JPS60136812A - Control device of shaft driving motor - Google Patents

Control device of shaft driving motor

Info

Publication number
JPS60136812A
JPS60136812A JP59164537A JP16453784A JPS60136812A JP S60136812 A JPS60136812 A JP S60136812A JP 59164537 A JP59164537 A JP 59164537A JP 16453784 A JP16453784 A JP 16453784A JP S60136812 A JPS60136812 A JP S60136812A
Authority
JP
Japan
Prior art keywords
generator
signal
shaft
motor
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59164537A
Other languages
Japanese (ja)
Other versions
JPS6262368B2 (en
Inventor
Toshiaki Otsuka
俊明 大塚
Hiroshi Tanaka
宏 田中
Atsushi Inoue
淳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP59164537A priority Critical patent/JPS60136812A/en
Publication of JPS60136812A publication Critical patent/JPS60136812A/en
Publication of JPS6262368B2 publication Critical patent/JPS6262368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/16Controlling the angular speed of one shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Velocity Or Acceleration (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To control the rotational frequency for driving a motor always at a constant value with a simple structure by detecting the variation of the rotational frequency of a main engine as a signal for feedforward control and the variation of the rotational frequency of a motor as a signal for feedback control. CONSTITUTION:The output of the main master 1 is transmitted to a propeller gear 2 through a working gear 4 and divided into the input of planetary gears 5 and the input of a hydraulic pump 6 to be converted into respective powers. The rotational frequency of the propeller shaft 2 is detected by an electric speed detector 8 and sent to a signal processor 9. The rotational frequency of an input shaft 10 of the motor 11 is detected by an electric speed detector 13 and sent to a signal processor 14. An output to the planetary gears 5 and fluid power to the hydraulic pump 6 which are divided by the working gear 4 are combined again by a hydraulic motor 17 and a ring gear 18 and the combined signal is outputted to the input shaft 10 to drive the motor 11. The outputs of the detectors 8, 13 are processed by the processors 9, 14 and then supplied to an inclined rotation angle control device 20 for controlling the inclined rotation angle of the hydraulic pump 6.

Description

【発明の詳細な説明】 本発明は軸駆動発電機の制御装置に関し、更に詳しくは
主機関によって軸駆動され、波浪等の外部負荷及び発電
機負荷に影響されることなく常に電圧、周波数、一定の
発電エネルギーを供給できるようにした船舶用軸駆動発
電機の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a shaft-driven generator, and more specifically, the present invention relates to a control device for a shaft-driven generator, and more specifically, the shaft-driven generator is driven by a main engine, and the voltage and frequency are always maintained at a constant level without being affected by external loads such as waves or the generator load. The present invention relates to a control device for a shaft-driven generator for ships, which is capable of supplying generated energy.

普通この種船舶用発電機は推進軸駆動用の主機関とは独
立した補機ディーゼル機゛関または補機蒸気タービンに
よって駆動されているためエンジンは二系統塔載されて
いる。このため発電機やその他の補機で駆動されている
ものを主機関によって駆動できれば補機は不要とな)補
機の占めるスペースを有効に利用できると共にメンテナ
ンスの点からも非常に有利である。現実に小型の漁船や
可変ピッチプロペラ船などにおいては主機関の出力の一
部を分岐して発電機を駆動する「軸駆動発電機械」は従
来も採用されている。しかし々がらこの方式では推進軸
のプロペラにかかる負荷が波浪等の外部負荷変電によっ
て周期的に変化すると、この影響が推進軸の回転数変化
として現われ必然的に発電機の回転数が大きく変化する
ことになり電圧、周波数が変動する。このため上記方式
は大型船ではいまだ用いられていないのが現状である。
Normally, this type of marine generator is driven by an auxiliary diesel engine or an auxiliary steam turbine independent of the main engine for driving the propulsion shaft, so two engines are installed in the tower. For this reason, if the main engine can drive something that is driven by a generator or other auxiliary equipment, the auxiliary equipment is not needed.) The space occupied by the auxiliary equipment can be used effectively, and it is very advantageous from the point of view of maintenance. In reality, small fishing boats and variable pitch propeller boats have traditionally used shaft-driven generator machines, which branch off a portion of the main engine's output to drive a generator. However, with this method, if the load on the propeller of the propulsion shaft changes periodically due to external load transformation such as waves, this effect will appear as a change in the rotation speed of the propulsion shaft, and the rotation speed of the generator will inevitably change significantly. As a result, the voltage and frequency will fluctuate. For this reason, the above method is not currently used on large ships.

