JPS60136209A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS60136209A
JPS60136209A JP58243109A JP24310983A JPS60136209A JP S60136209 A JPS60136209 A JP S60136209A JP 58243109 A JP58243109 A JP 58243109A JP 24310983 A JP24310983 A JP 24310983A JP S60136209 A JPS60136209 A JP S60136209A
Authority
JP
Japan
Prior art keywords
cooling
pipe
base
preliminary
preliminary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243109A
Other languages
Japanese (ja)
Other versions
JPH059925B2 (en
Inventor
Yuji Okumura
裕司 奥村
Hiroya Imura
井村 泰也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP58243109A priority Critical patent/JPS60136209A/en
Publication of JPS60136209A publication Critical patent/JPS60136209A/en
Publication of JPH059925B2 publication Critical patent/JPH059925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To reduce the generation of thermal stress by reducing the generation of a difference in temperature and further to shorten a preliminary cooling time by arranging a supporting member cooling pipe for cooling a superconductive coil supporting member in a preliminary cooling system. CONSTITUTION:A base preliminary cooling pipe 24 is arranged with being drawn around over the lower surface of a lower low-temperature base 5 and the upper surface of an upper low-temperature base 4. The pipe is welded or brazed to the bases in order to improve thermal conduction. One end of the base preliminary cooling pipe 24 is connected to a cooling medium transporting pipe 20 through a base preliminary and another end is connected to a withdrawal pipe 17. The preliminary cooling pipes 12' are drawn around over a peripheral surface of a sheer panel 6 and is then connected to a container 1. The preliminary cooling pipes 12' are welded or brazed to the peripheral surface of the sheer patel 6 in order to improve thermal conduction with it. The base preliminary cooling pipe 24 cools the low-temperature bases 4 and 5 and also the preliminary cooling pipes 12' cools the sheer panel 6 so that the preliminary cooling time can be reduced and generation of thermal stress is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導装置に係り、特にその冷却系統の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting device, and particularly to an improvement in its cooling system.

〔発明の背景〕[Background of the invention]

核融合装置やMHD発電装置などに使用される超電導装
置においで、超電導コイルに作用する電磁力を支えるた
めの超電導コイル支持m口、4は強度的条件を満足させ
るために大型化している。この支持部材は超電導コイル
を冷却することによって間接的に冷却さJしるが、大型
化によって熱容−が増えるためにこの支持部材を運転温
度まで予備冷却するのに長時間を要した。また、冷却初
期に(j超電導コイルと支持部材j711の温度差S人
きく、従って大きな熱応力が発生する欠点があった。
In superconducting devices used in nuclear fusion devices, MHD power generation devices, etc., the superconducting coil support port 4 for supporting the electromagnetic force acting on the superconducting coil is enlarged to satisfy strength requirements. Although this supporting member is indirectly cooled by cooling the superconducting coil, it takes a long time to pre-cool this supporting member to the operating temperature because the heat capacity increases due to the larger size. In addition, there was a drawback that there was a temperature difference S between the superconducting coil and the support member 711 at the initial stage of cooling, and therefore a large thermal stress was generated.

超電導装置は各種装置に利用されるが、超電導トロイダ
ルコイルを有するトーラス型核融合装置に用いる超電導
装置を例にとって以下に具体的に説明する。
Although superconducting devices are used in various devices, a superconducting device used in a torus-type nuclear fusion device having a superconducting toroidal coil will be specifically explained below.

第1図〜第3図は従来のトーラス型核融合装置に用いら
れる超電導装置を示し、第1図はその−部分の縦断側面
図、第2図は第1図の■−1断面図、第3図は冷却系統
図である。
Figures 1 to 3 show a superconducting device used in a conventional torus-type fusion device. Figure 3 is a cooling system diagram.

