JPS60135858A - Ultrasonic probe and manufacture thereof - Google Patents

Ultrasonic probe and manufacture thereof

Info

Publication number
JPS60135858A
JPS60135858A JP58243703A JP24370383A JPS60135858A JP S60135858 A JPS60135858 A JP S60135858A JP 58243703 A JP58243703 A JP 58243703A JP 24370383 A JP24370383 A JP 24370383A JP S60135858 A JPS60135858 A JP S60135858A
Authority
JP
Japan
Prior art keywords
plate
electrode
ultrasonic probe
piezo
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58243703A
Other languages
Japanese (ja)
Inventor
Nagao Kaneko
金子 長雄
Nanao Nakamura
中村 七男
Takashi Koizumi
隆 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58243703A priority Critical patent/JPS60135858A/en
Publication of JPS60135858A publication Critical patent/JPS60135858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the transmitting and receiving of ultrasonic pulses at the highest efficiency by integrating a unit element electrode with lambda/4 plate to prevent the ringing of the ultrasonic pulse excited from a piezo-electric body. CONSTITUTION:Metal thin film electrodes 1 and 2 are provided entirely on one side of a high molecular piezo-electric film 3 by evaporation or the like while a resist material 10 is applied on the other side thereof corresponding to the size of clearance in a lambda/4 plate 2' concurrently serving as a strip-shaped electrode by screen printing or the like. Then, an exposing mask 11 is used to expose the material to light. In this case, the mask 11 is allowed to shield ultraviolet rays from the portion for the plate 2' to be set of the piezo-electric body 3, leaving a positive type photoresist on the clearance portion of the plate 2' only. A metal film 2' is set by plating using the metal thin film electrode of the piezo-electric body 3 thus obtained as plating electrode and after that, the material 10 and an access plate 2' and the like are removed. Then, the strip- shaped electrode and lambda/4 plate integrated type piezo-electric body 3 obtained via such a process is fastened on a support with an adhesive.

Description

【発明の詳細な説明】 〔発明の属Tる技術分野〕 本発明は、複数の単位超音波発・受信素子は配列されて
なる超音波探触子及びその製造方法、に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an ultrasonic probe in which a plurality of unit ultrasonic wave emitting/receiving elements are arranged, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超音波診断、超音波探傷なと、超音波を用いた映1#!
装置の超音波発・受信素子としては、PZTなとの無機
系圧電体やポリフッ化ビニリデンもしくはポリフッ化ビ
ニリデン系共重合体などの高分子圧電体か用いられてい
る。特に高分子圧電体の場合は機械的Qが小さく機械的
損失が大きいことから、無機系圧電体に比較して短い超
音波パルスの発−受信ができる特長かある。このために
、高分子圧電体を用いて複数の単位超音波発e受信累子
カ;配列されてなる。いわゆるリニア・アレイ型アニエ
ラーーアレイ型超音波探触子においては。
Ultrasonic diagnosis, ultrasonic flaw detection, and video using ultrasound!
As the ultrasonic wave emitting/receiving element of the device, an inorganic piezoelectric material such as PZT or a polymeric piezoelectric material such as polyvinylidene fluoride or polyvinylidene fluoride copolymer is used. In particular, polymer piezoelectric materials have a small mechanical Q and large mechanical loss, so they have the advantage of being able to emit and receive shorter ultrasonic pulses than inorganic piezoelectric materials. For this purpose, a plurality of unit ultrasonic wave emitting/receiving elements are arranged using a polymeric piezoelectric material. In the so-called linear array type annular array type ultrasonic probe.

無機系圧電体では必要であった圧電体素子の切断か不必
要であり、一枚の連続に高分子圧電体の少くとも一方に
分割した電極を設けることで所期の機能を達成すること
ができる。
It is unnecessary to cut the piezoelectric element, which was necessary with inorganic piezoelectric materials, and the desired function can be achieved by providing a divided electrode on at least one side of the polymer piezoelectric material in one continuous sheet. can.

更に高分子圧電体は、固有音響インピーダンスがPZT
なとの無機系圧電体に比較して小さいため、該高分子圧
電体よりも固有音響インピーグンスが太き(、かつ高分
子圧電体の発拳受信する超音波の波長の四分の1もしく
はその奇数倍の厚みのある中間基板で音響動作の反対側
を裏打ちすること(以下λ/4板とシ1う)により、更
に効率よく超音波を発・受することが知られている。(
特開昭5353−2539 0)1図には、1例として高分子圧電体を用いたりニア
・アレイ型超音波探触子の断面図を示す。
Furthermore, the polymer piezoelectric material has a characteristic acoustic impedance of PZT.
Because it is smaller than other inorganic piezoelectric materials, its characteristic acoustic impedance is thicker than that of the polymer piezoelectric material (and one quarter of the wavelength of the ultrasonic waves emitted and received by the polymer piezoelectric material or less). It is known that ultrasonic waves can be emitted and received more efficiently by lining the opposite side of the acoustic device with an intermediate substrate that is an odd number times thicker (hereinafter referred to as λ/4 plate). (
JP-A-5353-2539 0) Figure 1 shows a cross-sectional view of a near-array type ultrasonic probe using a polymer piezoelectric material as an example.