しかして従来の主な軸駆動発電装置としては、■補機デ
ィーゼル発電装置と併用する方式と、■電気的に周波数
変換を行う方式と、■機械高に発電機回転数を一定にす
る方式カーあり、■の方式は主機関回転数の変動に伴な
って発電機の周波数変動がある限界値を越えると自動的
に補機のディーゼル駆動に切り替えるようにしたもので
あり、■の方式は主機関直接駆動の発電装置で発生した
電力をインバータまたはワードレオナードなどによって
電気的に処理をすることにより所要周波数の電力に変換
する方法であり、又■の方式は発電機駆動軸に電磁接手
を設け、そのスリップを制御したりあるいは差動装置で
付加回転数を増減させて制御を行うものである。
However, the main conventional shaft-driven power generators are: ■ A method used in conjunction with an auxiliary diesel generator, ■ A method that electrically converts the frequency, and ■ A method that keeps the generator rotation speed constant at the machine height. Yes, the method (■) automatically switches to the diesel drive of the auxiliary equipment when the frequency fluctuation of the generator exceeds a certain limit due to fluctuations in the main engine speed. This is a method of converting the electric power generated by a generator directly driven by the engine into electric power of the required frequency by electrically processing it using an inverter or Ward Leonard, etc. Method (2) also involves installing an electromagnetic coupling on the generator drive shaft. This control is performed by controlling the slip or by increasing or decreasing the additional rotation speed using a differential device.

しかしながらこの三つの方法でも装置が複雑化し、又発
電機を確実に制御できな込という問題が存するものであ
る。
However, even with these three methods, there are problems in that the equipment becomes complicated and the generator cannot be controlled reliably.

従って本発明の目的はこれら従来の方式の欠点を解決す
べく、主機関より動力を供給される推進軸駆動方式を採
用すると共に波浪等により推進軸、換言すれば主機関回
転数に変動があっても更に発電機負荷変動があってもこ
れに関係なく常に一定に発電機駆動回転数を制御できる
ようにした船舶用に好適な軸駆動発電機の制御装置を提
供することである。
Therefore, an object of the present invention is to solve the drawbacks of these conventional systems by adopting a propulsion shaft drive system in which power is supplied from the main engine, and to avoid fluctuations in the propulsion shaft, or in other words the main engine rotational speed, due to waves, etc. It is an object of the present invention to provide a control device for a shaft-driven generator suitable for a ship, which can always control the generator drive rotation speed at a constant level regardless of changes in the generator load.

この目的達成の為の本発明の構成は主機関回転数変動を
フィードバック制御の信号とし、発電機回転数変動をフ
ィードバック制御の信号として検出し、これらを信号処
理装置で処理するようにしたことを特徴とするものであ
る。
The configuration of the present invention to achieve this objective is to use main engine rotational speed fluctuations as a feedback control signal, detect generator rotational speed fluctuations as a feedback control signal, and process them with a signal processing device. This is a characteristic feature.

即ち更に詳しく述べると、推進軸と発電機の回転数をそ
れぞれ検出するそれぞれの速度検出器と、これらの速度
検出器の出力信号と基準信号との誤差信号を演算出力す
るそれぞれの信号処理装置とを備え、上記誤差信号に基
づいてその誤差を補正する方向に油圧ポンプの傾転角を
変位させるようにしたことを特徴とするものである。
That is, to explain in more detail, there are speed detectors that detect the rotation speeds of the propulsion shaft and generator, and signal processing devices that calculate and output error signals between the output signals of these speed detectors and the reference signal. The hydraulic pump is characterized in that the tilting angle of the hydraulic pump is displaced in a direction that corrects the error based on the error signal.

