って行く。そして10%を超える
と酸素と窒素の分離性は殆んどなくなるが、水素。
Structure of the Invention The gist of the present invention is to form a thin film consisting of a blend of a methanol-insoluble polymer and a methanol [lJJ'-soluble three-dimensional silicone copolymer] on a porous support, to form a composite, and then to form a composite using methanol or ethanol. This is a method for producing a microporous membrane by immersing or bringing the composite membrane into contact with a porous support to generate pinholes in a homogeneous thin film on a porous support. The concentration of pinholes in the homogeneous film can be changed to any desired state depending on the manufacturing conditions of the film thus obtained. For example, if the methanol-soluble polymer is kept below 2% by weight, the resulting composite membrane will have almost no difference in gas permeation properties from the methanol-insoluble polymer, which accounts for over 98%, even when immersed in VC in methanol or ethanol. Shows the separation of oxygen and nitrogen in close proximity. Even more concentrated? When the increase ranges from 2% to 10%, the selectivity of the methanol-insoluble polymer decreases and gradually becomes a porous membrane. If the concentration exceeds 10%, the separation of oxygen and nitrogen will almost disappear, but hydrogen.

ヘリウム等の分子量の異ったガス分離には非常に有効で
ある。またこの様にして得られる微孔質膜は表面の膜素
材を任意のものに変化することができ、表面に均質な膜
を接着して製脱する気体分離膜の製造における支持体と
しても非常に有用である0 本発明によればメタノール溶解性の高分子としての3次
元化シリコーン共重合体としてはポリヒドロキシスチレ
ン(PH8)−ポリオルガノシロキサン(POMS)共
重合体、ノボラック樹脂(NB)−ポリオルガノシロキ
サン(POMS)共重合体が用いられ、これら材料は界
面活性性を示すためメタノール不溶性筒分子と非常に相
溶性が良く好ましい。
It is very effective for separating gases with different molecular weights such as helium. In addition, the surface membrane material of the microporous membrane obtained in this way can be changed to any material, and it is also useful as a support in the production of gas separation membranes, which are produced by bonding a homogeneous membrane to the surface. According to the present invention, three-dimensional silicone copolymers as methanol-soluble polymers include polyhydroxystyrene (PH8)-polyorganosiloxane (POMS) copolymers, novolac resins (NB)- A polyorganosiloxane (POMS) copolymer is used, and since these materials exhibit surface activity, they are highly compatible with methanol-insoluble cylinder molecules and are therefore preferred.

またメタノール不溶性ポリマーとしては、ポリヒドロキ
シスチレンーポリスルホンーポリジメチルシロキザンの
3元系シリコーン共重合体、ノボラック樹脂−ポリスル
ホン−ポリジメチルシロキサンの3元系シリコーン共重
合体、 一般式が (但し、R1は水素原子、または炭素数が1から5個の
アルキル基、R2およびR3は炭素数が1から10個の
アルキル基もしくはハロゲン化アルキル基より成る群よ
り選ばれる。) で示さnるポリスルホン−ポリオルガノシロキサン共重
合体、一般式が (但し、R1は水素原子、または炭素数が1から5個の
アルキル基、R2およびR31J炭素数が1から10個
のアルキル基もしくはハロゲン化アルキル基より成る群
より選ばれる。 ) で示さ几るボリカーボネートーポリオル力ノンロキサン
共重合体、一般式が (但し、R1は水素原子、または炭素数が1から5個の
アルキル基、R2およびR3は炭素数が1から10個の
アルキル基もしくはハロゲン化アルから10個のメチレ
ン基より成る群より選ばれも)で示されるポリウレタン
ーポリオルガノシロキ(但しRは炭素数が4から7個の
アルキル基、ハロゲン化アルキル基より成る群よジ選ば
扛る。)で示される高分子が使用できる。
Examples of methanol-insoluble polymers include ternary silicone copolymers of polyhydroxystyrene-polysulfone-polydimethylsiloxane, ternary silicone copolymers of novolac resin-polysulfone-polydimethylsiloxane, and is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R2 and R3 are selected from the group consisting of an alkyl group having 1 to 10 carbon atoms or a halogenated alkyl group. Organosiloxane copolymer, the general formula is (wherein R1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R2 and R31 are a group consisting of an alkyl group having 1 to 10 carbon atoms or a halogenated alkyl group) A polycarbonate-polyol non-roxane copolymer represented by polyurethane-polyorganosiloxy represented by a group consisting of 1 to 10 alkyl groups or alkyl halides to 10 methylene groups (where R is an alkyl group having 4 to 7 carbon atoms, halogenated Polymers represented by (selected from the group consisting of alkyl groups) can be used.