共通電極(1)、短冊伏の単位電極(2)を有する高分
子圧電体(3)は、接)材(41を介してλ/4板(5
)に接着し、さらにλ/4板(51,は、接着材(6)
により、支持材(7)に接着されている。この時の接着
材141 、 +61は同種のものであっても差し支え
はない。
A polymer piezoelectric material (3) having a common electrode (1) and a rectangular unit electrode (2) is connected to a λ/4 plate (5) via a contact material (41).
), and then the λ/4 plate (51, is the adhesive (6)
is adhered to the support material (7). The adhesive materials 141 and +61 at this time may be of the same type.

しかしながら、上記超音波探触子においては。However, in the above ultrasonic probe.

接着材(4)の接着聯を出来るだけ薄(、かつ均一な厚
みを有することが重要であり、望ましくは、短冊状単位
電極(2)とλ/4板(5)とを一体化させることによ
り良好な超音波探触子が得られる。
It is important that the adhesive joint of the adhesive material (4) is as thin as possible (and has a uniform thickness; preferably, the strip-shaped unit electrode (2) and the λ/4 plate (5) are integrated. As a result, a good ultrasonic probe can be obtained.

即ち、接着材(4)により、励振用電圧パルスによって
高分子圧電体(31から発受信する超音波は、■接着材
(4)、λ/4板(5)との界面よりリンギングを生じ
短く単一な超音波パルスの発生が困難となること、■接
着材(4)の機械的Q1機械的損失により高分子圧電体
(31からの超音波パルスの減衰が生じ効率が低下する
こと、■接着材(4)の鱈電率、誘電損失等により励振
用電圧パルスの入力低下が生じ。
That is, due to the adhesive (4), the ultrasonic waves emitted and received from the polymer piezoelectric material (31) due to excitation voltage pulses are caused to ring and become shorter than the interface between the adhesive (4) and the λ/4 plate (5). It becomes difficult to generate a single ultrasonic pulse; ■ Mechanical Q1 mechanical loss of the adhesive (4) causes attenuation of the ultrasonic pulse from the polymer piezoelectric material (31), reducing efficiency; ■ The input of the excitation voltage pulse decreases due to the electrical constant, dielectric loss, etc. of the adhesive (4).

超音波出力が低下することなどに加え、接着材(4)の
厚みを均一にすることが甚だ困難であることなどの閘題
がある。
In addition to a reduction in the ultrasonic output, there are other problems such as the fact that it is extremely difficult to make the thickness of the adhesive (4) uniform.

このために、短冊状単位電極(2)とλ/4板(5)と
を一本化させる方法として、予め、高分子圧電体(3)
にλ/4板(5)ラメツキ法、蒸着法、スパッター法、
熱圧着法などの手段で設置し、必要に応じて短冊状単位
電極(2)兼λ/4板(4)をエツチングなどの方法で
設けることが考えられる。しかしながら。
For this purpose, as a method of integrating the strip-shaped unit electrode (2) and the λ/4 plate (5), the polymer piezoelectric material (3)
λ/4 plate (5) Lamecki method, vapor deposition method, sputtering method,
It is conceivable to install it by a method such as thermocompression bonding, and if necessary, to provide a strip-shaped unit electrode (2) and λ/4 plate (4) by a method such as etching. however.

この方法は、所望の厚みを有するλ/4板の形成に長時
間を必要としたり(蒸着法、スパッタ法)高分子圧電体
の特性低下を発生させたり(熱圧着法)、λ/4板のエ
ツチング時に、サイド・エツチング現象によりλ/4板
形状が変化しこの結果超音波パルス特性(リンギングの
発生)を低下させるなどの問題を招く。 □ 〔発明の目的〕 本発明は、上記欠点を解消し、高性能でかっ。
This method requires a long time to form a λ/4 plate with a desired thickness (evaporation method, sputtering method), causes a decrease in the properties of the polymer piezoelectric material (thermocompression bonding method), During etching, the shape of the λ/4 plate changes due to the side etching phenomenon, resulting in problems such as deterioration of ultrasonic pulse characteristics (occurrence of ringing). □ [Object of the invention] The present invention eliminates the above-mentioned drawbacks and achieves high performance.