以下本発明の実施の一例を図面について説明する・ 主機関lの出力は作動歯車4を介して大部分推進軸2に
伝達されることによシプロペラ3を回転駆動し、残)の
出力は遊星歯車装置5の入力と油圧ポンプ6の入力に分
割されてそれぞれの動力に変換される。
An example of the implementation of the present invention will be explained below with reference to the drawings. Most of the output of the main engine l is transmitted to the propulsion shaft 2 via the operating gear 4 to rotationally drive the propeller 3, and the remaining output is transmitted to the planetary The input is divided into the input of the gear device 5 and the input of the hydraulic pump 6 and converted into respective motive power.

推進軸2の回転数は歯車7を介して電気的速度検出器8
に検出され、この検出器8の信号は電気的信号処理装置
9に送られるようになっている。
The rotational speed of the propulsion shaft 2 is determined by an electrical speed detector 8 via a gear 7.
The signal from the detector 8 is sent to an electrical signal processing device 9.

遊星歯車装置5の出力軸10は発電機11を駆動し、こ
の発電機11は船内の電機設備に電気エネルギーを供給
するものである。
The output shaft 10 of the planetary gear system 5 drives a generator 11, and this generator 11 supplies electrical energy to electrical equipment inside the ship.

上記出力軸、いいかえれば発電機11の入力軸1Oには
歯車12が連動し、この歯車12を介して入力軸10の
回転数が電気的速度検出器13によって検出され、この
検出器13で検出された出力信号は電気的信号処理装置
14に送られるようになつ゛ている。
A gear 12 is interlocked with the output shaft, in other words, the input shaft 1O of the generator 11, and the rotation speed of the input shaft 10 is detected by the electrical speed detector 13 via the gear 12. The resulting output signal is sent to an electrical signal processing device 14.

他方油圧ポンプ6は回路15、油圧ユニット16を介し
て油圧モータ17と油圧的に連結して閉回路を形成し、
油圧ポンプ6の傾転角に見合った油圧を油圧モータ17
に供給しこれを駆動する。油圧モータ17の出力軸は遊
星歯車装置5のリングギヤ18に噛合されている。即ち
作動歯車4で分割された遊星歯車装置5への出力と油圧
ポンプ6への流体動力は油圧モータ17とリングギヤ1
8を連結することで再び加え合わされてj入力軸10に
出力され、この出力が発電機11を駆動するものである
。尚各歯車装量4.5には潤滑ユニット40から潤滑油
が供給され歯車の回転を良好にしている。尚又上記各電
気的速度検出器8,13の出力信号は電気的信号処理装
置9,14で処理された後/(ワー増幅装置19で増巾
されその出力信号は傾転角制御装置20に送られ、との
傾転角制御装置20は入力信号に応じて油圧ポンプ6の
傾転角を増減させるものである。
On the other hand, the hydraulic pump 6 is hydraulically connected to a hydraulic motor 17 via a circuit 15 and a hydraulic unit 16 to form a closed circuit,
The hydraulic motor 17 supplies hydraulic pressure commensurate with the tilting angle of the hydraulic pump 6.
and drive it. The output shaft of the hydraulic motor 17 is meshed with a ring gear 18 of the planetary gear device 5. That is, the output to the planetary gear set 5 divided by the operating gear 4 and the fluid power to the hydraulic pump 6 are transmitted by the hydraulic motor 17 and the ring gear 1.
8 are combined again and output to the j input shaft 10, and this output drives the generator 11. Incidentally, lubricating oil is supplied to each gear loading 4.5 from a lubrication unit 40 to improve the rotation of the gears. Furthermore, the output signals of the electrical speed detectors 8 and 13 are processed by the electrical signal processing devices 9 and 14, and then amplified by the power amplifier 19, and the output signals are sent to the tilting angle control device 20. The tilting angle control device 20 increases or decreases the tilting angle of the hydraulic pump 6 according to an input signal.

