JPS62110086A - Double-pipe magnet valve - Google Patents

Double-pipe magnet valve

Info

Publication number
JPS62110086A
JPS62110086A JP24697985A JP24697985A JPS62110086A JP S62110086 A JPS62110086 A JP S62110086A JP 24697985 A JP24697985 A JP 24697985A JP 24697985 A JP24697985 A JP 24697985A JP S62110086 A JPS62110086 A JP S62110086A
Authority
JP
Japan
Prior art keywords
magnet
pipe
valve
solenoid valve
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24697985A
Other languages
Japanese (ja)
Inventor
Shigeo Nakayama
茂雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24697985A priority Critical patent/JPS62110086A/en
Publication of JPS62110086A publication Critical patent/JPS62110086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the heat generation of a magnet by providing radiating plates on the outer wall of a magnet-valve or on the part being in contact with an electromagnet. CONSTITUTION:Between a magnet 16 and a valve 18, a vacuum heat insulating vessel exists. As a method for radiating or cooling the heat generated in the magnet while a current flows, the shape of the outer pipe 28 being in contact with the magnet 16 or the outer wall 30 of the magnet is made to be shaped like radiating plates 22. As another method, a heat insulating material 23 such as alumina-ceramics is provided between the magnet 16 and the outer pipe 28. By taking a measure like this, the heat generated in the magnet 16 when carrying a current is radiated or cooled. Accordingly, the inner pipe 27 in which coolant passes is not warmed, and the coolant passing through the magnet-valve is never vaporized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は極低温に適した電磁弁に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a solenoid valve suitable for extremely low temperatures.

〔従来技術とその問題点〕[Prior art and its problems]

第2図、第3図において数体ヘリウム5をタライオスタ
ノト8(低温容器)に注入する場合、トランスファーチ
ューブ6に電磁弁7を設は自動゛ζ・注入作業をしてい
る。マグネットを浸漬するまでの注入時間は、クライオ
スタット内に設置された超電導マグネット11の重さの
大小によって、変わり重さが大きければ大きいほどヘリ
ウムの注入時間は長くなる。たとえば60kgで80分
、120却では約150分かかる。液体ヘリウムを注入
している間、トランスファーチューブ6に設けた1磁弁
7は開けたままであるのでマグネット16に流れる電流
によって発熱を起こす。こめ発熱号はマグネットに通電
する時間が長ければ長いほど大きくなる。マグネットに
発生した熱はマグス、ノドに接したパイプあるいは、外
管と内管を客扱した箇所に伝導伝熱しパイプを暖める。
In FIGS. 2 and 3, when the helium 5 is injected into the Talaiostanoto 8 (low-temperature container), a solenoid valve 7 is installed in the transfer tube 6 for automatic injection. The injection time until the magnet is immersed varies depending on the weight of the superconducting magnet 11 installed in the cryostat, and the greater the weight, the longer the helium injection time. For example, it takes 80 minutes for 60 kg, and about 150 minutes for 120 kg. While liquid helium is being injected, the magnetic valve 7 provided in the transfer tube 6 remains open, so the current flowing through the magnet 16 generates heat. The longer the time the magnet is energized, the larger the heat generation signal becomes. The heat generated in the magnet is conductively transferred to the pipe in contact with the mags, throat, or the outer and inner pipes, warming the pipe.

すると暖められたパイプで生じるふく射熱は二重管の内
管27すなわち冷媒が通るパイプを暖める。すると、冷
媒たとえば蒸発潜熱の小さい液体ヘリウムは気化しやす
くなり、電磁弁付近を通流する液体ヘリウムの流量は極
端に減り注入時間の大幅な増加を起こした。
Then, the radiant heat generated in the heated pipe warms the inner pipe 27 of the double pipe, that is, the pipe through which the refrigerant passes. As a result, refrigerant, such as liquid helium, which has a small latent heat of vaporization, becomes easily vaporized, and the flow rate of liquid helium flowing near the electromagnetic valve is extremely reduced, causing a significant increase in injection time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マクネットの発熱を押えた二重管電磁
弁を提供することにある。
An object of the present invention is to provide a double-pipe solenoid valve that suppresses heat generation of the magnet.

〔発明の概要〕[Summary of the invention]

本発明は、電磁石と弁との間に真空断熱槽が設けられた
電磁弁において、電磁弁の外壁又は電磁石に接する部分
に放熱板を設けた二重管電磁弁の構成にある。
The present invention is a solenoid valve in which a vacuum insulation tank is provided between the electromagnet and the valve, and is a double-pipe solenoid valve in which a heat sink is provided on the outer wall of the solenoid valve or in a portion that contacts the electromagnet.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電磁弁のマグネットが冷却される構造
になっているのでマグネットの発熱は押えられて、冷媒
の流れを妨げることなく一定時間内に液体ヘリウムの注
入を完了できる。
According to the present invention, since the magnet of the solenoid valve is structured to be cooled, the heat generation of the magnet is suppressed, and the injection of liquid helium can be completed within a certain period of time without interfering with the flow of the refrigerant.