SlN比の優れた超音波探触子ア を提供することを目的とするものである。Ultrasonic probe with excellent SlN ratio The purpose is to provide the following.

[発明の概要〕 本発明は、複数の単位超音波発・受信素子が配列されて
なる超音波探触子において、単位素子電極とλ/4板を
一体構成してなることを特徴とした超音波パルス及びそ
の製造方法に関する。
[Summary of the Invention] The present invention provides an ultrasonic probe in which a plurality of unit ultrasonic wave emitting/receiving elements are arranged, characterized in that a unit element electrode and a λ/4 plate are integrally configured. This invention relates to a sound wave pulse and its manufacturing method.

本発明の概要を第2同〜第3図(a)〜(CIを用いて
説明する。第2図は1本発明の超音波探触子の1例を示
すもので、高分子圧電体(3)の音響動作面にはkl、
41.Ni、Cr などの金属薄膜電極(1)が蒸着法
、スパッタ法などの公知の手段により全面に設けられて
おり、対向する非音響動作面には本発明の製造方法によ
る短冊伏の電極兼λ/4板(2)が一体構成により設け
られており、さらに電極兼λ/4板(21は支持材(7
)に接着材16)により固着されている。また、金属薄
膜電極+11の上iこは、電気的絶縁並びに音響整合の
為の高分子フィルムが接着材により固着されている(図
示せず)。
The outline of the present invention will be explained using CIs shown in FIGS. 2 and 3 (a) to (CI). FIG. 3) In terms of acoustic operation, kl,
41. A metal thin film electrode (1) made of Ni, Cr, etc. is provided on the entire surface by known means such as vapor deposition or sputtering, and a rectangular electrode and A /4 plate (2) is provided as an integral structure, and a λ/4 plate (21 is a support material (7) that also functions as an electrode) is provided.
) with an adhesive 16). Further, a polymer film for electrical insulation and acoustic matching is fixed to the upper surface of the metal thin film electrode +11 with an adhesive (not shown).

次に本発明の製造方法について第3図で説明する。先ず
第3V(alの如く高分子圧電体フィルム(3)の少く
とも一方にAj、Aj、Ni、Or などの公知の金属
薄膜電極(1)(21を蒸着法、スパッタ法など公知の
手段により全面に設け1次いでその一方にはレジスト材
料(1のを塗布する。レジスト材料の塗布にあたっては
、レジスト材料をスクリーン印刷等により、短冊伏電極
兼λ/4板の間隙寸法に対応させて塗布する様にする。
Next, the manufacturing method of the present invention will be explained with reference to FIG. First, a known metal thin film electrode (1) (21) made of Aj, Aj, Ni, Or, etc. is formed on at least one side of the polymer piezoelectric film (3) such as the 3rd V (al) by a known means such as vapor deposition or sputtering. Apply resist material (1) to the entire surface, and then apply resist material (1) to one side. When applying the resist material, apply it by screen printing or the like in a manner that corresponds to the gap size between the rectangular flat electrodes and the λ/4 plate. I'll do it like that.

あるいはフォトレジストを塗布もしくはフォトレジスト
ポリマーフィルムをラミネート等で貼付しても良い。こ
の場合レジストの膜厚は、高分子圧電体の励振超音波の
波長のほぼ4分の1あるいはその奇数倍の厚みに近(な
ることが望ましく、レジスト塗布の場合は塗料の粘度調
整あるいは重ね塗り、フォトレジストポリマフィルムの
場合は所望の厚さに近(なる様何回かネミネー十工程を
重ねるこ′とで達せられる。
Alternatively, a photoresist may be applied or a photoresist polymer film may be laminated or the like. In this case, the thickness of the resist film should be approximately one-fourth of the wavelength of the excitation ultrasonic wave of the polymer piezoelectric material, or an odd number multiple thereof. In the case of a photoresist polymer film, the desired thickness can be achieved by repeating the process several times to get close to the desired thickness.

フォトレジストを用いる場合は、ネガ型あるいはポジ型
などの種類を問わず、露光用マスクの選択により使用可
能である。
When using a photoresist, it can be used regardless of its type, such as negative type or positive type, by selecting an exposure mask.