即ち、推進軸2、発電機11の入力軸10に回転数の変
動があるとこの変動が電気的に検出されて傾転角制御装
置20に送られて油圧ポンプ6の吐出量を変える。この
為この吐出量に応じて油圧モータ17が駆動しリングギ
ヤ18を介して遊星歯車5を制御し入力軸10の回転数
を補正するものである。この場合波浪等によシブロベラ
3に外部負荷がかかるとその推進軸2、主機関1の回転
数が変動する為、この変動は発電機11の入力軸10に
も影響するが、この変動は推進軸2から検出しても良く
、入力軸1Oから検出してもよく、又は同時に検出して
もよいようになっている。同時に検出した場合、二つの
信号は一つの信号処理装置で一括処理されパワー増幅装
置に入力される。傾転角制御装置20は電気油圧サーボ
弁と操作シリンダを組み合わせたものでも、更に電気サ
ーボモータ又は電気パルスモータと送フねじ機構を組み
合わせたものでも良い。ここでは実施した電磁式比例圧
力制御弁とサーボレギュレータから成る傾転角制御装置
を用いた場合の油圧ユニット16と油圧駆動機構を牙2
図に示し、これについて説明する。
That is, when there is a variation in the rotational speed of the propulsion shaft 2 or the input shaft 10 of the generator 11, this variation is electrically detected and sent to the tilt angle control device 20 to change the discharge amount of the hydraulic pump 6. Therefore, the hydraulic motor 17 is driven in accordance with this discharge amount to control the planetary gear 5 via the ring gear 18 and correct the rotational speed of the input shaft 10. In this case, if an external load is applied to the shiburobura 3 due to waves etc., the rotation speed of its propulsion shaft 2 and main engine 1 will fluctuate, and this fluctuation will also affect the input shaft 10 of the generator 11; It is possible to detect from the axis 2, from the input shaft 1O, or from the input shaft 1O, or at the same time. When detected simultaneously, the two signals are collectively processed by one signal processing device and input to the power amplification device. The tilting angle control device 20 may be a combination of an electrohydraulic servo valve and an operating cylinder, or may be a combination of an electric servo motor or an electric pulse motor and a feed screw mechanism. Here, we will explain the hydraulic unit 16 and hydraulic drive mechanism when using the tilting angle control device consisting of an electromagnetic proportional pressure control valve and a servo regulator.
It is shown in the figure and will be explained.

油圧ポンプ6は回路15を介して油圧モータ17と連結
し、この′回路15にはブーストポンプ21から作動油
が補給される。起動時及び非常時には短絡弁22を右側
ポジションに切換えておくと油圧ポンプ6から吐出され
た作動油はバルブユニット23のリリーフバルブ24と
チェックバルブ25を介してポンプ6に戻されるが、通
常短絡弁22を左側ポジションに切換えると作動油はリ
リーフバルブ24で遮断された全油量が油圧モータ17
に供給されてこれを駆動するようになっている。
The hydraulic pump 6 is connected to a hydraulic motor 17 via a circuit 15, and this circuit 15 is supplied with hydraulic oil from a boost pump 21. At startup or in an emergency, if the short-circuit valve 22 is switched to the right position, the hydraulic fluid discharged from the hydraulic pump 6 is returned to the pump 6 via the relief valve 24 and check valve 25 of the valve unit 23, but normally the short-circuit valve 22 is switched to the right position. 22 to the left position, the entire amount of hydraulic oil shut off by the relief valve 24 is transferred to the hydraulic motor 17.
is supplied to drive this.

