JPS60137053A - Semiconductor capacity element - Google Patents

Semiconductor capacity element

Info

Publication number
JPS60137053A
JPS60137053A JP25054583A JP25054583A JPS60137053A JP S60137053 A JPS60137053 A JP S60137053A JP 25054583 A JP25054583 A JP 25054583A JP 25054583 A JP25054583 A JP 25054583A JP S60137053 A JPS60137053 A JP S60137053A
Authority
JP
Japan
Prior art keywords
diffusion layer
type
layer
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25054583A
Other languages
Japanese (ja)
Inventor
Tatsu Nakamura
達 中村
Kazuyoshi Ariga
有賀 和義
Mitsuo Togashi
富樫 光夫
Toshiaki Watanabe
俊明 渡辺
Shinichi Sato
真一 佐藤
Noriyoshi Ooshima
大島 昇徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP25054583A priority Critical patent/JPS60137053A/en
Publication of JPS60137053A publication Critical patent/JPS60137053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only

Abstract

PURPOSE:To remove a voltage dependency of an electrostatic capacity between electrodes and to reduce a floating capacity by forming a high density impurity diffused layer on the surface of a semiconductor under an insulating film, and forming a low density impurity diffused layer of opposite conductive type to a substrate between the diffused layer and the substrate. CONSTITUTION:A low density P type diffused layer 11 is formed in an N type semiconductor substrate 10, and a high density N type diffused region 12 is formed in the layer 11. Then, an insulating film 13 is formed on the region 12, and electrodes 14 are formed on the film. The layers 11, 12 are connected through a high density P type diffused layer 15 and a high density N type diffused layer 16 with metal electrodes 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属−絶縁膜一半導体構造、いわゆる、MI
S型の静電容量素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to metal-insulator-semiconductor structures, so-called MI
This invention relates to an S-type capacitive element.

従来例の構成とその問題点 第1図は、MIS型構造により形成された静電容は素子
の従来例断面図である。同図においてはN型基板1内に
形成したP型拡散層2と、絶縁膜3を介して、′電極4
との間に、静電容量を形成する構造となっている。なお
、P型拡散層2は、高濃度P型拡散層6を介して電極6
に接続されている。この例の場合、電極4に加わる電圧
が、電極6に加わる電圧より高い場合には、P型拡散層
2の絶縁層3との近傍に空乏層領域が形成される。
Structure of a conventional example and its problems FIG. 1 is a sectional view of a conventional example of a capacitor element formed by an MIS type structure. In the figure, a P-type diffusion layer 2 formed in an N-type substrate 1 and an electrode 4 are connected through an insulating film 3.
The structure is such that a capacitance is formed between the two. Note that the P-type diffusion layer 2 is connected to the electrode 6 via the high concentration P-type diffusion layer 6.
It is connected to the. In this example, if the voltage applied to the electrode 4 is higher than the voltage applied to the electrode 6, a depletion layer region is formed in the vicinity of the P-type diffusion layer 2 and the insulating layer 3.

−そのため、電極4と電極6との間の静電容量は、との
空乏層による容量と、絶縁膜3による1喰とが、直列に
接続されるため静電容量の減少が生じる。静電容量の減
少を防ぐには、P型拡散層2の不純物a度を高める必要
があるが、この場合には基板1との間の接合容量が増加
するため、結果として、電極6につながる浮遊容lの増
加となり、この容置素子を用いた回路では、動作特性上
、不都合が生じる。なお、第1図には、素子間分離のだ
めの酸化膜了および、素子間分離のブこめの拡散層8、
層間絶縁膜9があわぜて形成しである。尚6は高濃度P
型拡散でおる。
- Therefore, the capacitance between the electrodes 4 and 6 is reduced because the capacitance due to the depletion layer and the capacitance due to the insulating film 3 are connected in series. In order to prevent a decrease in capacitance, it is necessary to increase the degree of impurity in the P-type diffusion layer 2, but in this case, the junction capacitance with the substrate 1 increases, which leads to the electrode 6. This results in an increase in floating capacitance l, which causes problems in terms of operating characteristics in a circuit using this capacitive element. In addition, FIG. 1 shows an oxide film layer for isolation between elements, a diffusion layer 8 for isolation between elements,
The interlayer insulating film 9 is formed in a jumbled manner. In addition, 6 is high concentration P
It is caused by type diffusion.

発明の目的 本発明は、上述従来例の問題点を解消するもので、電極
間の静電容量の電圧依存性を除去し、かつ、浮遊容量の
少ない半導体容量素子を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the problems of the prior art described above, and aims to eliminate the voltage dependence of capacitance between electrodes and provide a semiconductor capacitive element with less stray capacitance. .