巣3図(blは、高分子圧電体の短冊状電極兼λ/4λ
/4板にポジ型フォトレジストポリマフィルム(10ン
をラミネートシ、露光用マスク(11)を用いポジフォ
トレジストポリマフィルム(10)に感光する例えば紫
外線を照射(露光)しているプロセス図を示す。この場
合、高分子圧電体に短冊状電極兼λ/4板(2)を設置
する部分は、露光用Vスフ(11)により紫外線が遮断
される。従って、紫外線を規定量照射し、さらに現象処
理した後には、該部分のポジ型フォトレジストポリマフ
ィルム(11)は除去され、短冊状電極兼λ/4板の間
隙部分にのみポジ型フォトレジストか残る。
Diagram 3 of the nest (bl is a strip-shaped electrode of a polymer piezoelectric material and λ/4λ
A process diagram is shown in which a positive photoresist polymer film (10) is laminated on a /4 plate, and the positive photoresist polymer film (10) is exposed to light using an exposure mask (11), for example, irradiated with ultraviolet rays (exposure). In this case, the part where the strip-like electrode and λ/4 plate (2) is installed on the polymer piezoelectric material is blocked from ultraviolet rays by the exposure V-splash (11). After the phenomenon treatment, the positive photoresist polymer film (11) in this area is removed, and the positive photoresist remains only in the gap between the strip electrodes and the λ/4 plate.

第3図1clは、上記により得た高分子圧電体の金属薄
瞑電極をメッキ用電極とし、Aj+、人l 、Cu 。
FIG. 3 1cl uses the above-obtained thin metal electrode of the piezoelectric polymer as a plating electrode, and has Aj+, 12, and Cu.

Niなどの金属膜(21をメッキにより設置した例を示
す。この場合1選択する金属は、高分子圧電体の固有音
響インピーダンスよりも高いものが必要であるが1例え
ば高分子圧電体として有用なポリフッ化ビニリデンの固
有音響インピーダンスは約4 Xi O@ky/m”・
secであり、メッキ可能な金属類の固有音響インピー
ダンスは数10XIO’ゆ/m’・secであり、大部
分の金属類があげられる。
An example is shown in which a metal film (21) such as Ni is installed by plating.In this case, the selected metal needs to be higher than the specific acoustic impedance of the polymer piezoelectric material. The specific acoustic impedance of polyvinylidene fluoride is approximately 4 Xi O@ky/m”・
sec, and the specific acoustic impedance of metals that can be plated is several 10XIO'y/m'sec, and most metals can be cited.

またこのメッキに関しては、必要に応じて層状に異なる
金属を設けても良い。
Regarding this plating, different metals may be provided in layers as necessary.

メッキ工程終了後、ポジ型フォトレジストポリマを適当
な溶剤で除去し、さらに余分な短冊状電極兼λ/4板(
特にメッキの際に生じやすい電極端部の盛りあがり)、
メッキ操作に用いた金属薄膜電極部分の不要箇所等をエ
ツチング等で除去する。
After the plating process is completed, the positive photoresist polymer is removed with an appropriate solvent, and the excess strip-shaped electrode/λ/4 plate (
bulges at the electrode ends that tend to occur especially during plating),
Unnecessary parts of the metal thin film electrode used in the plating operation are removed by etching or the like.

以上の工程を経てなる短冊状電極兼λ/4板一体型の高
分子圧電体を接着材により支持材に固着することにより
、第2図に示した超音波探触子が得られる。
The ultrasonic probe shown in FIG. 2 is obtained by fixing the polymeric piezoelectric material integrated with a strip-shaped electrode and λ/4 plate through the above steps to a support material using an adhesive.

本発明における短冊伏電極兼λ/4板のメッキは、特に
限定されるものではなく、通常の公知条件が適用できる
。しかしながら、高分子圧電体の圧電特性を維持するに
は、出来るだけ常温付近に温度設定することが望ましい
。また本発明において短冊伏電億兼λ/4板のメッキ用
電極を蒸着などで予め金属薄膜を設けた例を説明したが
1例えば必要電極部分を無電界メッキ等で設けても良い
The plating of the rectangular flat electrode and λ/4 plate in the present invention is not particularly limited, and usual known conditions can be applied. However, in order to maintain the piezoelectric properties of the polymer piezoelectric material, it is desirable to set the temperature as close to room temperature as possible. Further, in the present invention, an example has been described in which a metal thin film is previously provided on the plating electrode of a rectangular flattened plate and a λ/4 plate by vapor deposition or the like; however, for example, the necessary electrode portion may be provided by electroless plating or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次の様な効果を有する超音波探触子を得
ることができる。
According to the present invention, an ultrasonic probe having the following effects can be obtained.