各収納容器1にそれぞれ収納される超電導トロイダルコ
イル2はプラズマ真空容器9に直交して巻回され、トー
ラス状に複数個設置される。各収納容器1が取すイ1け
られる環状の上下の低温ベース4.5は超電導トロイダ
ルコイル2に作用する向心力を含むフープ電磁力を受け
止め、外周側面のシャーパネル6は転倒電磁力を受け止
める。低温ベース4,5の上下には支柱7.8によって
所定間隔に保持された常温ベース9.10があり、低温
ベース5は断熱支持台11によって常湿ベース10に支
持される。各予備冷却配管12は低温ベース5をそれぞ
れ貫通して各収納容器lに冷媒(ヘリウム)13を供給
する。各リザーバタンク14は常温ベース9と低温ベー
ス4をそれぞれ貫通する連結管15を介して各収納容器
l内とそれぞれ連通する。この各リザーバタンク14に
は運転冷却配管16と回収配管1 ’7がそれぞれ連結
される。そしてこれらの構成部品は装置収納容器18内
に収納される。
A plurality of superconducting toroidal coils 2 stored in each storage container 1 are wound perpendicularly to the plasma vacuum container 9, and are arranged in a torus shape. The annular upper and lower low-temperature bases 4.5 on which each storage container 1 is mounted receive the hoop electromagnetic force including the centripetal force acting on the superconducting toroidal coil 2, and the shear panel 6 on the outer peripheral side receives the falling electromagnetic force. Above and below the low-temperature bases 4 and 5 there are normal-temperature bases 9.10 held at a predetermined distance by struts 7.8, and the low-temperature base 5 is supported on the normal-humidity base 10 by a heat insulating support 11. Each preliminary cooling pipe 12 passes through the low temperature base 5 and supplies a refrigerant (helium) 13 to each storage container l. Each reservoir tank 14 communicates with the inside of each storage container l via a connecting pipe 15 that passes through the normal temperature base 9 and the low temperature base 4, respectively. An operation cooling pipe 16 and a recovery pipe 1'7 are connected to each of the reservoir tanks 14, respectively. These components are then stored in the device storage container 18.

各予備冷却配管12はそれぞれ予備冷却調整弁19およ
び冷媒輸送配管20を介して冷媒供給源21に連結され
て予備冷却系統を構成する。一方、各リザーバタンク1
4に連結された各運転冷却配管16はそれぞれリザーバ
タンク14に設けた液面計(図示せず)からの信号で制
御される運転冷却調整弁22および冷媒輸送配管23を
介して冷媒供給源21に連結されて運転時冷却系統を構
成する。なお各回収配管17は冷媒供給源21に連結さ
れて、リザーバタンク14内の蒸発ガスな回収する。
Each pre-cooling pipe 12 is connected to a refrigerant supply source 21 via a pre-cooling adjustment valve 19 and a refrigerant transport pipe 20, respectively, to constitute a pre-cooling system. On the other hand, each reservoir tank 1
Each operating cooling pipe 16 connected to the refrigerant supply source 21 is connected to the refrigerant supply source 21 via an operating cooling adjustment valve 22 and a refrigerant transport pipe 23, which are controlled by a signal from a liquid level gauge (not shown) provided in the reservoir tank 14, respectively. is connected to constitute a cooling system during operation. Note that each recovery pipe 17 is connected to a refrigerant supply source 21 to recover evaporated gas in the reservoir tank 14.

このような超電導装置において、超電導トロイダルコイ
ル2の運転前に、予備冷却wl整弁19を開いて収納容
器Jに冷媒13を供給し該超電導トロイダルコイル2が
超電導状態となる極低温まで予備冷却して運転可能な状
態にする。そのとき。
In such a superconducting device, before operating the superconducting toroidal coil 2, the pre-cooling wl control valve 19 is opened to supply the refrigerant 13 to the storage container J to pre-cool the superconducting toroidal coil 2 to an extremely low temperature at which it becomes superconducting. and make it ready for operation. then.

冷媒13はリザーバタンク14にも溜められ、予備冷却
が終わると予備冷却調整弁19が閉じられて予備冷却系
統が封じ切られる。
The refrigerant 13 is also stored in the reservoir tank 14, and when the preliminary cooling is finished, the preliminary cooling regulating valve 19 is closed and the preliminary cooling system is shut off.