〔発明の実施例〕[Embodiments of the invention]

マグネットと弁との間には、真空断熱槽が存在する電磁
弁において、通電中のマグネットに発生する熱を放散ま
たは冷却する方法には次の事柄が上げられる。第1図に
示すようにマグネットに接する外管28またはマグネッ
トの外壁30の形状は放熱板22の形状をしている(A
)。マクネットとマグネットと接する外管28との間に
断熱材23たとえばアルミナセラミックス、FRP(1
1維強化プラスチックス)を設ける(B)。マグネット
16自体を冷媒たとえば液体窒素25に浸漬する(C)
。上記(A)で放熱板22の全体才たは一部を冷媒たと
えば液体窒素25に浸漬する(D)。
In a solenoid valve in which a vacuum insulation tank is present between the magnet and the valve, the following methods can be cited for dissipating or cooling the heat generated in the energized magnet. As shown in FIG. 1, the shape of the outer tube 28 or the outer wall 30 of the magnet in contact with the magnet is in the shape of a heat sink 22 (A
). A heat insulating material 23 such as alumina ceramics, FRP (1
(B). The magnet 16 itself is immersed in a coolant such as liquid nitrogen 25 (C)
. In the above (A), the whole or a part of the heat sink 22 is immersed in a refrigerant, for example, liquid nitrogen 25 (D).

以上のような事柄を施すことにより通電時に発生するマ
グネットの熱は、放散または冷却される。
By implementing the above measures, the heat generated in the magnet when energized is dissipated or cooled.

したがって冷媒が通る内管27が暖められず電磁弁を通
る冷媒は気化されることがないので、冷媒の通流はスム
ーズに行なわれ一定時間内に注入作業は完了する。
Therefore, the inner pipe 27 through which the refrigerant passes is not heated and the refrigerant passing through the electromagnetic valve is not vaporized, so that the refrigerant flows smoothly and the injection operation is completed within a certain period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による二重管電磁弁の概略図、第2図
は、液体ヘリウムをタライオスタット内へ注入している
様子を示す概略断面図、第3図は、従来方式の電磁弁の
概略断面図である。 1・・・ヘリウムガス 2・・・圧力調整器 3・・・加圧用パイプ 4・・液体ヘリウムデユワ−(容器) 5・・・液体ヘリウム 6・・・トランスファーチューブ 7・・・二重管電磁弁 8・・・タライオスタノト 9・・・回収ガスパンク 10・・・クライオスタット側へ入った液体ヘリウム1
1・・・超t4マグネット 12・・・トランスファーチューブから出ている液体ヘ
リウム 13・・二重管電磁弁コントローラー 14・・・液体ヘリウムデユワ−側 15・・・クライオスタット枦1[ 16・・・マグネット ]7・・・真空断熱槽 18・・・プランジャー 19・・・弁座 20・・・プランジャーバネ 21・コンセント 22・・・放熱板 23・・・断熱板 24・・・液体窒素だめ 25・・・液体窒素 26・・・真空断熱槽 27・・・トランスファーチューブ内管28・・・  
  〃      外管29・・・トランスファーチュ
ーブ内管と外管の溶接箇所 30・・・電磁弁マグネットの外壁 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 コ■巳■−
Fig. 1 is a schematic diagram of a double-pipe solenoid valve according to the present invention, Fig. 2 is a schematic cross-sectional view showing how liquid helium is injected into a taliostat, and Fig. 3 is a diagram of a conventional solenoid valve. FIG. 3 is a schematic cross-sectional view of the valve. 1... Helium gas 2... Pressure regulator 3... Pressurizing pipe 4... Liquid helium dewar (container) 5... Liquid helium 6... Transfer tube 7... Double pipe solenoid valve 8... Talaiostanoto 9... Recovery gas puncture 10... Liquid helium that entered the cryostat side 1
1...Super T4 magnet 12...Liquid helium coming out of the transfer tube 13...Double pipe solenoid valve controller 14...Liquid helium dewar side 15...Cryostat handle 1 [16...Magnet] 7...Vacuum insulation tank 18...Plunger 19...Valve seat 20...Plunger spring 21・Outlet 22...Radiation plate 23...Insulation plate 24...Liquid nitrogen reservoir 25・...Liquid nitrogen 26...Vacuum insulation tank 27...Transfer tube inner pipe 28...
〃 Outer tube 29...Welding point between the inner tube and outer tube of the transfer tube 30...Outer wall of the solenoid valve magnet Agent Patent attorney Noriyoshi Chika Yudo Yudo Takehana Kikuo Ko ■Mi -