即ち1本発明で得た超音波探触子は、電極兼λ/4板が
一体構成となっているため、従来の超音波探触子に見ら
れる如(圧電体から励振される超音波パルスのリンギン
グか防止できる。またλ/4板の厚みは、メッキ条件に
より圧電体から発・受信する波長の四分の1もしくはそ
の奇数倍の厚みに精度よ(管理でへるので、最高効率の
超音波パルスの発・受信が可能となる。
In other words, the ultrasonic probe obtained by the present invention has an integrated structure of an electrode and a λ/4 plate, so that it can generate ultrasonic pulses excited from a piezoelectric material, as seen in conventional ultrasonic probes. Also, depending on the plating conditions, the thickness of the λ/4 plate should be precisely one-fourth of the wavelength emitted or received from the piezoelectric material, or an odd number multiple thereof (this will reduce the thickness due to management, so the highest efficiency can be achieved). It becomes possible to emit and receive ultrasonic pulses.

さらに本発明は、電極兼λ/4板が一体構成となるため
、従来の如(接着剤の電気・機械特性による整置が除去
できるので、圧電体本来の特性を充分に生かすことが可
能である。また1本発明での電極兼λ/4板は(例えば
短冊状電極としたリニア・アレイ型超音波探触子に用い
る場合には)第2図に示す様な構成となり適性な電極形
状が得らn、かつ、隣接する電極兼λ/4板間隙が積置
よく維持できるため隣接する電極兼λ/4板への電気的
クロストークを防止Tることができる。
Furthermore, in the present invention, since the electrode and λ/4 plate are integrated, the conventional alignment due to the electrical and mechanical properties of the adhesive can be eliminated, making it possible to fully utilize the inherent properties of the piezoelectric material. In addition, the electrode-cum-λ/4 plate in the present invention (for example, when used in a linear array type ultrasonic probe with a strip-shaped electrode) has a configuration as shown in Fig. 2, and has an appropriate electrode shape. Since n is obtained, and the gap between adjacent electrode/λ/4 plates can be maintained in good alignment, electrical crosstalk to adjacent electrode/λ/4 plates can be prevented.

本発明による電極兼λ/4板は、メッキ法により一体構
成するため1例えば高分子圧電体を円筒状もしくは円殻
状に加工し、いわゆる超音波ビームを特定位置に集束せ
しめる集束型超音波探触子の場合にも適用できる。この
場合は、電物兼V4板が精度良(所定の曲率で得られる
他、覗極兼λ/4板の曲げ加工を必要としない為1曲げ
歪みを完全に除去し、精度良い超音波ビームの集束が可
能となる。
Since the electrode/λ/4 plate according to the present invention is integrally constructed using a plating method, 1, for example, a polymer piezoelectric material is processed into a cylindrical or circular shell shape, and a so-called focused ultrasonic probe that focuses an ultrasonic beam on a specific position is used. It can also be applied to the case of tentacles. In this case, the electric material/V4 plate has good precision (in addition to being able to obtain a predetermined curvature, bending processing of the viewing pole/λ/4 plate is not required, so bending distortion is completely removed, and the ultrasonic beam has high precision). can be focused.

〔発明の実施例〕[Embodiments of the invention]

厚さ65μの一軸延伸したポリフッ化ビニリデンフィル
ムの両面に真空蒸着により銀を厚さ1μ程度設置し、さ
らに該フィルムを分極して高分子圧電体を得た。この高
分子圧電体の一方にフォトポリマフィルムレジスト(商
品名リストン■。
Silver was deposited to a thickness of about 1 μm on both sides of a uniaxially stretched polyvinylidene fluoride film having a thickness of 65 μm by vacuum deposition, and the film was further polarized to obtain a polymer piezoelectric material. A photopolymer film resist (trade name: Liston ■) is placed on one side of this polymeric piezoelectric material.

N13420.デエポン社製)を70℃160 kg/
cm ”程夏の条件下でラミネート処理し、フォトポリ
マフィルムレジストを貼布した。次に予め長さ1.3m
m、幅0.9mm 隣接素子間隙Q、1mm からなる
短冊状WL極(64本〕をパターンを設けた金属−ガラ
ス露光用マスクを密着させ、超高圧水銀灯により露光し
、リストン■現像剤で現像し、電極兼λ/4板設置箇所
予定部分のフォトポリマレジストを除去した。
N13420. (manufactured by Depon) at 70℃ 160 kg/
cm ” laminated under conditions of summer and applied photopolymer film resist. Next, a length of 1.3 m was preliminarily
A strip-shaped WL pole (64 poles) consisting of a width of 0.9 mm and an adjacent element gap Q of 1 mm was brought into close contact with a patterned metal-glass exposure mask, exposed to light using an ultra-high pressure mercury lamp, and developed with Liston ■ developer. Then, the photopolymer resist was removed from the area where the electrode/λ/4 plate was to be installed.

