JPS601373B2 - Method for producing amorphous alloy with excellent strength and corrosion resistance - Google Patents

Method for producing amorphous alloy with excellent strength and corrosion resistance

Info

Publication number
JPS601373B2
JPS601373B2 JP49082742A JP8274274A JPS601373B2 JP S601373 B2 JPS601373 B2 JP S601373B2 JP 49082742 A JP49082742 A JP 49082742A JP 8274274 A JP8274274 A JP 8274274A JP S601373 B2 JPS601373 B2 JP S601373B2
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
amorphous
amorphous alloy
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49082742A
Other languages
Japanese (ja)
Other versions
JPS5112308A (en
Inventor
道彦 南雲
稔彦 高橋
徹夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP49082742A priority Critical patent/JPS601373B2/en
Publication of JPS5112308A publication Critical patent/JPS5112308A/en
Publication of JPS601373B2 publication Critical patent/JPS601373B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は強度および耐食性のすぐれた非晶質合金に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous alloy with excellent strength and corrosion resistance.

最近繊維強化あるいは積層複合材料が進歩しっ)あり、
その素材としての金属繊維および箔については、高品質
化と、安価な提供が強く要望されている。
Recently, there have been advances in fiber-reinforced or laminated composite materials.
There is a strong demand for high quality and low cost metal fibers and foils as the materials.

金属は一般に強度級性などの面ですぐれた材料であるが
、繊維または箔状にすることは多くの工程を必要とし、
その結果必然的に多額の製造費用を必要とする。
Metals are generally excellent materials in terms of strength, etc., but making them into fibers or foils requires many steps.
As a result, a large amount of manufacturing cost is inevitably required.

例えば、金属ひげ結晶は高い強度を有する理想的な繊維
材料であるが、溶液からの析出、還元、蒸気の凝集等化
学反応や相変化によって作られるために高価であるばか
りでなく量産も困難である。また金属細線例えばピアノ
線は冷間伸線と中間暁錨をくりかえす工程をとるため価
格は極めて高い。金属箔についても同様である。そこで
溶融金属から直接金属繊維や金属箔を作る手法がこれら
の安価な製造手段として研究されてきた。しかし従来の
手法によって製造された金属繊維や箔は強度及び延轍性
の点で極めて不十分であった。ところが最近にいたり、
鉄またはニッケルに十数%のリンと数%の炭素あるいは
さらに数%のクロムを含有させた合金を溶融状態から熱
伝導のよい金属導体上に吹きつけて急冷凝固させ、非晶
質化することによって強度、延轍性ともにすぐれた材料
が得られることが見出された。しかしながらこのような
非晶質状態を得ることは成分系及び冷却条件に多分に依
存し、従釆発表されている成分系は経験的に上記の範囲
に限られていた。そこで本発明者らは非晶質状態を得る
ための成分系及び製造条件について広範囲な研究を行な
い、さきに基本成分として週期律表第8族遷移元素の鉄
、コバルト、ニッケルのいずれかあるいはこれらの混合
成分をベースに、半金属元素に隣接する窒素、アルミニ
ウム、すずの一種または二種以上、さらに半金属元素の
二種を添加すればよいことを見出した。
For example, metal whisker crystals are an ideal fiber material with high strength, but they are not only expensive but also difficult to mass produce because they are produced through chemical reactions and phase changes such as precipitation from solutions, reduction, and vapor condensation. be. Furthermore, thin metal wires, such as piano wires, are extremely expensive because they require repeated cold drawing and intermediate drawing processes. The same applies to metal foil. Therefore, methods of directly producing metal fibers and metal foils from molten metal have been studied as an inexpensive means of producing these materials. However, metal fibers and foils produced by conventional methods have been extremely inadequate in terms of strength and rutting properties. However, recently,
An alloy of iron or nickel containing more than 10% of phosphorus and several percent of carbon or even a few percent of chromium is sprayed from a molten state onto a metal conductor with good thermal conductivity to rapidly solidify it and make it amorphous. It has been found that a material with excellent strength and rut spreadability can be obtained by using this method. However, obtaining such an amorphous state depends to a large extent on the component system and cooling conditions, and the component systems that have been published have been empirically limited to the above range. Therefore, the present inventors conducted extensive research on the component system and manufacturing conditions to obtain an amorphous state, and first determined that iron, cobalt, and nickel, which are transition elements in Group 8 of the Periodic Table, or any of these as the basic component. It has been found that it is sufficient to add one or more types of nitrogen, aluminum, and tin adjacent to the metalloid element, and further two types of the metalloid element, based on the mixed components of the metalloid element.