一方油圧ポンプ6は傾転角制御装置20と連結している
が、この制御装置20はサーボレギュレータ26と電磁
式比例圧力制御弁27からなり、サーボレギュレータ2
6内のシリンダ28にはサーボレギュレータ用ポンプ3
1から切換弁29を介して供給され、該切換弁29は一
側のシリンダ30と連結している。電磁式比例圧力制御
弁の油圧源用ポンプ32は絞り33と上記圧力制御弁2
7を介してタンク34に連結し、該絞り33と圧力制御
弁27間からはシリンダ30に油圧が導かれるようにな
っている。
On the other hand, the hydraulic pump 6 is connected to a tilting angle control device 20, and this control device 20 consists of a servo regulator 26 and an electromagnetic proportional pressure control valve 27.
Pump 3 for servo regulator is installed in cylinder 28 in 6.
1 through a switching valve 29, which is connected to a cylinder 30 on one side. The hydraulic power source pump 32 of the electromagnetic proportional pressure control valve has a throttle 33 and the pressure control valve 2.
It is connected to a tank 34 via a valve 7, and hydraulic pressure is introduced to a cylinder 30 from between the throttle 33 and the pressure control valve 27.

圧力制御弁27にはパワー増巾装置19からの信号が送
られ、この信号によってソレノイドが作動し圧力及び流
量を制御する。この圧力制御弁27で圧力が増減すると
この圧力変動がシリンダ30に作用して切換弁29を一
方向に切換えシリンダ28を伸長もしくは圧縮する。こ
の為油圧ポンプ6の傾転角が変位し油圧モータ170回
転数を変える。即ち油圧ポンプ6の傾転角は圧力制御弁
27の入力信号に見合った分変位するわけである。
A signal from the power amplifier 19 is sent to the pressure control valve 27, and this signal activates a solenoid to control the pressure and flow rate. When the pressure increases or decreases in this pressure control valve 27, this pressure fluctuation acts on the cylinder 30, switches the switching valve 29 in one direction, and expands or compresses the cylinder 28. For this reason, the tilting angle of the hydraulic pump 6 is changed, and the rotation speed of the hydraulic motor 170 is changed. That is, the tilting angle of the hydraulic pump 6 is displaced by an amount commensurate with the input signal of the pressure control valve 27.

次に本制御装置においてフィードバック制御方式を矛3
図について述べる。
Next, we will use the feedback control method in this control device.
Let's talk about the diagram.

主機関1の出力は可変容量型アキシャルピストンポンプ
6と遊星歯車装置5に供給されている。この状態から遁
浪等により発生した主機関回転数変動50及び′発電機
負荷変動35が発電機11に作用すると発電機回転数変
動51が電気的速度検出器13に検出され、更にこの検
出された信号は電気的信号処理装置14に送られる。こ
の電気的信号処理装置14に常時基準信号38が送られ
ており、検出器13からの信号は基準信号38と比較さ
れて信号処理37が行われる。信号処理装置14で処理
された出力信号はパワー増巾装置19に送られて増巾さ
れる。
The output of the main engine 1 is supplied to a variable displacement axial piston pump 6 and a planetary gear system 5. In this state, when the main engine speed fluctuation 50 and generator load fluctuation 35 caused by wandering etc. act on the generator 11, the generator speed fluctuation 51 is detected by the electrical speed detector 13. The generated signal is sent to an electrical signal processing device 14. A reference signal 38 is constantly sent to this electrical signal processing device 14, and the signal from the detector 13 is compared with the reference signal 38 and signal processing 37 is performed. The output signal processed by the signal processing device 14 is sent to the power amplification device 19 and amplified.

増巾された信号は傾転角制御装置20に送られてポンプ
6の傾転角を変化させ、従ってその変化分の流量の増減
によって油圧モータ17の回転数が変り遊星歯車装置5
の歯車回転数が一定となるようにコントロールし、いい
かえれば発電機11の回転数を一定に保持させる。以上
のように発電機110回転数が変動してもこの変動分が
フィードバックされてこれを補正する為発電機11は常
に一定の速度を保持されているわけである。
The amplified signal is sent to the tilting angle control device 20 to change the tilting angle of the pump 6, and accordingly, the rotation speed of the hydraulic motor 17 changes depending on the increase or decrease in the flow rate corresponding to the change, and the rotation speed of the hydraulic motor 17 changes.
In other words, the rotation speed of the generator 11 is maintained constant. As described above, even if the rotational speed of the generator 110 fluctuates, this fluctuation is fed back and corrected, so that the generator 11 is always maintained at a constant speed.