超電導トローイダルコイル2の運転時はリザータンク1
4の液面が予定レベルとなるように運転冷却調整弁22
を開いて冷[13を補充しつつ冷却が行なわJLる。
Reservoir tank 1 when operating superconducting toroidal coil 2
Operation cooling adjustment valve 22 so that the liquid level of No. 4 is at the expected level.
Open the refrigerator and refill the cold water [13] while cooling.

この従来の超電導装置は超電導トロイダルコイル2を冷
却するために収納容器1に供給した冷媒13によって低
温ベース4,5とシャーノ(ネル6をもlf1却づ−5
ので、前述した予備冷却時間と熱応力の問題が発生する
This conventional superconducting device uses a refrigerant 13 supplied to a storage container 1 to cool a superconducting toroidal coil 2 to cool low temperature bases 4, 5 and Shano (flannel 6).
Therefore, the problems of pre-cooling time and thermal stress mentioned above occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、予備冷却時間の短縮と熱応力の発生を
軽減し得る超電導装置を提供することにある。
An object of the present invention is to provide a superconducting device that can shorten pre-cooling time and reduce the occurrence of thermal stress.

〔発明の概要〕[Summary of the invention]

本発明は、超電;尊コイルを運転可能な温度まで冷却す
る冷媒を供給する予備冷却系統に超電導コイル支持部利
を冷却する支持部材冷却配管を設け。
In the present invention, a support member cooling pipe for cooling the superconducting coil support section is provided in a preliminary cooling system that supplies a refrigerant for cooling the superconducting coil to an operable temperature.

この支持部材冷却配管を流れる冷媒によって支持部材を
積極的に冷却するこことで、温度差の発生を少なくして
熱応力の発生を軽減すると共に予備冷却時間の短縮をは
かることを特徴とする。
The support member is actively cooled by the refrigerant flowing through the support member cooling pipe, thereby reducing the generation of temperature difference, reducing the generation of thermal stress, and shortening the preliminary cooling time.

〔発明の実施例〕[Embodiments of the invention]

トーラス型核融合装置に用いる超電導装置を例にとつ゛
C1第4図に示す冷却系統図を参照し、て。
Taking a superconducting device used in a torus-type fusion device as an example, refer to the cooling system diagram shown in FIG. 4 of C1.

本発明の一実施例を説明する。なお、第1図〜第3図に
示すよう従来装置と同一構成部品については、同一参照
符号を付して詳細説明を省略する、第4図において、ベ
ース予備冷却配管24は下側の低温ベース5の下面とL
側の低温ベース4の上面を引きまわし′C配置され、各
面との熱伝導を良くするためにこれらに溶接あるいはろ
う付けされる。ベース予備冷却配管24の一部はベース
Y・備冷却調弁25を介して冷媒輸送配管20と連結さ
れ、他端は回収配管17に連結される= er’F備冷
却耐冷却配管12′−パネル6の外周面へ−引きまわし
た後に収納容器1と連結されろ1.そしてこの予備冷却
配管12′もンヤーパネル6の外周面との熱伝導を良く
するためにこれらにi8接あるいはろう付けされる。
An embodiment of the present invention will be described. In addition, as shown in FIGS. 1 to 3, components that are the same as those of the conventional device are given the same reference numerals and detailed explanations are omitted. In FIG. 4, the base preliminary cooling pipe 24 is connected to the lower low temperature base The bottom surface of 5 and L
The upper surface of the low-temperature base 4 is placed around the upper surface of the lower temperature base 4, and is welded or brazed to each surface to improve heat conduction. A part of the base pre-cooling pipe 24 is connected to the refrigerant transport pipe 20 via the base Y/pre-cooling regulating valve 25, and the other end is connected to the recovery pipe 17. After being drawn around the outer peripheral surface of the panel 6, it is connected to the storage container 1.1. This pre-cooling pipe 12' is also welded or brazed to the outer peripheral surface of the inner panel 6 in order to improve heat conduction thereto.