このようにして得られた非晶質金属は、従来の結晶質の
急冷凝固金属と〈らべると格段にすぐれた強度と延靭‘
性を備えている。しかしこれにさらに耐食性を向上させ
ることができれば用途を拡大する上で極めて有効である
。そこで本発明者らは上記の基本成分をもとに種々の合
金添加の効果を検討し「チタン、ジルコニウム、ハフニ
ウムの週期律表第傘族元素がこの目的にたいして有効で
あることを見出した。さらに鉄とチタンとを複合させる
と水素の吸蔵能力が増加することが期待される。この特
性は最近無公害エネルギー源として注目されている水素
の利用にたいして重要な技術になるものである。本発明
者の知見によれば第傘族元素の添加量は合金全体を非晶
質化するという観点から定められるべきであって「その
ためには合金全体の融点がその合金を構成する第8族元
素のいずれかと、添加された半金属元素の隣接元素また
は半金属元素のいずれかとの二元合金の共晶温度のうち
「もっとも高い温度からプラス15000以内になるよ
うにすることが有効である。
The amorphous metal obtained in this way has significantly superior strength and elongation when compared to conventional crystalline rapidly solidified metals.
It has sex. However, if corrosion resistance could be further improved, it would be extremely effective in expanding the range of uses. Therefore, the present inventors investigated the effects of various alloy additions based on the above-mentioned basic ingredients and found that ``titanium, zirconium, and hafnium, elements of the weekly table umbrella group, are effective for this purpose.''Furthermore, It is expected that the hydrogen storage capacity will increase when iron and titanium are combined. This property will become an important technology for the use of hydrogen, which has recently attracted attention as a non-polluting energy source. According to the knowledge of Among the eutectic temperatures of the binary alloy of the added metalloid element and either the adjacent element or the metalloid element, it is effective to keep the temperature within +15,000 from the highest temperature.

さらに冷却条件についてみれば合金を溶融状態から毎秒
1び℃以上の速さで急冷することが必要である。なおこ
)で非晶質構造とは通常のX線回折では金属結晶に特有
な回折線が認められない状態をいう。
Furthermore, regarding cooling conditions, it is necessary to rapidly cool the alloy from a molten state at a rate of 1 degree Celsius or more per second. In this case, an amorphous structure refers to a state in which diffraction lines characteristic of metal crystals are not observed in ordinary X-ray diffraction.

また半金属元素とはほう素、炭素、けし、素、りんを指
す。本発明においては合金の母体をなす第8族遷移元素
としては鉄、コバルト、ニッケルの3元素を対象とした
が、他の第8族元素も同様の効果を持ち得るであろうこ
とは容易に考えられる。また成分として不可避不純物が
ふくまれてし、ても差支えないことはいうまでもない。
上記の成分の組合せが非晶質金属合金をつくり易く、ま
た耐食性にすぐれる理論的根拠は現在明らかではない。
In addition, metalloid elements refer to boron, carbon, poppy, element, and phosphorus. In the present invention, the three elements iron, cobalt, and nickel were targeted as the Group 8 transition elements that form the matrix of the alloy, but it is easy to see that other Group 8 elements may have similar effects. Conceivable. It goes without saying that there is no problem even if unavoidable impurities are included as ingredients.
The theoretical basis on which the combination of the above components makes it easy to create an amorphous metal alloy and has excellent corrosion resistance is currently unclear.