次に矛4図についてフィードフォワード制御方式を説明
する。
Next, the feedforward control method will be explained with reference to Figure 4.

矛3図の制御方式は発電機11の回転数を直接フィード
バックさせたものであるが、発電機エエの回転数に変動
あるということは推進軸2、主機関lの回転数に変動が
あるということであるから、牙4図の場合は主機関1の
回転数変動軸50を検出して制御しようとするものであ
る。
The control system shown in Figure 3 directly feeds back the rotational speed of the generator 11, but the fact that there is a fluctuation in the rotational speed of the generator A means that there is a fluctuation in the rotational speed of the propulsion shaft 2 and the main engine L. Therefore, in the case of Fig. 4, the rotation speed varying shaft 50 of the main engine 1 is detected and controlled.

即ち主機関回転数は電気的速度検出機8で検出されその
信号は直接電気的信号処理装置9に送られるもので、そ
の他の作動は矛3図の場合と同じである。このフィード
フォワード方式と2・3図のフィードバック方式を比較
すると前者は回転数の変動が発電機11の入力軸10に
結果として現われてから制御を行なうために制御作動が
比較的遅いのに対し、牙4図の方式では推進軸の回転数
変動を検出し修正動作を入力軸10に変動が現われる前
に始めるので主機関回転数変動による出力軸回転数変動
は小さくなる。
That is, the main engine rotational speed is detected by an electrical speed detector 8 and its signal is sent directly to an electrical signal processing device 9, and other operations are the same as in the case of Figure 3. Comparing this feedforward method and the feedback method shown in Figures 2 and 3, the former performs control after the fluctuation in rotational speed appears as a result on the input shaft 10 of the generator 11, so the control operation is relatively slow. In the method shown in Fig. 4, fluctuations in the rotational speed of the propulsion shaft are detected and corrective actions are started before fluctuations appear on the input shaft 10, so that fluctuations in the rotational speed of the output shaft due to fluctuations in the rotational speed of the main engine are reduced.

一方発電機11の負荷変動により油圧系の洩れ量が変化
し油圧モータ17、発電機11回転数が変化するがこれ
は補償されず偏差として残ることとなるが一般にこれは
小さいので実用できる。又第4図の信号の流れは開ルー
プであるため安定性は比較的良い。
On the other hand, the amount of leakage in the hydraulic system changes due to the load fluctuation of the generator 11, and the rotational speed of the hydraulic motor 17 and the generator 11 changes, but this is not compensated for and remains as a deviation, but it is generally small enough to be practical. Furthermore, since the signal flow in FIG. 4 is an open loop, the stability is relatively good.

更に第5図は本発明の実施例に係シ、これはフィードバ
ック・フィードフォワード制御方式たる前二者を組合せ
たもので電気的速度検出器8.1Bを二つ使用する。こ
れは主機関回転数変動をフィードフォワード制御の信号
とし、発電機回転数変動をフィードバック制御信号とし
て検出し、これらを電気的信号処理装置14で処理し前
述の二つの制御方式と同様の経路で制御を行なうもので
ある。この方式ではフィードフォワード制御によって主
機関回転数の変動50に起因する発電機回転数の変動5
1を小さくするとともにフィードバック制御によシ、負
荷変動35による誤差も合わせ、更に小さくするもので
ある。
Furthermore, FIG. 5 relates to an embodiment of the present invention, which is a combination of the former two methods of feedback/feedforward control and uses two electrical speed detectors 8.1B. This uses the main engine speed fluctuation as a feedforward control signal, detects the generator speed fluctuation as a feedback control signal, and processes these with the electrical signal processing device 14, using the same route as the two control methods described above. It is for controlling. In this method, the fluctuation 5 of the generator rotation speed caused by the fluctuation 50 of the main engine rotation speed is caused by feedforward control.
1 is reduced, and the error due to the load fluctuation 35 is also reduced by feedback control to further reduce the error.

以上のように本制御装置の特長効果は次のようになる。As described above, the features and effects of this control device are as follows.