このような冷却系統において、予備冷却時には、ベース
予備冷却調整弁25を開いてベース予備冷却配管24に
、収納容器1への6媒供給とは別に、冷媒を供給して低
温ベース4,5を冷却する。従って、低温ベース4,5
の冷却が促進されて予備冷却時間が短縮され、また温度
差が少なくなって熱応力の発生が軽減される。
In such a cooling system, during pre-cooling, the base pre-cooling adjustment valve 25 is opened and a refrigerant is supplied to the base pre-cooling piping 24 in addition to the supply of the 6 medium to the storage container 1 to cool the low-temperature bases 4 and 5. Cooling. Therefore, low temperature base 4,5
cooling is promoted, the pre-cooling time is shortened, and the temperature difference is reduced, reducing the occurrence of thermal stress.

また、予備冷却配管12′も冷媒供給時にシャーパネル
6を冷却するので上記と同様に、予備冷却時間の短縮と
熱応力発生の軽減に役立つ。
Furthermore, since the pre-cooling pipe 12' also cools the shear panel 6 when the refrigerant is supplied, it is useful for shortening the pre-cooling time and reducing the occurrence of thermal stress, similarly to the above.

そして運転冷却時には、予備冷却m*弁19゜25を閉
じ、運転冷却[整弁22を開いて冷媒13をリザーバタ
ンク14に補充する。
During operational cooling, the preliminary cooling m* valve 19°25 is closed, and the operational cooling valve 22 is opened to replenish the reservoir tank 14 with the refrigerant 13.

以上に述べた実施例は、低温ベース4,5をベース予備
冷却配管24で冷却し、シャーパネル6を予備冷却配管
12′で冷却するものであるが、ベース予備冷却配管2
4を延長してシャーパネル6も冷却するようにすること
ができる。
In the embodiment described above, the low-temperature bases 4 and 5 are cooled by the base pre-cooling pipe 24, and the shear panel 6 is cooled by the pre-cooling pipe 12'.
4 can be extended to cool the shear panel 6 as well.

〔発明の効果〕〔Effect of the invention〕

本発明は、超電導コイルを運転可能な湿度まで冷却する
冷媒を供給する予備冷却系統に超電導コイル支持部材を
冷却する支持部材冷却配管を設け、この支持部材冷却配
管を流れる冷媒によって支持部材を積極的に冷却するよ
うにしたので、温度差の発生を少なくして熱応力の発生
を軽減し、更に予備冷却時間を短縮できる効果がある。
The present invention provides a support member cooling pipe that cools the superconducting coil support member in a preliminary cooling system that supplies a refrigerant that cools the superconducting coil to an operating humidity level, and the support member is actively cooled by the refrigerant flowing through the support member cooling pipe. Since the temperature difference is reduced, the occurrence of thermal stress is reduced, and the pre-cooling time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来のトーラス型核融合装置に用いら
れる超電導装置を示し、第1図はその一部分の縦断側面
図、第2図は第1図のn −n断面図、第3図は冷却系
統図であり、第4図は本発明の一実施例を示す冷却系統
図である。 l・・・・・・収納容器、2・・・・・・超電導トロイ
ダルコイル、4.5・・・・・・低温ベース、6・・・
・・・シャーパネル、12’・・・・・予備冷却配管、
16・・・・運転冷却配管、21・・・・・・冷媒供給
源、24・・・・ベース予備冷却配管。 端1 図 第2図 7 3 第3図 12 6 1B
1 to 3 show a superconducting device used in a conventional torus-type fusion device. The figure is a cooling system diagram, and FIG. 4 is a cooling system diagram showing one embodiment of the present invention. l... Storage container, 2... Superconducting toroidal coil, 4.5... Low temperature base, 6...
...Shear panel, 12'...Preliminary cooling piping,
16... Operating cooling piping, 21... Refrigerant supply source, 24... Base preliminary cooling piping. End 1 Figure 2 Figure 7 3 Figure 3 12 6 1B

Claims (1)