本発明は非晶質構造形成傾向と添加元素の種類及び冷却
速度との関係を系統的に実験した結果得られたものであ
る。本発明者らの研究によって添加元素の種類について
週期律表上の規則性が明らかになった。本発明の要点の
一つは第8族遷移元素と半金属元素に隣接する元素と半
金属元素とを組合せることによって非晶質状態を確保し
、その特性改善のために第傘族元素を添加することにあ
る。従来鉄、ニッケルあるいはパラジウムをベースとし
た非晶質金属が発表されているが、本発明者はベースに
なる鉄を池元素でおきかえる一連の研究の結果、ニッケ
ルのみならずコバルトで置換しても非晶質金属が得られ
るが「第8族からはずれたマンガン、銅による置換は非
晶質になりにくいことを見出した。一方、これらのベー
ス成分と組合される元素としては、従来りん十数%、炭
素数%の同時添加が知られていた。
The present invention was obtained as a result of systematic experiments on the relationship between the tendency to form an amorphous structure, the type of added element, and the cooling rate. The research conducted by the present inventors has revealed the regularity of the types of added elements on the weekly table. One of the key points of the present invention is to ensure an amorphous state by combining a group 8 transition element, an element adjacent to a metalloid element, and a metalloid element, and to improve the properties of the metalloid element, an umbrella group element is added. It consists in adding. Conventionally, amorphous metals based on iron, nickel, or palladium have been announced, but as a result of a series of studies in which the iron base was replaced with a metal element, the present inventor found that not only nickel but also cobalt can be used to replace the base iron. Although amorphous metals can be obtained, we have found that substitution with manganese and copper, which are out of Group 8, is difficult to make amorphous metals.On the other hand, as elements combined with these base components, conventional %, and simultaneous addition of carbon number % was known.

しかし本発明者らはこれらについても広範囲な研究を行
ない、半金属元素のほかに週期律表上でこれに隣接する
窒素、いおう、すくアルミニウムの添加もまた広範囲に
有効なことを見出し「さらにこれに週期律表傘族の元素
をある限度まで添加しても非晶質が確保されることを見
出したものである。さらにこれらの添加量については従
来の研究では鉄あるいはニッケル以外の添加元素はそれ
らの総量が約20原子%に限られていて、成分設計上の
規則的な指針は得られていなかった。
However, the present inventors conducted extensive research on these elements, and found that addition of nitrogen, sulfur, and aluminum, which are adjacent to metalloid elements on the weekly table, was also effective over a wide range. It was discovered that amorphous state can be maintained even if the addition of the elements of the Chrysanthemum group up to a certain limit is achieved.Furthermore, regarding the amounts of these additions, previous research has shown that no additive elements other than iron or nickel are added. Their total amount is limited to about 20 atomic %, and no regular guidelines for component design have been obtained.

そこで本発明者らは広範囲な実験をっみ重ねた結果、合
金の融点が一つの基準となり「かつそれはベースとなる
第8族元素と添加される窒素、すくアルミニウムあるい
は半金属元素のいずれかとの二元合金の共晶温度との関
係で定められることを明らかにしたものである。すなわ
ち前にのべたように、合金の融点をある程度以上低くす
ることが必要で、それはベースとなる鉄、コバルト、ニ
ッケルのいずれかと、添加される窒素、いおう、すくア
ルミニウムのいずれかあるいは半金属元素のいずれかと
の二元合金の共晶温度のもっとも高いものよりプラス1
5000以下のぞましくは10000以下になるように
第傘族元素をふくめて成分を調整することが有効である
ことを見出した。もちろんこのように合金成分を調整し
ても冷却速度によっては非晶質金属を得ることは不可能
であって、溶融状態から十分速く凝固、冷却することが
必要である。
As a result of extensive experiments, the inventors of the present invention determined that the melting point of the alloy was one of the criteria. This is determined by the relationship with the eutectic temperature of the binary alloy.In other words, as mentioned earlier, it is necessary to lower the melting point of the alloy to a certain level, and this is due to the fact that the melting point of the alloy , nickel and any one of added nitrogen, sulfur, aluminum, or metalloid element, plus one point higher than the highest eutectic temperature of the binary alloy.
It has been found that it is effective to adjust the composition by including the umbrella group elements so that it is 5,000 or less, preferably 10,000 or less. Of course, even if the alloy components are adjusted in this way, it is impossible to obtain an amorphous metal depending on the cooling rate, and it is necessary to solidify and cool the metal from a molten state sufficiently quickly.