次に予め設置した高分子圧電体の銀電極膜を電極とし、
硫酸鋼メッキ浴にてλ/4板をメッキ法により形成した
。この場合、λ/4板の厚みは。
Next, the silver electrode film of the polymer piezoelectric material that had been installed in advance was used as an electrode.
A λ/4 plate was formed by plating in a sulfuric acid steel plating bath. In this case, the thickness of the λ/4 plate is.

ポリフッ化ビニリデンにより励振する波長の1/4相当
となる様にした。
The wavelength was set to be equivalent to 1/4 of the wavelength excited by polyvinylidene fluoride.

銅メツキ処理後1.高分子圧電体に設置したリストン■
を剥離し、更にλ/4励振の為のλ/4板膜厚調整、並
びに電極間隙部分の銀電極を選択エツチング法により除
去し、超音波探触子素子を作成した。
After copper plating treatment 1. Liston installed in a polymer piezoelectric material■
The film was peeled off, and the film thickness of the λ/4 plate was adjusted for λ/4 excitation, and the silver electrodes in the electrode gap were removed by selective etching to produce an ultrasonic probe element.

該素子の電極兼λ/4板部分の一部よりリード線を接続
し、続いてエポキシ接着剤(商品名工ボテック301−
2.エボテック社製)でフェライト人ゴム支持材に固着
し、リニア・アレイ型超音波探触子とした。
Connect the lead wire from a part of the electrode and λ/4 plate part of the element, and then apply epoxy adhesive (trade name Kobotech 301-
2. (manufactured by Evotech) and fixed it to a ferrite rubber support material to form a linear array type ultrasonic probe.

一方比較のため、予め一方を上記実施例と同形状にした
短冊伏電極パターンと、電aをエツチングした高分子圧
電体に、短冊伏電極パターンと同形状のλ/4相当銅板
(厚さ150μ、ダイサーにより切断加工した銅製λ/
4板)をエポキシ系接着剤(商品名工ボテック301−
2.エボテツク社製)で貼布しさらにフェライト人ゴム
支持材に固着し、比較用1J ニアアレイ型超音波探触
子を得た。
On the other hand, for comparison, a rectangular rectangular electrode pattern with one side having the same shape as the above example, and a λ/4 equivalent copper plate (thickness 150μ , copper λ/ cut with a dicer
4 plates) with epoxy adhesive (product name Kobotech 301-
2. (manufactured by Ebotek Co., Ltd.) and further fixed to a ferrite rubber support material to obtain a 1J near array type ultrasonic probe for comparison.

試作した二種のリニア・アレイ型超音波探触子の音響動
作側となる全面薄膜電極部分を接地電極とし、更に短冊
伏電礪部分にはリード線を介して短冊状電極素子8素子
を同時駆動となる様にせしめ、エアロチック社製UTA
−3(入出力インビーダンス50Ω)に接続し150v
のストライクパルスを印加した。この時リニア・アレイ
型超音波探触子からの超音波反射波(水中70mmの深
さに設けたメタアクリル樹脂ブロック表面からの反射波
)は本発明例では45 dBを呈した。
The entire thin film electrode part on the acoustically active side of the two prototype linear array type ultrasonic probes was used as the ground electrode, and eight strip-shaped electrode elements were simultaneously connected via lead wires to the rectangular lay-down part. Driven by Aerotic UTA
-3 (input/output impedance 50Ω) connected to 150V
A strike pulse was applied. At this time, the ultrasonic reflected wave from the linear array type ultrasonic probe (reflected wave from the surface of the methacrylic resin block placed at a depth of 70 mm underwater) exhibited 45 dB in the example of the present invention.

一方間様に、比較例のす=ア・アレイ型超音波探触子の
場合は1反射波強度が38 dBであり本発明例よりも
7dBの感度低下を示した。さらに第2図に示す如く1
本発明例のりニア・アレイ型超音波探触子は、高分子圧
電体とλ/4板がメッキにより直接接触し一体構成とな
りているため。
On the other hand, in the case of the S-A array type ultrasonic probe of the comparative example, the intensity of one reflected wave was 38 dB, which showed a decrease in sensitivity of 7 dB compared to the example of the present invention. Furthermore, as shown in Figure 2, 1
In the linear array type ultrasonic probe according to the present invention, the polymeric piezoelectric material and the λ/4 plate are in direct contact with each other by plating to form an integral structure.

高分子圧電体とλ/4板との界面からのりンギング状極
めて少な(、良好な反射波波形を呈していることが確認
で舞た。
It was confirmed that there was very little ringing from the interface between the polymer piezoelectric material and the λ/4 plate, and that a good reflected wave waveform was exhibited.