■信号処理を電気的に行なうため、信号処理のための複
雑な機構は不要であシ、信頼性、保守点検が容易でしか
もコンパクト化が計られるばかシか系の特性改善も容易
である。
■Since signal processing is performed electrically, there is no need for a complicated mechanism for signal processing, and it is easy to improve reliability, maintenance and inspection, and to make the system more compact, making it easy to improve the characteristics of the system.

■動力の伝達を全油圧とせず機械と油圧を併用したため
効率が比較的高いものであシ、又過度現象に対する安全
性が高まる。
■Power transmission is not done entirely by hydraulic pressure, but uses a combination of mechanical and hydraulic pressure, so efficiency is relatively high, and safety against transient phenomena is increased.

■制御系の操作部を油圧モータとしたので比較的速い応
答性が得られるものである。更に主機関回転数変動をフ
ィードフォワード制御信号とし、発電機回転数変動をフ
ィードバック制御信号とし、二つの制御方式を常時併用
したことによシ次のよう々特有の効果を有する。
■Since the operating section of the control system is a hydraulic motor, relatively fast response can be achieved. Furthermore, by using the main engine rotational speed fluctuation as a feedforward control signal and the generator rotational speed fluctuation as a feedback control signal, and by constantly using the two control systems in combination, the following unique effects are obtained.

■外乱である主機関回転数の変動の影響をフィードフォ
ワード制御によって迅速に打ち消すとともに、発電機の
負荷の変動による偏差も含めてフィードフォワード制御
では残ってしまう偏差をフィードバック制御によって更
に/J・さくするため非常に高い精度が得られる。
■ Feedforward control quickly cancels out the effects of fluctuations in the main engine speed, which is a disturbance, and feedback control further eliminates deviations that would remain under feedforward control, including deviations due to generator load fluctuations. Therefore, very high accuracy can be obtained.

■フィードフォワード制御によって主機関回転数変動を
検出し、この変動の影響が発電機の回転数変動として大
きく現われる前に制御動作を始絵るので応答性で速い。
■ Feedforward control detects fluctuations in the main engine speed and initiates control operations before the effects of these fluctuations become significant as changes in the generator speed, resulting in fast response.

■偏差はフィードフォワード制御によって大巾に小さく
なるので残シの偏差を減するだめのフィードバック制御
のループケインは小さくて良く従って、系の安定性が高
い。
(2) Since the deviation is greatly reduced by feedforward control, the feedback control loop chain needed to reduce the residual deviation is small and the system is therefore highly stable.

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面は本発明の実施例に係シ、第1図は系統図、珂
・2図は油圧回路図、第3図、第4図、劃・5図は夫々
制御方式の信号流れを示すブロック図である。 代理人弁理士 天 野 泉
The attached drawings relate to embodiments of the present invention; FIG. 1 is a system diagram, FIG. 2 is a hydraulic circuit diagram, and FIGS. 3, 4, and 5 are blocks showing the signal flow of the control method. It is a diagram. Representative Patent Attorney Izumi Amano

Claims (1)

【特許請求の範囲】[Claims] 主機関の出力の一部が作動歯車を介して推進軸を駆動す
ると共に残部が制御系の入力軸側で分割され、この分割
された一方の出力は遊星歯車装置の入力軸に加えられ、
他方は油圧ポンプに加えられて流体動力に変換され、こ
の流体動力は油圧モータを介して再び遊星歯車装置に加
え合わされて発電機を駆動するようにした軸駆動発電装
置に於て、上記推進軸と発電機の回転数をそれぞれ検出
するそれぞれの速度検出器と、これらの速度検出器の出
力信号と基準信号を基に出力信号を演算する信号処理装
置とを備え、上記出力信号に基づいてその誤差を補正す
る方向に油圧ポンプの傾転角を変位させるようにしたこ
とを特徴とする軸駆動発電機の制御装置−0
A part of the output of the main engine drives the propulsion shaft via the operating gear, and the rest is divided on the input shaft side of the control system, and one of the divided outputs is applied to the input shaft of the planetary gear system.
The other side is applied to a hydraulic pump and converted into fluid power, and this fluid power is added to the planetary gear system again via a hydraulic motor to drive a generator. and a speed detector that detects the rotational speed of the generator, and a signal processing device that calculates an output signal based on the output signals of these speed detectors and a reference signal, and Control device for a shaft-driven generator-0, characterized in that the tilting angle of the hydraulic pump is displaced in a direction that corrects errors.
JP59164537A 1984-08-06 1984-08-06 Control device of shaft driving motor Granted JPS60136812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164537A JPS60136812A (en) 1984-08-06 1984-08-06 Control device of shaft driving motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164537A JPS60136812A (en) 1984-08-06 1984-08-06 Control device of shaft driving motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50107387A Division JPS5839323B2 (en) 1975-09-04 1975-09-04 Control device for shaft drive generator