急袷が必要な領域は第一には凝固時であるが、凝固後、
高温状態に長く保持される時は原子拡散によって結晶化
するので凝固後も十分な冷却速度をとることが必要であ
る。厳密には凝固時と凝固後とで必要な冷却速度が異な
ることが考えられるが実際に分離して制御することは困
難である。本発明者らは冷却速度を種々変えた実験と理
論的な予想から結晶化が停止する約300℃までを1び
℃/秒以上の速さで冷却することが必要であることを見
出した。このようにして得られた非晶質合金は通常の結
晶質の急冷凝固合金とくらべてすぐれた強度および延靭
性および耐食性を備えている。
The first area that requires fastening is during solidification, but after solidification,
When kept at a high temperature for a long time, crystallization occurs due to atomic diffusion, so it is necessary to maintain a sufficient cooling rate even after solidification. Strictly speaking, it is conceivable that the required cooling rates are different during solidification and after solidification, but it is difficult to actually control them separately. The present inventors have found from experiments using various cooling rates and theoretical predictions that it is necessary to cool the material at a rate of 1° C./second or more until crystallization stops at about 300° C. The amorphous alloy thus obtained has superior strength, ductility and corrosion resistance compared to ordinary crystalline rapidly solidified alloys.

従って用途としてはワイヤロープ、スチールコ−ド、フ
イルター、繊維強化複合材料素材、コンクリ−ト強化素
材、メッシュ、防音、防震材などのほかに水素吸蔵材が
ある。本発明は非晶質合金を設計するに際して、従来の
限定された経験から脱した法則性を見出し、かつすぐれ
た特性を得た点できわめて*有意義なものである。実施
例 1 65原子%Fe−10原子%P−10原子%C−5原子
%AI−10原子%Ti合金の融点は、1120二○で
これは鉄と窒素、アルミニウム、および半金属元素との
2元素の共晶温度のうち高い方のFe−AI系の共晶温
度の1165℃より低い(第2図参照)。
Therefore, applications include wire ropes, steel cords, filters, fiber-reinforced composite materials, concrete reinforcement materials, meshes, soundproofing and earthquake-proofing materials, as well as hydrogen storage materials. The present invention is extremely significant in that it has discovered a law that goes beyond the conventional limited experience when designing an amorphous alloy, and has obtained excellent properties. Example 1 The melting point of the 65 atomic % Fe-10 atomic % P-10 atomic % C-5 atomic % AI-10 atomic % Ti alloy is 1120°, which is the melting point of iron, nitrogen, aluminum, and metalloid elements. It is lower than the higher eutectic temperature of the two elements, which is 1165°C, which is the eutectic temperature of the Fe-AI system (see Figure 2).

これを溶融状態から1び℃/秒の冷遠で急冷凝固させた
金属繊維は非晶質状態を示した。その特性を下表に示す
。実施例 2 また、下記の組成の合金を溶融状態から1『℃/秒の冷
速で急冷凝固させたものは非晶質状態を示し、その特性
は下記のとおりであった。
The metal fiber, which was rapidly solidified from the molten state by cooling at 1° C./second, showed an amorphous state. Its characteristics are shown in the table below. Example 2 Further, an alloy having the composition below was rapidly solidified from a molten state at a cooling rate of 1°C/sec, and exhibited an amorphous state, and its properties were as follows.

また耐食性も良好であった。図面の簡単な説明第1図は
本発明方法により製造した鉄−10原子%P−10原子
%C−5原子%M−10原子%T8E晶質合金のX線回
折写真で非晶質状態を示す写真である。
Moreover, the corrosion resistance was also good. Brief Description of the Drawings Figure 1 is an X-ray diffraction photograph of an iron-10 atom% P-10 atom% C-5 atom% M-10 atom% T8E crystalline alloy produced by the method of the present invention, showing an amorphous state. This is a photo shown.

第2図は鉄−アルミニウム2元合金の状態図である。鉄
−10原子%りん−10原子%炭素−5原子%アルミニ
ウム−10原子%チタン合金の融点112000は、鉄
とアルミニウムの2元系の共晶温度1165ooより1
5000高い1315oo以内(斜線部分)にあること
を示す。多1風 多Z図
FIG. 2 is a phase diagram of a binary iron-aluminum alloy. The melting point of the iron-10 atom% phosphorus-10 atom% carbon-5 atom% aluminum-10 atom% titanium alloy is 112,000 from the eutectic temperature of the binary system of iron and aluminum, 1165oo.
5000 higher and within 1315oo (hatched area). Ta1 Futa Z diagram

Claims (1)