以上の実施例の如く1本発明は、複数の単位超音波発・
受信素子が配列されてなる超音波探触子において、単位
素子電極とλ/4板を一体構成することにより、高分子
圧電体から励振される超音波パルスのリンギングを防止
し波形の良い即ち分解能の優れた超音波探触子を提供す
ることができる。
As described in the above embodiments, one aspect of the present invention is to generate a plurality of unit ultrasonic waves.
In an ultrasonic probe in which receiving elements are arranged, by integrally configuring the unit element electrode and the λ/4 plate, ringing of the ultrasonic pulse excited from the polymer piezoelectric material is prevented and a good waveform, that is, resolution is achieved. can provide excellent ultrasonic probes.

さらに本発明の超音波探触子は、接着材の電気・機械特
性による整置(損失)を除去することが可能となり、高
感度の超音波探触子を提供することができる。
Furthermore, the ultrasonic probe of the present invention makes it possible to eliminate alignment (loss) due to the electrical and mechanical properties of the adhesive, making it possible to provide a highly sensitive ultrasonic probe.

本発明、は1両面に薄膜電極を有する圧電素子の少な(
とも一方の電極が複数の短冊伏電極に分割されているか
、もしくは、前記圧電素子が両面に電極を有する複数の
短冊状素子に分割されているいわゆるリニアΦアレイ型
超音波探触子について主に説明したが1本発明は他に両
面に薄膜電極を有する圧電素子の少な(とも一方の電極
が複数の円形状電極に分割されているかもしくは前記圧
電素子が両面に電極を有する複数の円形状素子に分割さ
れているいわゆるアニエラ争アレイ型超音波探触子につ
いて′も適用できることは云うまでもない。
The present invention is based on a piezoelectric element having thin film electrodes on one surface.
Mainly concerning so-called linear Φ array type ultrasonic probes in which one electrode is divided into a plurality of rectangular flat electrodes, or the piezoelectric element is divided into a plurality of rectangular elements having electrodes on both sides. However, the present invention can also be applied to a piezoelectric element having thin film electrodes on both sides (one electrode is divided into a plurality of circular electrodes, or the piezoelectric element is a plurality of circular elements having electrodes on both sides). It goes without saying that '' can also be applied to the so-called Aniera array type ultrasonic probe, which is divided into two types.

また本発明による中間層は円筒状もしくは円殻状に加工
し、いわゆる超音波ビームを特定位置に集束せしめる集
束型超音波探触子に適用できる。
Furthermore, the intermediate layer according to the present invention can be processed into a cylindrical or circular shell shape and applied to a so-called focusing type ultrasonic probe that focuses an ultrasonic beam on a specific position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高分子圧電体を用いたリニア・アレイ型
超音波探触子の断面図、第2図は本発明の1冥晦例を示
す高分子圧電体を用いたIJ ニア・アレイ型超音波探
触子の断面図、第3図(al〜第3図(C1は本発明に
よる高分子圧電体を用いたIJ ニア・アレイ型超音波
探触子の製造プロセス図、第4図1alおよびtblは
それぞれ本発明および従来例によるリニア・アレイ型超
音波探触子の特性図を示す。 1・・・電極、2・・・電極、2′・・・電極兼λ/4
板、3・・・高分子圧電体、4.6・・・接着材、5・
・・λ/4板。 7・・・支持材、10・・・レジスト材、11・・・マ
スク。 代理人弁理士 則 近 憲 @(ほか1名)第2図 第 3 図 (力 第 3 図 (ムン 第4図 (0L)
Fig. 1 is a cross-sectional view of a conventional linear array type ultrasonic probe using a piezoelectric polymer, and Fig. 2 is a cross-sectional view of an IJ near array ultrasonic probe using a piezopolymer, which shows one example of the present invention. A cross-sectional view of a type ultrasonic probe, Fig. 3 (al to Fig. 3 (C1 is a diagram of the manufacturing process of an IJ near array type ultrasonic probe using a polymer piezoelectric material according to the present invention, Fig. 4) 1al and tbl show characteristic diagrams of linear array type ultrasound probes according to the present invention and a conventional example, respectively. 1... Electrode, 2... Electrode, 2'... Electrode and λ/4
Plate, 3... Polymer piezoelectric material, 4.6... Adhesive material, 5.
...λ/4 plate. 7... Supporting material, 10... Resist material, 11... Mask. Representative Patent Attorney Nori Chika @ (and 1 other person) Figure 2 Figure 3 (Power Figure 3 (Mun Figure 4 (0L)

Claims (1)