発明の構成 本発明は、絶縁膜の下の半導体表面に高濃度の不純物拡
散層を形成し、空乏層の広がりをおさえ電圧依存のない
容量をつくると同時に、基板との間には、反対導電型の
低濃度不純物の拡散層を設け、基板との間の接合容量を
小さくすることにより、浮遊容量を減少させ、また、上
記高濃度拡散層と、低濃度拡散層との間の接合容量に対
してはこれらを同電位にすることにより、接合容量を無
祝し、」ニ述の目的を達成せんとするものである。
Structure of the Invention The present invention forms a highly concentrated impurity diffusion layer on the semiconductor surface under the insulating film, suppresses the expansion of the depletion layer, creates a voltage-independent capacitance, and at the same time creates an oppositely conductive layer between the substrate and the substrate. By providing a type of low concentration impurity diffusion layer and reducing the junction capacitance with the substrate, stray capacitance is reduced, and the junction capacitance between the high concentration diffusion layer and the low concentration diffusion layer is reduced. In contrast, by setting these to the same potential, the junction capacitance is ignored, and the above purpose is achieved.

実施例の説明 本発明の実施例について説明する。第2図に本発明の半
導体容量素子の断面図を示す。第2図においては、N型
半導体基板10内に低濃度のP散拡散層11を設け、さ
らにその内部に、高濃度のN型拡散領域12を形成する
。11型拡散領域12の上に絶縁膜13を形成し、その
上部に電極14を形成する。P散拡散層11とN型拡散
層12はそれぞれ、高濃度P型拡散層15と、高濃度N
型拡散層16を介して、金属電極17と接続される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described. FIG. 2 shows a cross-sectional view of the semiconductor capacitive element of the present invention. In FIG. 2, a low concentration P diffusion layer 11 is provided in an N type semiconductor substrate 10, and a high concentration N type diffusion region 12 is further formed therein. An insulating film 13 is formed on the 11-type diffusion region 12, and an electrode 14 is formed on the insulating film 13. The P-diffusion layer 11 and the N-type diffusion layer 12 are the high-concentration P-type diffusion layer 15 and the high-concentration N-type diffusion layer 15, respectively.
It is connected to a metal electrode 17 via a type diffusion layer 16 .

本構造において、電極14と電極17との間の静電容量
は、高濃度N型拡散層12があす、シかも高濃度である
だめ、空乏層の発生がおさえられ、静電容量の変動は、
はとんど生じない。この高濃度N型拡散層12をイオン
注入により、リンを150KeV、iq人電量4×10
1′//C1jテ注入シタ場+5Vの範囲で、静電容量
の変動は、5%以下にすることができる。高濃度N型拡
散層12と、低濃度P型拡散層11との接合容量は、こ
の2つの領域が高濃度P型拡散層15と、高濃度N型拡
散層16を介し、金属電極17で電気的に同電位になー
・でいるため無視することができる。低濃度P型拡散層
11と、N型基板1○との接合容量は、P散拡散層11
の濃度を低くすることにより、小さくすることができる
。なお、第2図には素子間分離のだめの酸化膜18、お
よび素子間分離のだめの拡散層19、層間絶縁膜20が
あわせて形成しである。
In this structure, the electrostatic capacitance between the electrode 14 and the electrode 17 is so high that the high concentration N-type diffusion layer 12 has a high concentration. ,
rarely occurs. This high-concentration N-type diffusion layer 12 is ion-implanted with phosphorus at 150 KeV and iq electric power of 4×10
In the range of +5 V for the injection field, the capacitance variation can be less than 5%. The junction capacitance between the high concentration N-type diffusion layer 12 and the low concentration P-type diffusion layer 11 is determined by the connection between these two regions via the high concentration P-type diffusion layer 15 and the high concentration N-type diffusion layer 16, and the metal electrode 17. Since they are electrically at the same potential, they can be ignored. The junction capacitance between the low concentration P-type diffusion layer 11 and the N-type substrate 1○ is
It can be made smaller by lowering the concentration of. In FIG. 2, an oxide film 18 for element isolation, a diffusion layer 19 for element isolation, and an interlayer insulating film 20 are also formed.

発明の効果 本発明にJ:れば、電極間の電圧による静電容量の変化
の少ない、しかも浮遊容量の小さい1堆素子が実現でき
る。本発明をスイッチトキャパシタフィルタに用いると
、歪の少ない特性が実現できる。
Effects of the Invention According to the present invention, it is possible to realize a one-layer element with little change in capacitance due to voltage between electrodes and low stray capacitance. When the present invention is applied to a switched capacitor filter, characteristics with less distortion can be realized.