実施例の説明 (実施例1) メタノール不溶性ポリマーとして、ポリヒドロキシスチ
レン(PH3)−ポリスルホン(ps)−ポリジメチル
シロキサン(PDMS)共重合体を用いた。最初にこの
PH3−PS−PDMS共重合体の2重量%ベンゼン溶
液を調製し、この溶液を用い叱ラングミュアーブロジェ
ット法(LB法)TLよって水面上に薄膜を形成後この
薄膜と多孔質支持体(ポリプラスチック社製ジュラガー
ド2400)とを接触接着させて複合膜を得た。この時
の複合膜の気体透特性は酸素で0 、I Ca / S
[Xl・O4・atmの透過速度と酸素と窒素の透過速
度比(α′)は2.20であった。次いでこの複合膜を
メタノール中に約30分浸漬したがこの膜特性に変化は
観察されなかった。
Description of Examples (Example 1) A polyhydroxystyrene (PH3)-polysulfone (ps)-polydimethylsiloxane (PDMS) copolymer was used as the methanol-insoluble polymer. First, a 2% by weight benzene solution of this PH3-PS-PDMS copolymer was prepared, and this solution was used to form a thin film on the water surface by the Langmuir-Blodgett method (LB method). A composite film was obtained by contacting and adhering the film to a body (Duraguard 2400 manufactured by Polyplastics). At this time, the gas permeability of the composite membrane is 0 for oxygen, I Ca / S
[The ratio of the permeation rate of Xl.O4.atm to the permeation rate (α') of oxygen and nitrogen was 2.20. This composite membrane was then immersed in methanol for about 30 minutes, but no change was observed in the membrane properties.

(実施例2) 実施例1と同一の高分子を用い溶液の調整の時にポリヒ
ドロキシスチレン(Pus)−ポリジメチルシロキサン
(PDMS)共重合体を3元系シリコーン共重合体に対
して重量で6%添加して同様に実験した。その結果複合
化時の特性はF 02+0.09 co/sec +1
 O4a atmでα’[2,21で、メタノール処理
後はF O2+1.15 ca/see @ eJ a
 atm に増加しα′は2.06まで低下した。しか
しメタノール綬漬時間を延長してもこれ以上の特性変化
は認めら庇なかった。
(Example 2) When preparing a solution using the same polymer as in Example 1, the amount of polyhydroxystyrene (Pus)-polydimethylsiloxane (PDMS) copolymer was 6 by weight relative to the tertiary silicone copolymer. % was added and the same experiment was carried out. As a result, the characteristics when combined are F 02 + 0.09 co/sec +1
O4a atm α'[2,21, after methanol treatment F O2+1.15 ca/see @ eJ a
atm and α' decreased to 2.06. However, even if the methanol soaking time was extended, no further changes in properties were observed.

(実施例3) 実施例2と同様に実験を行ない、PH8−PDMS共重
合体の組成を3元系シリコーン共重合体に対して10%
まで増加した。その結果複合化時の特性u k’o2中
0.08Ca/5eCe O411atmでαは2.1
9で、メタノール処理後はF 02 + 3−15 c
c/鍜φ。4・atmlで増加した。一方α′は164
5まで低下した。このメタノール処理膜をさらに3時間
処理するとF O2+ 6.20CO/+eC@ ci
 @ atm まで増加しくZ’+ 0.98となった
。これは均質膜が完全に多孔質膜となったことを示して
いる。そこで水素の透過速度を測定した所FH2” 3
2.2 ec/SeC・cJ @ atm に達した。
(Example 3) An experiment was conducted in the same manner as in Example 2, and the composition of the PH8-PDMS copolymer was changed to 10% of the ternary silicone copolymer.
It increased to As a result, the characteristic at the time of compounding u k'o2 is 0.08Ca/5eCe O411atm and α is 2.1
9, and after methanol treatment F 02 + 3-15 c
c/鍜φ. It increased at 4.atml. On the other hand, α′ is 164
It dropped to 5. When this methanol-treated membrane is further treated for 3 hours, F O2+ 6.20CO/+eC@ci
It increased to @ atm and became Z'+ 0.98. This indicates that the homogeneous membrane became completely porous. Therefore, we measured the hydrogen permeation rate and found that it was FH2" 3
It reached 2.2 ec/SeC・cJ @ atm.