【特許請求の範囲】 ill高分子圧電体から成る複数の単位超音波発・受信
素子が配列された超音波探触子において、単位素子電子
電極とλ/4板とを一体構成してなることを特徴とする
超音波探触子。 (2)高分子圧電体の非音響動作面に、短冊状もしくは
りング伏電極間隙に対応したレジストを塗布する工程、
もしくは短冊状もしくはリング状電極間隙に対応する部
分にフォトレジストを設置する工程と、短冊状もしくは
リング状電極に対応する部分をメッキする工程と、レジ
ストを除去する工程とを具備することを特徴とする超音
波探触子の製造方法。
[Scope of Claim] An ultrasonic probe in which a plurality of unit ultrasonic wave emitting/receiving elements made of an ill polymer piezoelectric material are arranged, in which a unit element electronic electrode and a λ/4 plate are integrated. An ultrasonic probe featuring: (2) a step of applying a resist corresponding to the strip-shaped or ring-to-flat electrode gap on the non-acoustic operation surface of the polymer piezoelectric material;
Alternatively, it is characterized by comprising the steps of: installing a photoresist in a portion corresponding to the gap between the strip-shaped or ring-shaped electrodes; plating the portion corresponding to the strip-shaped or ring-shaped electrode; and removing the resist. A method for manufacturing an ultrasonic probe.
JP58243703A 1983-12-26 1983-12-26 Ultrasonic probe and manufacture thereof Pending JPS60135858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243703A JPS60135858A (en) 1983-12-26 1983-12-26 Ultrasonic probe and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243703A JPS60135858A (en) 1983-12-26 1983-12-26 Ultrasonic probe and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60135858A true JPS60135858A (en) 1985-07-19

Family

ID=17107725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243703A Pending JPS60135858A (en) 1983-12-26 1983-12-26 Ultrasonic probe and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60135858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676742A2 (en) * 1994-04-08 1995-10-11 Hewlett-Packard Company Integrated matching layer for ultrasonic transducers
WO2009079467A2 (en) * 2007-12-18 2009-06-25 Boston Scientific Scimed, Inc. Composite passive materials for ultrasound transducers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0676742A2 (en) * 1994-04-08 1995-10-11 Hewlett-Packard Company Integrated matching layer for ultrasonic transducers
EP0676742A3 (en) * 1994-04-08 1996-07-31 Hewlett Packard Co Integrated matching layer for ultrasonic transducers.
WO2009079467A2 (en) * 2007-12-18 2009-06-25 Boston Scientific Scimed, Inc. Composite passive materials for ultrasound transducers
WO2009079467A3 (en) * 2007-12-18 2010-04-22 Boston Scientific Scimed, Inc. Composite passive materials for ultrasound transducers
US7804228B2 (en) 2007-12-18 2010-09-28 Boston Scientific Scimed, Inc. Composite passive materials for ultrasound transducers

Similar Documents

Publication Publication Date Title
EP0379229B1 (en) Ultrasonic probe
DeReggi et al. Piezoelectric polymer probe for ultrasonic applications
CN1909747B (en) Electrostatic ultrasonic transducer, ultrasonic speaker, and electrode manufacturing method
EP0027542B1 (en) Ultrasonic transducer element
US4651310A (en) Polymeric piezoelectric ultrasonic probe
JPH0124479B2 (en)
US5704105A (en) Method of manufacturing multilayer array ultrasonic transducers
KR101354603B1 (en) Ultrasound Probe and Manufacturing Method thereof
KR19990081844A (en) Composite Device Acoustic Probe with Common Ground Electrode
JPH10507600A (en) Ultrasonic transducer array with snake-shaped elevation focus
US20200406299A1 (en) Ultrasound array transducer manufacturing
TW201716753A (en) Membrane hydrophone for high frequency ultrasound and method of manufacture
JPS60135858A (en) Ultrasonic probe and manufacture thereof
US20220326793A1 (en) Ultrasonic pattern recognition assemblies, preparation methods thereof and display devices
JP3313171B2 (en) Ultrasonic probe and manufacturing method thereof
US10553779B2 (en) Method of fabricating an acoustic transducer
JPH07312799A (en) Ultrasonic wave probe and its manufacture
JPS6059899A (en) Ultrasonic wave probe
JPH0520079Y2 (en)
JP3505296B2 (en) Ultrasonic probe and manufacturing method thereof
JPH0897673A (en) Surface acoustic wave element and its manufacture
JPH08275295A (en) Acoustic transducer
CN116532347A (en) Ultrasonic transducer array and method of making same
JPS60235600A (en) Ultrasonic wave probe and its manufacture
JPH0538335A (en) Ultrasonic probe and manufacture thereof