Publications (2)

Publication Number Publication Date
JPS60136812A true JPS60136812A (en) 1985-07-20
JPS6262368B2 JPS6262368B2 (en) 1987-12-25

Family

ID=15795039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164537A Granted JPS60136812A (en) 1984-08-06 1984-08-06 Control device of shaft driving motor

Country Status (1)

Country Link
JP (1) JPS60136812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228813A (en) * 1985-07-31 1987-02-06 Ishikawajima Harima Heavy Ind Co Ltd Driving control device for ship generator
JPH02193600A (en) * 1989-01-20 1990-07-31 Nippondenso Co Ltd Hydraulic drive type ac generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825711A (en) * 1971-08-09 1973-04-04
US3733924A (en) * 1972-01-24 1973-05-22 Sundstrand Corp Hydromechanical transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825711A (en) * 1971-08-09 1973-04-04
US3733924A (en) * 1972-01-24 1973-05-22 Sundstrand Corp Hydromechanical transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228813A (en) * 1985-07-31 1987-02-06 Ishikawajima Harima Heavy Ind Co Ltd Driving control device for ship generator
JPH02193600A (en) * 1989-01-20 1990-07-31 Nippondenso Co Ltd Hydraulic drive type ac generator

Also Published As

Publication number Publication date
JPS6262368B2 (en) 1987-12-25

Similar Documents

Publication Publication Date Title
EP1187760B1 (en) Propelling and driving system for boats
NO144935B (en) DEVICE FOR PRODUCING ELECTRIC POWER OUT OF ENERGY RECOVERED FROM THE EXHAUST GAS FROM A COMBUSTION ENGINE
JPS60136812A (en) Control device of shaft driving motor
GB2306704A (en) Controlling the RPM of an engine in a hydraulic construction machine
US4514142A (en) Power management process
KR20170096097A (en) Control device, ship equipped with the same, and integrated control method
JPS5839323B2 (en) Control device for shaft drive generator
US4687410A (en) Torque limiter for prime mover
US20190348937A1 (en) Power generation system and method of controlling same
US20180327082A1 (en) Hydraulic actuation system
JP5675928B2 (en) Ship integrated control apparatus and ship equipped with the same
JPS6153531B2 (en)
GB2087050A (en) Hydrostatic Transmission Control System
EP4276308A1 (en) Method of adjusting the control system of a hydraulic pump
JPH0256481B2 (en)
CN111071947B (en) Tension reducing synchronous control and protection method
US20240175242A1 (en) Hydraulic drive system and construction machine
RU2669146C1 (en) Electrohydraulic system of automatic control of rotor speed of steam turbine of electric generator drive of ship propulsion system
SU1332067A1 (en) Method of stopping the pumping unit of the station having main and auxiliary pumps
SU1082681A2 (en) Thrust-relieving arrangement
SU552412A1 (en) Device for controlling a combined diesel gas turbine ship installation
JPH07111180B2 (en) Load sensing hydraulic drive
JP2619457B2 (en) Turbine output control device
SU616406A1 (en) Drive of work-performing member of mechanohydraulic cutter-loader
SU779179A1 (en) System of remote automated control of operating duty of the set including the ship main turbine, adjustable-pitch propeller and mounted generator