また処理溶媒としてエタノールを用いても同様の結果と
なった。
Similar results were also obtained when ethanol was used as the processing solvent.

発明の効果 以上要するに本発明はメタノール不溶性ポリマーとメタ
ノール可溶性3次元化シリコーン共重合体のブレンドか
らなる均質膜を、メタノールもしくはエタノールに浸漬
または接触させることにより均質膜中に均一にピンホー
ルを生成させ、ることを特徴とする微孔質膜の製造方法
を提供するもので気体透過性が非常に優れかつ気体分離
性も従来の多孔質膜より向上した微孔質膜を製造できる
Effects of the Invention In short, the present invention involves uniformly generating pinholes in a homogeneous membrane made of a blend of a methanol-insoluble polymer and a methanol-soluble three-dimensional silicone copolymer by immersing or contacting it in methanol or ethanol. The present invention provides a method for producing a microporous membrane, which is characterized by the following: It is possible to produce a microporous membrane that has excellent gas permeability and improved gas separation performance compared to conventional porous membranes.

またこの微孔質膜製造法は膜の用途に応じて膜の特性を
任意に変化することができ膜製造上非常に有効な手段で
ある。
Furthermore, this method for producing a microporous membrane allows the properties of the membrane to be arbitrarily changed depending on the intended use of the membrane, making it a very effective means for membrane production.

Claims (1)

【特許請求の範囲】 (1) メタノール不溶性ポリマーとメタノールi’+
1’m性3次元化シリコーン共重合体の混合から成る薄
膜を多孔質支持体上に形成させ複合膜化した後、メタノ
ールもしくはエタノール中に前t+d複合膜を浸漬する
かもしくは接触させることにより薄膜中に微孔を生成さ
せることを特徴とする微孔質膜の製造方法C (2)メタノール不溶性ポリマーがポリヒドロキシスチ
レンーポリスルホンーポリジメチルシロギサン3元系シ
リコーン共重合体であることを特徴とする特許請求の範
囲第1項記載の微孔質膜の製造方法。 (3) メタノール不溶性ポリマーガノボラソク樹脂−
ボリスルホンーポリジメチルシロキサン3元系シリコー
ン共重合体であることを特徴とする特許請求の範囲第1
項記載の微孔質膜の製造方法。 (4)メタノール不溶性ポリマーが、一般式(但し、R
1は水素原子、または炭素数が1から5個のアルキル基
、R2およびR3ハ炭素数が1から10個のアルキル基
もしくは)・ロゲン化アルキル基より成る群より選ばれ
る。) で示されるポリスルホン−ポリジメチルシロキサン共重
合体であることを特徴とする特許請求の範囲第1項記載
の微孔質膜の製造方法0 (6) メタノール不溶性ポリマーが、一般式(但し、
R1は水素原子、または炭素数が1から5個のアルキル
基、R2およびR3は炭素数が1から10個のアルキル
基もしくはノ・ロゲン化アルキル基より成る群より選ば
れる。) で示されるポリカーボネートボリンメチルシロキサン共
重合体であることを特徴とする特許請求の範囲第1項記
載の微孔質膜の製造方法。 (6) メタノール不溶性のポリマーが、一般式(世し
R1は水素原子、または炭素数が1から5個のアルキル
基、R2およびR3は炭素数が1から10個のアルキル
基もしくはハロゲン化アルキル個のメチレン基より成る
群より選ばれる。)で示されるポリウレタン−ポリジメ
チルシロキサン共重合体であることを特徴とする特許請
求の範囲第1項記載の微孔質膜の製造方法。 (但しR[炭素数が4から7個のアルキル基、)・ロゲ
ン化アルキル基より成る群より選ばれる0)で示される
ポリオレフィンであることを特徴とする特許請求の範囲
第1項記載の微孔質膜の製造方法。
[Claims] (1) Methanol-insoluble polymer and methanol i'+
After forming a thin film consisting of a mixture of 1'm three-dimensional silicone copolymers on a porous support to form a composite film, the pre-t+d composite film is immersed in or brought into contact with methanol or ethanol to form a thin film. Method C for producing a microporous membrane characterized by generating micropores therein (2) characterized in that the methanol-insoluble polymer is a polyhydroxystyrene-polysulfone-polydimethylsiloxane ternary silicone copolymer A method for producing a microporous membrane according to claim 1. (3) Methanol-insoluble polymer Ganoborasok resin
Claim 1, characterized in that it is a borisulfone-polydimethylsiloxane ternary silicone copolymer.
A method for producing a microporous membrane as described in Section 1. (4) The methanol-insoluble polymer has the general formula (where R
1 is selected from the group consisting of a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; R2 and R3 are an alkyl group having 1 to 10 carbon atoms; ) A method for producing a microporous membrane according to claim 1, characterized in that the methanol-insoluble polymer is a polysulfone-polydimethylsiloxane copolymer represented by the general formula (however,
R1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R2 and R3 are selected from the group consisting of an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms. ) The method for producing a microporous membrane according to claim 1, wherein the microporous membrane is a polycarbonate borine methylsiloxane copolymer represented by the following formula. (6) The methanol-insoluble polymer has the general formula (R1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R2 and R3 are an alkyl group having 1 to 10 carbon atoms, or a halogenated alkyl group) 2. The method for producing a microporous membrane according to claim 1, wherein the microporous membrane is a polyurethane-polydimethylsiloxane copolymer selected from the group consisting of methylene groups. (provided that the polyolefin is a polyolefin selected from the group consisting of R [an alkyl group having 4 to 7 carbon atoms), and 0 selected from the group consisting of a rogenated alkyl group]. Method for manufacturing porous membrane.
JP58250499A 1983-12-26 1983-12-26 Production of microporous membrane Pending JPS60137942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250499A JPS60137942A (en) 1983-12-26 1983-12-26 Production of microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250499A JPS60137942A (en) 1983-12-26 1983-12-26 Production of microporous membrane