【特許請求の範囲】[Claims] 1 基本成分として鉄、コバルトおよびニツケルの一種
または二種以上と、窒素およびアルミニウムの一種また
は二種以上と、さらに半金属元素として、ほう素、炭素
、りん、および、けい素の二種以上に、チタンおよびジ
ルコニウムの一種または二種を、その合金の融点が、合
金を構成する基本成分と、添加された窒素、アルミニウ
ムおよび前記半金属元素のいずれかとの二元系の共晶温
度のうちもっとも高い温度からプラス150℃以内にな
るように含有させ、かつ該合金を溶融状態から300℃
までの温度範囲を10^5℃/秒以上の冷却速度で急冷
凝固させることを特徴とする強度および耐食性のすぐれ
た非晶質合金の製造方法。
1 One or more of iron, cobalt, and nickel as basic components, one or two or more of nitrogen and aluminum, and two or more of boron, carbon, phosphorus, and silicon as metalloid elements. , one or two of titanium and zirconium, whose melting point is the highest of the eutectic temperatures of the binary system of the basic components constituting the alloy, added nitrogen, aluminum, and any of the metalloid elements mentioned above. The alloy is contained so that the temperature is within +150°C from the high temperature, and the alloy is heated to 300°C from the molten state.
A method for producing an amorphous alloy with excellent strength and corrosion resistance, which comprises rapidly solidifying an amorphous alloy at a cooling rate of 10^5°C/sec or more over a temperature range of
JP49082742A 1974-07-20 1974-07-20 Method for producing amorphous alloy with excellent strength and corrosion resistance Expired JPS601373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49082742A JPS601373B2 (en) 1974-07-20 1974-07-20 Method for producing amorphous alloy with excellent strength and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49082742A JPS601373B2 (en) 1974-07-20 1974-07-20 Method for producing amorphous alloy with excellent strength and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS5112308A JPS5112308A (en) 1976-01-30
JPS601373B2 true JPS601373B2 (en) 1985-01-14

Family

ID=13782858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49082742A Expired JPS601373B2 (en) 1974-07-20 1974-07-20 Method for producing amorphous alloy with excellent strength and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS601373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316348A (en) * 2005-04-15 2006-11-24 Nippon Steel Corp Thin ribbon of amorphous iron alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159847A (en) * 1982-03-19 1983-09-22 Hiroyoshi Inoue Amorphous alloy type catalyst for reduction reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316348A (en) * 2005-04-15 2006-11-24 Nippon Steel Corp Thin ribbon of amorphous iron alloy

Also Published As

Publication number Publication date
JPS5112308A (en) 1976-01-30

Similar Documents

Publication Publication Date Title
JP2911673B2 (en) High strength aluminum alloy
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
JPS59107041A (en) Method of rendering strength and ductility to intermetallic compound phase
Louzguine et al. Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses
JPH04218637A (en) Manufacture of high strength and high toughness aluminum alloy
EP0587186B1 (en) Aluminum-based alloy with high strength and heat resistance
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
Louzguine et al. Strong influence of supercooled liquid on crystallization of the Al 85 Ni 5 Y 4 Nd 4 Co 2 metallic glass
JPS601373B2 (en) Method for producing amorphous alloy with excellent strength and corrosion resistance
JPS601376B2 (en) Method for producing amorphous alloy with excellent strength and corrosion resistance
Yang et al. A new way of designing bulk metallic glasses in Cu–Ti–Zr–Ni system
JPH06330215A (en) Low density and porous aluminum alloy sintered body and its production
US5242513A (en) Method of preparing on amorphous aluminum-chromium based alloy
JPS601375B2 (en) Manufacturing method for high-strength amorphous alloy
JPS601370B2 (en) Manufacturing method of amorphous alloy
JP2945205B2 (en) Amorphous alloy material and manufacturing method thereof
JPS601374B2 (en) Method for producing amorphous alloy with excellent strength and corrosion resistance
JPS607012B2 (en) Method for producing amorphous alloy with excellent strength and corrosion resistance
JPS601371B2 (en) Manufacturing method of amorphous alloy
JPS601372B2 (en) Method for producing amorphous alloy with excellent strength and corrosion resistance
Enayati et al. Amorphization of Ni60Nb20Zr20 by mechanical alloying
JPH06316740A (en) High strength magnesium-base alloy and its production
EP4159344A1 (en) Aluminium-nickel alloy for manufacturing a heat conducting part, such as a heat exchanger
Audebert et al. Aluminum-base Al-Fe-Nb amorphous and nanostructured alloys
KR19980081847A (en) Toughness heat resistant aluminum alloy and method for manufacturing same