以上本発明をN型基板の場合について説明しだが、P型
基板を用い、上記説明とは反対の不純物拡散をした場合
であっても適用可能である。
Although the present invention has been described above with respect to an N-type substrate, it is also applicable to a case where a P-type substrate is used and impurity diffusion is performed in a manner opposite to that described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の半導体容量素子の断面図、第2図は、
本発明の半導体容量素子の断面図である。 1o・・・・N型基板、11・・・ P型拡散層、12
・・・・N型拡¥iJi層、13・・・・・・酸化膜、
14.17・・・・電(1負、15・・・・・・高濃・
度P型拡散層、16・・・高飛IfN型拡散層、18 
・・素子分離酸化膜、19・・・・・素子分離拡散、2
0・・・・・・層間絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 @2図
Fig. 1 is a cross-sectional view of a conventional semiconductor capacitive element, and Fig. 2 is a sectional view of a conventional semiconductor capacitive element.
1 is a cross-sectional view of a semiconductor capacitive element of the present invention. 1o... N type substrate, 11... P type diffusion layer, 12
...N-type expanded iJi layer, 13...Oxide film,
14.17・・・Electricity (1 negative, 15・・・Takano・
degree P-type diffusion layer, 16...high-flying IfN-type diffusion layer, 18
...Element isolation oxide film, 19...Element isolation diffusion, 2
0...Interlayer insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure @2 figure

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板内に、同基板とは反対の導電工(す
の低濃度不純物拡散層を形成し、この拡散層内に、−導
電型不純物高濃度拡散層内を形成し、この拡散層」二部
に、絶縁膜を形成し、さらにこの絶縁膜11部に一方の
電極を形成するとともに、前記2つの拡散層に接する他
方の電極を設けたことを特徴とする半導体容置素子。
A low concentration impurity diffusion layer is formed in a semiconductor substrate of one conductivity type, which is opposite to the same substrate, and a high concentration impurity diffusion layer of - conductivity type is formed within this diffusion layer. A semiconductor container element characterized in that an insulating film is formed on the second part, and one electrode is further formed on the 11 part of the insulating film, and the other electrode is provided in contact with the two diffusion layers.
JP25054583A 1983-12-26 1983-12-26 Semiconductor capacity element Pending JPS60137053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25054583A JPS60137053A (en) 1983-12-26 1983-12-26 Semiconductor capacity element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25054583A JPS60137053A (en) 1983-12-26 1983-12-26 Semiconductor capacity element

Publications (1)

Publication Number Publication Date
JPS60137053A true JPS60137053A (en) 1985-07-20

Family

ID=17209499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25054583A Pending JPS60137053A (en) 1983-12-26 1983-12-26 Semiconductor capacity element

Country Status (1)

Country Link
JP (1) JPS60137053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146351A (en) * 1987-12-02 1989-06-08 Mitsubishi Electric Corp Semiconductor device
EP1024538A1 (en) * 1999-01-29 2000-08-02 STMicroelectronics S.r.l. MOS varactor, in particular for radio-frequency transceivers
KR101402632B1 (en) * 2006-06-16 2014-06-03 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 Semiconductor filter structure and method of manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146351A (en) * 1987-12-02 1989-06-08 Mitsubishi Electric Corp Semiconductor device
EP1024538A1 (en) * 1999-01-29 2000-08-02 STMicroelectronics S.r.l. MOS varactor, in particular for radio-frequency transceivers
US6400001B1 (en) 1999-01-29 2002-06-04 Stmicroelectronics S.R.L. Varactor, in particular for radio-frequency transceivers
KR101402632B1 (en) * 2006-06-16 2014-06-03 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 Semiconductor filter structure and method of manufacture

Similar Documents

Publication Publication Date Title
US5341009A (en) Fast charging MOS capacitor structure for high magnitude voltage of either positive or negative polarity
US5773860A (en) Semiconductor device including MOS capacitance
US4704625A (en) Capacitor with reduced voltage variability
JPH0936307A (en) Mos capacitor
JPS60137053A (en) Semiconductor capacity element
JPS61119072A (en) Semiconductor capacity device
US5598023A (en) Photoelectric converting apparatus
JPS59100570A (en) Mos transistor
CN1252620A (en) Manufacture of complementary MOS inverter
JPH01268049A (en) Diffused resistor element
JP2563456B2 (en) MIS type capacitive element
JPH02137256A (en) Semiconductor integrated circuit
JPH0441499B2 (en)
JP2907504B2 (en) Semiconductor device
JPH03155659A (en) Semiconductor device
JPS58173A (en) Manufacturing method for semiconductor switch
JPS604263A (en) Mos field effect semiconductor device
JP2826239B2 (en) Capacitor
JPS62211942A (en) Semiconductor circuit
JP2515016B2 (en) Thyristor
JP2617265B2 (en) Semiconductor device
JPS6116561A (en) Semiconductor device and usage thereof
JPH025484A (en) Mos semiconductor device
JPH0368168A (en) Semiconductor memory
JPS60210864A (en) Semiconductor memory device