【特許請求の範囲】 1、超電導コイルと、前記超電導コイルを支持する支持
部材と、前記超電導コイルを運転可能な温度まで冷却側
る冷媒を供給する予備冷却系統と、前記超電導コイルの
運転時に必要な冷媒を供給する運転時冷却系統とt&備
えた超電導装置において、前記予備冷却系統に前記支持
部材を冷却する支持部材冷却配管を設けたことを特徴と
する超電導装m。 2、特許請求の範囲第1項において、前記支持部材冷却
配管は前記超電導コイルに冷媒を供給する配管から独立
して設けられたことを特徴とする超電導装置。 3、特許請求の範囲第1項において、前記支持部材冷却
配管は、前記超電導コイルに冷媒を供給する配管の一部
と、この配管から独立して設けられた配管で構成された
ことを特徴とする超電導装置。
[Claims] 1. A superconducting coil, a support member that supports the superconducting coil, a preliminary cooling system that supplies a refrigerant to cool the superconducting coil to a temperature at which it can be operated, and a system necessary for operating the superconducting coil. 1. A superconducting device equipped with an operating cooling system for supplying a refrigerant, characterized in that the preliminary cooling system is provided with a supporting member cooling pipe for cooling the supporting member. 2. A superconducting device according to claim 1, wherein the support member cooling pipe is provided independently from a pipe that supplies refrigerant to the superconducting coil. 3. Claim 1, characterized in that the support member cooling pipe is comprised of a part of a pipe that supplies a refrigerant to the superconducting coil, and a pipe provided independently from this pipe. superconducting device.
JP58243109A 1983-12-24 1983-12-24 Superconductive device Granted JPS60136209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243109A JPS60136209A (en) 1983-12-24 1983-12-24 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243109A JPS60136209A (en) 1983-12-24 1983-12-24 Superconductive device

Publications (2)

Publication Number Publication Date
JPS60136209A true JPS60136209A (en) 1985-07-19
JPH059925B2 JPH059925B2 (en) 1993-02-08

Family

ID=17098925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243109A Granted JPS60136209A (en) 1983-12-24 1983-12-24 Superconductive device

Country Status (1)

Country Link
JP (1) JPS60136209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358009A (en) * 2000-06-15 2001-12-26 Japan Atom Energy Res Inst Forced refrigerated superconducting coil device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358009A (en) * 2000-06-15 2001-12-26 Japan Atom Energy Res Inst Forced refrigerated superconducting coil device

Also Published As

Publication number Publication date
JPH059925B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
US5461873A (en) Means and apparatus for convectively cooling a superconducting magnet
JP4031121B2 (en) Cryostat equipment
US20090224862A1 (en) Magnetic apparatus and method
JPS60136209A (en) Superconductive device
US20240125431A1 (en) Device for Providing Liquid Helium Forced Flow Cooling Fluid
CN116206846A (en) Superconducting magnet for magnetically controlled Czochralski single crystal and cooling method thereof
CN101105358B (en) Cooling apparatus
JP2002252111A (en) Superconducting magnet device
CN108630377A (en) Multi-tank superconducting magnet cryogenic vessel system and method
JPH0689955B2 (en) Cryogenic refrigerator
JP6600334B2 (en) Space environment test apparatus and method for operating space environment test apparatus
JPS59117281A (en) Cooling apparatus
JP2002031449A (en) Cryogenic cooling apparatus
JPH0815397A (en) Apparatus using liquid helium
CN117831885A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPH08240353A (en) Cryostat and its operating method
Yoshida et al. 1 atm subcooled liquid nitrogen cryogenic system for oxide superconducting power transformer
JP2022064520A (en) Pre-cooling device, cryogenic device, and pre-cooling method
JP2001015323A (en) Helium circulation cooling equipment
JPS6280398A (en) Very low temperature refrigerant supplying method and device
Bochirol et al. A liquid-hydrogen reactor irradiation device
JPH0370914B2 (en)
JPS63299181A (en) Superconducting apparatus
JPS62110086A (en) Double-pipe magnet valve