Claims (3)

【特許請求の範囲】[Claims] (1)電磁石と弁との間には真空断熱槽が存在する電磁
弁において、電磁弁の外壁または電磁石に接する部分に
放熱板が存在することを特徴とした二重管電磁弁。
(1) A double-pipe solenoid valve in which a vacuum insulation tank is present between the electromagnet and the valve, characterized in that a heat sink is present on the outer wall of the solenoid valve or in a portion that contacts the electromagnet.
(2)電磁石は冷媒に浸漬あるいは冷媒によって冷却さ
れる構造であることを特徴とする特許請求の範囲第1項
記載の二重管電磁弁。
(2) The double pipe solenoid valve according to claim 1, wherein the electromagnet is immersed in or cooled by a refrigerant.
(3)電磁石と電磁石に接するパイプとの間には断熱材
が存在することを特徴とする特許請求の範囲第1項記載
の二重管電磁弁。
(3) The double pipe solenoid valve according to claim 1, characterized in that a heat insulating material is present between the electromagnet and the pipe in contact with the electromagnet.
JP24697985A 1985-11-06 1985-11-06 Double-pipe magnet valve Pending JPS62110086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697985A JPS62110086A (en) 1985-11-06 1985-11-06 Double-pipe magnet valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697985A JPS62110086A (en) 1985-11-06 1985-11-06 Double-pipe magnet valve

Publications (1)

Publication Number Publication Date
JPS62110086A true JPS62110086A (en) 1987-05-21

Family

ID=17156559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697985A Pending JPS62110086A (en) 1985-11-06 1985-11-06 Double-pipe magnet valve

Country Status (1)

Country Link
JP (1) JPS62110086A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069239A (en) * 1988-01-26 1991-12-03 Elopak Systems A.G. Fluid control method and device
WO1994015127A1 (en) * 1992-12-18 1994-07-07 Teisan Kabushiki Kaisha Solenoid valve for heat insulating pipes and fixing structure for the same
WO2014039947A1 (en) * 2012-09-07 2014-03-13 Creare Incorporated Actuator for an in-line vacuum jacketed control valve for cyrogenic fluids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069239A (en) * 1988-01-26 1991-12-03 Elopak Systems A.G. Fluid control method and device
WO1994015127A1 (en) * 1992-12-18 1994-07-07 Teisan Kabushiki Kaisha Solenoid valve for heat insulating pipes and fixing structure for the same
US5623960A (en) * 1992-12-18 1997-04-29 Teisan Kabushiki Kaisha Solenoid-operated valve for thermally insulated piping and attachment construction therefor
WO2014039947A1 (en) * 2012-09-07 2014-03-13 Creare Incorporated Actuator for an in-line vacuum jacketed control valve for cyrogenic fluids

Similar Documents

Publication Publication Date Title
JP4031121B2 (en) Cryostat equipment
US7764153B2 (en) Magnetic field generator
JP5809391B2 (en) Apparatus and method for cooling a superconducting magnet
JPS62110086A (en) Double-pipe magnet valve
JPH0550674B2 (en)
Warren A pressurized helium II-cooled magnet test facility
Nacher et al. Nuclear polarization enhancement by distillation of liquid− 4 3 He solutions
CN207021124U (en) A kind of magnet coil cooling system
JPH09313826A (en) Superconductive magnetic separator
JPS63169463A (en) Cooling device for pulse superconducting magnet
JPH0234808Y2 (en)
JPH06163251A (en) Cryogenic vessel
JPH0815397A (en) Apparatus using liquid helium
JPH10313136A (en) Cooling device for high-temperature superconducting magnetic shielding body
JPS6419652A (en) Gas phase ion source
JP3281740B2 (en) Refrigeration equipment
JPH10172796A (en) Superconducting wiggler having dually structured beam chamber
Fukuda et al. Cooling of two-dimensional spin polarized atomic hydrogen
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPS63299181A (en) Superconducting apparatus
JP2002261338A (en) Dew drop preventive device for cryostat
JPS6428904A (en) Superconducting magnet device
Zassenhaus et al. A high resolution heat capacity measurement near the superfluid transition of the4He/Vycor system
Dingus Adiabatic demagnetization refrigerator for use in zero gravity
JPS58176904A (en) Method and apparatus for cooling superconductive coil