Publications (1)

Publication Number Publication Date
JPS60137942A true JPS60137942A (en) 1985-07-22

Family

ID=17208782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250499A Pending JPS60137942A (en) 1983-12-26 1983-12-26 Production of microporous membrane

Country Status (1)

Country Link
JP (1) JPS60137942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG93898A1 (en) * 1999-10-01 2003-01-21 Shipley Co Llc Porous materials
WO2015183538A3 (en) * 2014-05-28 2016-01-21 The Regents Of The University Of California Poly(akylene-b-dialkylsiloxane-b-alkylene) triblock copolymers, membranes therewith and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG93898A1 (en) * 1999-10-01 2003-01-21 Shipley Co Llc Porous materials
WO2015183538A3 (en) * 2014-05-28 2016-01-21 The Regents Of The University Of California Poly(akylene-b-dialkylsiloxane-b-alkylene) triblock copolymers, membranes therewith and uses thereof

Similar Documents

Publication Publication Date Title
EP0949959B1 (en) Preparation of polymer articles having hydrophilic surface
EP0113574B1 (en) Gas-selectively permeable membrane and method of forming said membrane
CA1272078A (en) Composite membrane for use in gas separation
JPWO2007018284A1 (en) Liquid treatment separation membrane composed of aromatic ether polymer hydrophilized by hydrophilizing agent
Liu et al. Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment
Shen et al. Preliminary investigation on hemocompatibility of poly (vinylidene fluoride) membrane grafted with acryloylmorpholine via ATRP
Ruaan et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma
JPS60137942A (en) Production of microporous membrane
Mansourpanah et al. Surface modification and preparation of nanofiltration membrane from polyethersulfone/polyimide blend—Use of a new material (polyethyleneglycol‐triazine)
JPH11106552A (en) Microporous hydrophilized polyolefin membrane and its production
JPS59225703A (en) Porous membrane and preparation thereof
JP2020121263A (en) Composite semipermeable membrane
JPH0157614B2 (en)
JPS58180206A (en) Production of selective permeable membrane
Wang et al. Outstanding antifouling performance of poly (vinylidene fluoride) membranes: Novel amphiphilic brushlike copolymer blends and one‐step surface zwitterionization
JP2835342B2 (en) Separation membrane and separation method
Wei et al. Hemocompatibility and ultrafiltration performance of PAN membranes surface‐modified by hyperbranched polyesters
Oh et al. Gas permeation through poly (dimethylsiloxane)-plasma polymer composite membranes
JPH0387B2 (en)
JPS63278525A (en) Production of vapor-liquid separation membrane
AU771431B2 (en) Polymeric membranes and polymer articles having hydrophilic surface and method for their preparation
JPH0453575B2 (en)
Li et al. Surface modification of PVDF porous membranes
JPH0330416B2 (en)
JPS6075320A (en) Permeselective composite membrane for gas and its preparation